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A B S T R A C T

Drowning is a critical global health issue, responsible for over 236,000 deaths annually. Lifeguards play a key 
role in preventing drowning incidents by continually monitoring bathers and detecting hazards taking place in 
highly dynamic environments such as pools. Previous studies have observed that specialized drowning detection 
training is closely associated with enhanced detection of drowning events. However, the neural mechanisms 
underlying this greater drowning detection performance remain unclear. Here, we address this gap in the 
literature by comparing brain function between lifeguards and novices, and examining changes in brain dy
namics associated with drowning detection training. Using a dynamic functional connectivity analysis method 
called Leading Eigenvector Dynamics Analysis (LEiDA), we analysed time-varying patterns of brain activity in 18 
lifeguards and 16 novices during a drowning detection task and at rest. Our findings revealed significant dif
ferences within group and between groups in the probability of occurrence of attention-related brain networks, 
particularly the frontoparietal, ventral attention and Default Mode networks. These findings provide novel in
sights into the neural basis of lifeguard expertise and how specialized training shapes neural mechanisms and 
improves drowning detection performance in critical lifesaving scenarios.

1. Introduction

Lifeguards play a pivotal role in preventing drowning events by 
continuously monitoring swimmers and anticipating potential hazards 
in highly dynamic aquatic environments (Lanagan-Leitzel et al., 2015). 
The task of lifeguard surveillance presents unique challenges, requiring 
the ability to sustain attention over extended periods and accurately 
detect rare events amidst a continuous stream of visual information 
across large bodies of water (Lanagan-Leitzel et al., 2015; Schwebel 
et al., 2011). Sustained attention, defined as the continuous focus on a 
specific task over an extended period, is considered a key executive 
function underlying drowning detection performance (Sharpe et al., 
2024). Previous research has demonstrated that sustained attention 
significantly contributes to performance on measures of working mem
ory capacity (Unsworth & Robison, 2016). Moreover, lifeguards with 
greater working memory capacity have been reported to display 
enhanced detection of drowning events during simulated tasks (Sharpe 

et al., 2024). However, the neural mechanisms underpinning this 
improved ability to accurately detect drowning events remain poorly 
understood.

Neuroscientific research suggests that attention is sustained through 
the coordinated activity of multiple brain regions (Bressler & Menon, 
2010; Seeburger et al., 2024). Yeo et al. (2011) identified four major 
brain networks involved in attentional control. Enhanced sustained 
attention has typically been associated with increased task performance 
and activation of the frontoparietal and dorsal attention networks 
(Pamplona et al., 2020). These networks, collectively known as the task 
positive network, are involved in top-down, task-oriented attention and 
effortful cognitive control (Petersen & Posner, 2012). In contrast, the 
Default Mode Network (DMN) has been found to deactivate during 
attention-demanding tasks (Pamplona et al., 2020; Raichle et al., 2001) 
and is associated with internal cognitive processing such as introspec
tion and mind wandering (Mason et al., 2007). Additionally, the ventral 
attention network, involved in monitoring salient outputs and playing a 
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key role in alerting, has been linked to task performance and attentional 
control (Seeburger et al., 2024).

The present study employed a two-part experimental design to 
investigate the neural correlates of drowning detection performance. 
Study 1 compared brain function between lifeguards and a novice con
trol group (i.e., non-lifeguards). Study 2 explored changes in brain dy
namics associated with drowning detection training within the control 
group. Indeed, previous studies have shown that lifeguard-specific 
drowning detection training not only enhances performance in 
drowning detection tasks (i.e., number of correctly identified drowning 
events) but also outperforms standard working memory training in 
terms of performance improvement (Sharpe et al., 2025). However, the 
brain mechanisms underlying this increased drowning detection per
formance after training remain unclear.

