Willems, M. E. T., Cousins, L., Williams, D. and Blacker, S. D. (2016) Beneficial Effects of New Zealand Blackcurrant Extract on Maximal Sprint Speed during the Loughborough Intermittent Shuttle Test. Sports, 4 (3). ISSN 2075-4663
htm - Published Version
Available under License Creative Commons Attribution.
Download (132kB)
Abstract
New Zealand blackcurrant (NZBC) extract has been shown to enhance high-intensity intermittent treadmill running. We examined the effects of NZBC extract during the Loughborough Intermittent Shuttle Test (LIST) which involves 5 × 15 min blocks with intermittent 15-m maximal sprints, interspersed by moderate and high-intensity running to simulate team sport activity, and a subsequent run to exhaustion. Thirteen males (age: 22 ± 1 year, V˙O2max: 50 ± 5 mL·kg−1·min−1) participated in three indoor sessions (T: 24 ± 3 °C, humidity: 52% ± 9%). In the first session, a multistage fitness test was completed to determine peak running speed and estimate V˙O2max. Participants consumed NZBC extract in capsules (300 mg·day−1 CurraNZ™) or placebo (PL) (300 mg·day−1 microcrystalline cellulose M102) for seven days in a double-blind, randomized, cross-over design (wash-out at least seven days). NZBC extract did not affect average 15-m sprint times in each block. NZBC reduced slowing of the fastest sprint between block 1 and 5 (PL: 0.12 ± 0.07 s; NZBC: 0.06 ± 0.12 s; p < 0.05). NZBC extract had no effect on heart rate, vertical jump power, lactate and time to exhaustion (PL: 13.44 ± 8.09 min, NZBC: 15.78 ± 9.40 min, p > 0.05). However, eight participants had higher running times to exhaustion when consuming NZBC extract. New Zealand blackcurrant extract may enhance performance in team sports with repeated maximal sprints.
Publication Type: | Articles |
---|---|
Subjects: | Q Science > QP Physiology |
Divisions: | Academic Areas > Institute of Sport > Area > Exercise Physiology |
Related URLs: | |
Depositing User: | Mark Willems |
Date Deposited: | 26 Aug 2016 07:53 |
Last Modified: | 25 Sep 2018 10:47 |
URI: | https://eprints.chi.ac.uk/id/eprint/1933 |