Given that sustained attention is known to fluctuate over time 
(Seeburger et al., 2024; Sharpe & Tyndall, 2025), we have chosen to 
study the time-varying patterns of brain activity using Leading Eigen
vector Dynamics Analysis (LEiDA), a computational neuroimaging 
technique which examines changes in brain functional connectivity over 
time (Cabral et al., 2017). LEiDA works by analysing the dominant 
patterns of brain connectivity at each moment in time, allowing re
searchers to identify recurring “brain states” that the brain transitions 
between during scanning. LEiDA characterizes states, or networks of 
brain regions, that alternate in activation over the entire duration of the 
scan. Each timepoint is associated with a state, or network, that domi
nates at that specific moment. This technique allows for the extraction of 
the probability of occurrence of each state, defined as the percentage of 
timepoints during which the state dominates during the scan. LEiDA has 
been successfully employed in studies using both resting-state and task 
functional Magnetic Resonance Imaging (fMRI), shedding light on the 
dynamics of various cognitive processes including attention (Cahart 
et al., 2024; Cahart et al., under review), alertness (Magalhães et al., 
2021), trait self-reflectiveness (Larabi et al., 2020), and action- 
perception (Heggli et al., 2020). To obtain a more comprehensive un
derstanding of brain function differences between groups and within 
group, we have chosen to investigate brain dynamics both during a 
drowning detection task and at rest.

In Study 1, it was hypothesized that lifeguards would demonstrate 
significantly superior drowning detection performance at baseline 
compared to control participants, as measured by the number of 
correctly identified drowning events. Additionally, the study anticipated 
that lifeguards would exhibit distinct brain dynamics, specifically in the 
probability of occurrence of states associated with the frontoparietal, 
dorsal attention, ventral attention, and default-mode networks, 
compared to controls. These differences were expected to manifest both 
during the active drowning detection task and during resting-state brain 
activity.

For Study 2, the hypotheses focused on within-group effects of 
training among the control participants. It was expected that drowning 
detection performance would significantly improve in this group 
following the training intervention, relative to their pre-training per
formance. Furthermore, changes were anticipated in the brain dynamics 
of the same four attention-related networks, frontoparietal, dorsal 
attention, ventral attention, and default-mode, after training. These 
neural differences were hypothesized to be evident both during the 
drowning detection task and at rest.

2. Materials and methods

2.1. Participants

Eighteen lifeguards and 18 non-lifeguard controls initially took part 
in the study after providing written informed consent (ethics number 
HR/DP-22/23–33492; King’s College London Research Ethics Commit
tee). All participants were males, right-handed, with no history of psy
chiatric disorder or neurological disease, and met MRI safety criteria (i. 

e., no pacemaker, no metal in the body, no claustrophobia). Males were 
chosen in order to limit gender-differences typically observed in brain 
anatomy (Giedd et al., 2012). Lifeguards had an average of 3.96 years of 
experience and were all certified by and recruited through the Royal Life 
Saving Society (RLSS) UK. Importantly, all lifeguards had received 
standardized RLSS training in drowning detection and water rescue 
techniques as part of their certification process. Controls were recruited 
through social media and King’s College London’s research recruitment 
mails. Of the 18 controls, two were excluded because of one missing 
their second scan and the other one falling asleep during the task. The 
final number of participants included in the analyses consisted of 18 
lifeguards (aged = 22.6 ± 3.7 years) and 16 age-matched controls (aged 
= 22.3 ± 3.2 years). Power calculations were conducted using G*Power 
3.1.9.7, assuming a medium effect size (Cohen’s d = 0.8) with α = 0.05 
and power = 0.80. This indicated a minimum sample size of 16 partic
ipants per group for between-group comparisons and 15 participants for 
within-group comparisons, which our final sample met.

2.2. Procedure

All 34 participants underwent MRI scanning sessions at the Centre 
for Neuroimaging Sciences (Institute of Psychiatry, Psychology and 
Neuroscience; King’s College London). Each lifeguard attended only one 
scanning session, while each control attended two scanning sessions, 
once before and once after online drowning detection training. The time 
interval between the two scanning sessions for controls was 5–6 weeks 
(mean = 5.3 ± 0.4 weeks). Each session consisted in filling in ques
tionnaires and undergoing a 75-minute MRI scan.

2.3. Questionnaires

Upon their first scanning session, all participants filled in the 
Cognitive Failures Questionnaire (Broadbent et al., 1982) before going 
into the MRI scanner. The Cognitive Failures Questionnaire consists of 
25 items measuring forgetfulness, distractibility and false triggering in 
everyday life. The aim was to eliminate differences in cognitive pro
cesses between groups at baseline. The questionnaire has been shown to 
achieve high internal consistency reliability (α = 0.92) (Bridger et al., 
2013).

After each scan, all participants filled in the NASA Task Load Index 
(NASA TLX) questionnaire (Hart & Staveland, 1988), which measures 
perceived workload across six distinct dimensions such as mental de
mand (i.e., how mentally demanding the task was), physical demand (i. 
e., how physically demanding the task was), temporal demand (i.e., how 
hurried or rushed the pace of the task was), performance (i.e., how 
successful the participants felt, or perceived, they were in accomplishing 
the task), effort (i.e., how hard it was to perform this task), and frus
tration (i.e., how insecure, discouraged, irritated, stressed or annoyed 
they felt). Participants were required to rate each item on a scale from 
0 to 21. The scales have shown strong internal consistency reliability (α) 
in previous studies (0.72) (Hoonakker et al., 2011).

2.4. MRI data acquisition

All participants were scanned in a 3 T MR scanner (Signa Premier, 
General Electric, Chicago, IL, USA). On each visit, they underwent an 
anatomical T1-weighted MPRAGE scan with the following parameters: 
repetition time = 2658 ms; inversion time = 860 ms; recovery time =
1015 ms; echo time = 2.952 ms; flip angle = 8◦; field of view = 256 
mm2; matrix size = 256 × 256; 208 slices, with slice thickness = 1 mm. 
After the anatomical scan, the participants underwent a resting-state 
sequence: multiband factor 4, no in-plane acceleration: repetition 
time = 933 ms; echo time = 32 ms; flip angle = 60◦; field of view = 221 
mm2; matrix size = 82x82; slice thickness = 2.7 mm; total acquisition 
time = 9 min. The other functional run, which immediately followed the 
resting-state sequence, was dedicated to the drowning detection task 
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and had the following parameters: multiband factor 4, no in-plane ac
celeration: repetition time = 1000 ms; echo time = 32 ms; flip angle =
60◦; field of view = 221 mm2; matrix size = 82x82; slice thickness = 2.7 
mm; total acquisition time = 30 min. During the acquisition of the 
resting-state sequence, the participants were asked to stare at a white 
cross on a black screen in a wakeful resting state and were provided with 
headphones and earplugs to limit background noise generated by the 
MRI machine. During the acquisition of the other functional run, the 
participants were required to carry out the drowning detection task.

2.5. Drowning detection task

The drowning detection task was adapted from the lifeguard-specific 
Bobbing Along drowning detection tool used in previous studies (Sharpe 
et al., 2023; 2024; Sharpe & Smith, 2024). The task was developed using 
Unreal Engine 4 (UE4), with custom C++ code implemented to provide 
the necessary functionality for a standard paradigm task. Furthermore, 
built-in blueprints were used to optimize the creation and management 
of the 3D environment (Hill, 2021). The video consisted in a simulation 
of 48 bathers swimming across 64 navigation boxes in a randomized 
manner (Fig. 1). The full task is available upon request from the corre
sponding author. The entire task featured 12 drowning events, taking 
place at irregular intervals throughout the task (Table 1), each occurring 
in one of the 64 navigation boxes (Table 2). The timing of drowning 
events was pseudo-randomized to avoid predictable patterns while 
maintaining ecological validity. Forty-eight bathers were included in the 
task to align with the highest count used in prior research (Sharpe et al., 
2024). Additionally, 12 drowning events were chosen to ensure enough 
statistical power given the 30-minute fMRI task length, while also 
considering ecological validity, as more than 12 events would have been 
unrealistically frequent compared to real-life scenarios.

Ecological Validity Considerations: The drowning detection task was 
designed to replicate key aspects of real-world lifeguarding scenarios 
while maintaining experimental control necessary for neuroimaging. 
The simulation incorporated several ecologically valid features: (1) 
multiple bathers moving simultaneously in unpredictable patterns, 
mimicking crowded pool conditions; (2) passive drowning events 
following the Instinctive Drowning Response characteristics observed in 
real drowning incidents; (3) the requirement for sustained vigilance 
over extended periods; and (4) the visual search demands typical of 
lifeguard surveillance. However, we acknowledge that certain real- 
world factors such as environmental distractions, varying lighting con
ditions, and three-dimensional water movement could not be replicated 
in the controlled laboratory setting.

All participants were presented with the exact same task, with 
drowning events taking place in the same order. Each event lasted 30 s, 
with the bather gradually disappearing under water until full submer
sion, mimicking the description of passive drowning in line with the 

Instinctive Drowning Response (Pia, 1974). Ten seconds after sub
merging entirely, the bather re-emerged and resumed their randomized 
swimming pattern. The re-emergence of bathers was included to main
tain the continuous nature of the surveillance task and prevent partici
pants from simply counting disappeared bathers, thus requiring genuine 
detection of the drowning process rather than absence of swimmers.

Participants were required to respond to each drowning event using 
a button box. They were asked to press the button as soon as they 
identified a drowning incident taking place. If the button was pressed 
within the 30-second window, then the response was ‘correct’. All par
ticipants got a ‘correct’ score between 0 and 12. In the event of the 
button being pressed outside of this window, the response was classed as 
a ‘false positive’, as it meant that the participant identified a drowning 
event that was not actually taking place.

2.6. Drowning detection training

Between both scanning sessions, all controls took part in online 
drowning detection training adapted from a previous study (Sharpe 
et al., 2025). The training consisted of watching one 30-minute video 

Fig. 1. Screen capture of the Bobbing Along task with 48 bathers.

Table 1 
Table featuring the time each of the 12 drowning events was set to start and end, 
in minutes.

Drowning event Time drowning starts (in mins) Time drowning ends (in mins)

1 1:15 1:45
2 3:45 4:15
3 4:55 5:25
4 7:15 7:45
5 9:30 10:00
6 12:45 13:15
7 15:15 15:45
8 16:25 16:55
9 19:15 19:45
10 23:45 24:15
11 26:15 26:45
12 28:30 29:00

Table 2 
Mapping of the 64 navigation boxes, with numbers indicating the location and 
order of each of the 12 drowning events.

​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​
1,11 ​ ​ ​ ​ 8 ​ 3
​ ​ ​ ​ ​ ​ ​ ​
9 ​ ​ 5 ​ ​ 6 10
​ ​ ​ ​ ​ ​ ​ ​
4 ​ 7 ​ ​ ​ ​ 2,12
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online, once each week, over 4 weeks, to balance training benefits with 
ethical considerations such as limiting participant burden. This 
approach has previously successfully improved drowning detection 
(Sharpe et al., 2025). The link to each video was sent to each participant 
at the beginning of the week they were due to watch it. The order of the 
training videos was randomized. Each video was made up of 6 clips that 
each involved one simulated drowning scenario similar to those pre
sented in the Bobbing Along task. At the end of each clip, the footage of 
the specific drowning event was replayed and the drowning location was 
highlighted with a red arrow pointing downwards to show the specific 
location where the drowning incident took place. We chose to include 
only 6 drowning events to maintain ecological validity, as replays after 
each event to highlight event location would have made 12 events too 
frequent for a 30-minute video. In line with prior work (Sharpe et al., 
2025), the total number of bathers in each clip was 16 in order to keep 
the training videos at a manageable level of difficulty. The aim was to 
ensure that the drowning events were clearly illustrated so participants 
could effectively learn to recognize similar situations in the future. 
Compliance was ensured by requiring all controls to either add their 
initials to the comments below the video upon watching the video or 
confirm via email that they had watched the training video. The next 
video was sent out only after confirmation had been received.

2.7. MRI data pre-processing

Functional Magnetic Resonance Imaging (fMRI) data preprocessing 
was conducted to prepare the neuroimaging data for subsequent con
nectivity analyses. Statistical Parametric Mapping (SPM12; Wellcome 
Trust Centre for Neuroimaging, London, UK) and the CONN toolbox 
Version 21a (Whitfield-Gabrieli & Nieto-Castanon, 2012) were used to 
preprocess the data. The functional data were realigned, registered to 
structural images, spatially normalized into the Montreal Neurological 
Institute (MNI) standardized space and smoothed with a Gaussian filter 
with a full width at half maximum of 5.0 mm. As part of the CONN 
toolbox’s pipeline, the artifact rejection tool (ART) (https://www.nitrc. 
org/projects/artifact_detect) was also run for outlier detection. For each 
volume identified as an outlier, a covariate was included as part of the 
denoising regression step to reduce the impact of those scans on the 
subsequent connectivity analyses. Furthermore, the anatomical Comp
Cor method (component-based noise correction method; Behzadi et al., 
2007) was used to make sure that physiological and other sources of 
noise were regressed out.

2.8. Statistical analyses

All statistical analyses were carried out using MATLAB R2020a 
(MathWorks, Natick, MA, USA). Data were assessed for normality using 
the Shapiro-Wilk test. Correction for multiple comparisons was imple
mented using False Discovery Rate (FDR) correction (Benjamini & 
Hochberg, 1995). Significance was set at p < 0.05. Given the non- 
random sampling approach necessitated by the specialized nature of 
the lifeguard population, results should be interpreted with caution 
regarding generalizability to the broader population.

2.9. Baseline variables

Between-group t-tests were carried out to determine baseline dif
ferences between controls and lifeguards in terms of age, forgetfulness, 
distractibility and false triggering.

2.10. Task performance variables

Between-group t-tests were carried out to determine differences be
tween controls and lifeguards in terms of the ‘correct’, ‘false positive’ 
and NASA Task Load variables.

The impact of drowning detection training on the ‘correct’, ‘false 

positive’ and NASA Task Load variables was evaluated using paired t- 
tests comparing controls before (i.e., ‘controls pre’) and controls after (i. 
e., ‘controls post’) drowning detection training.

2.11. LEiDA

Leading Eigenvector Dynamics Analysis (LEiDA) is a computational 
approach that identifies recurring patterns of brain connectivity across 
time. The technique works by examining how different brain regions 
synchronize their activity at each moment during scanning, then clus
tering these patterns into distinct “brain states” that occur repeatedly 
throughout the session. Dynamic connectivity analyses were performed 
in MATLAB R2020a (MathWorks, Natick, MA, USA) using LEiDA scripts 
adapted from Cabral et al. (2017). For each of the N = 105 anatomical 
regions of interest (ROIs) extracted from the CONN toolbox (Whitfield- 
Gabrieli & Nieto-Castanon, 2012), the BOLD signal timeseries were 
averaged over all voxels within each ROI. These timeseries were 
demeaned and then Hilbert-transformed into an analytic signal which 
captures the time-varying phase of the BOLD fluctuations. This process 
resulted in a timeseries of BOLD phases for each ROI and each partici
pant. Fig. 2a-b represents the BOLD phases of each ROI at timepoint t = 1 
in cortical phase and in the complex plane.

Next, the degree of phase synchrony between pairs of brain regions 
was calculated at each timepoint t. This led to the computation of the 
dynamic phase-locking matrix (dPL(t)), which displays the degree of 
phase alignment between pairs of ROIs, across all N = 105 ROIs, for each 
participant and at each timepoint t. Phases of two brain regions are 
considered in full synchrony if their phase-locking value is 1, and out of 
synchrony if the value is − 1. The leading eigenvector V1(t) was assessed 
for each dPL(t), to detect the primary pattern of phase synchrony with 
reduced dimensionality at each timepoint t. V1(t) contains N = 105 el
ements (i.e., ROIs), each having either a positive or negative value 
(Fig. 2c-d). When all phases exhibit a negative sign, it indicates that all 
phases are projecting onto V1(t) in the same direction, thus reflecting 
global coherence mode (Lord et al., 2019; Vohryzek et al., 2020). In 
contrast, elements with a positive sign represent phases projecting onto 
the opposite direction of V1(t). These positively-valued ROIs typically 
correspond to meaningful functional brain networks that dominate at a 
given timepoint t (Lord et al., 2019; Vohryzek et al., 2020).

K-means clustering was subsequently applied to all leading eigen
vectors V1(t) to iteratively cluster similar patterns of brain activity into 
distinct states, ranging between k = 5 and k = 12 (Fig. 2e). Each 
calculation was repeated 10,000 times to enhance the stability of the 
results. In essence, this method minimizes the distance between each 
observation and the nearest cluster centroid. The Dunn score (Dunn, 
1973) was then computed to identify the optimal k number of states that 
best explain the data by minimizing intra-cluster distances and maxi
mizing inter-cluster distances.

To assign each LEiDA state to a meaningful reference label based on 
established functional networks (Yeo et al., 2011), we then calculated 
the proportion of ROIs that shared spatial overlap with each of the seven 
large-scale functional networks defined by Yeo’s atlas. Following the 
methodology outlined in Vohryzek et al. (2020), this involved trans
forming each Yeo network into a vector made up of N = 105 elements 
that each reflected the extent of their contribution to each Yeo network. 
We then calculated Pearson’s correlation coefficients between the cen
troids Vk and each Yeo network. Significance was set at p < 0.01/k. We 
then calculated the probability of occurrence of each state, defined as 
the fraction of timepoints during which a state is active during the scan. 
For each state, in line with previous work (Alonso Martínez et al., 2020; 
Cabral et al., 2017; Deco et al., 2019; Lord et al., 2019), permutation- 
based between-group t-tests were carried out to determine differences 
between controls and lifeguards; and permutation-based paired t-tests 
were run to identify differences between ‘controls pre’ and ‘controls 
post’, FDR-corrected. A total of 10,000 permutations were used to 
ensure stability of the results. It is worth noting that the k-means 
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clustering, Dunn score, spatial overlap, probability of occurrence, and t- 
tests steps were run twice, separately: once for the drowning detection 
task, and once for the resting-state data.

3. Results

3.1. Baseline variables

As illustrated in Fig. 3, there was no significant difference between 
controls and lifeguards in terms of age, forgetfulness, distractibility and 
false triggering (p > 0.05). These results confirm that baseline cognitive 
differences did not account for subsequent group differences in task 
performance or brain dynamics (Fig. 4).

3.2. Task performance variables

Between-group t-tests revealed no significant difference between 
‘controls pre’ and lifeguards for ‘correct’, ‘false positives’ and NASA 
Task Load variables (p > 0.05). Paired t-tests revealed a significant in
crease in ‘correct responses’ (8.50 vs 9.44; t(15) = − 1.99, pFDR = 0.02) 
and a significant decrease in ‘effort’ (t(15) = 2.88, pFDR = 0.02) between 
‘controls pre’ and ‘controls post’. There was no significant difference 
between ‘controls pre’ and ‘controls post’ for ‘false positives’ and the 
other NASA Task Load variables. Importantly, when comparing ’con
trols post’ with lifeguards, trained controls showed numerically superior 
performance (9.44 vs 8.89 correct detections), though this difference did 

not reach statistical significance (p > 0.05). This suggests that special
ized drowning detection training may enable novices to achieve per
formance levels comparable to, or potentially exceeding, experienced 

Fig. 2. Detection of recurring phase-locking patterns (or states) in fMRI signals. At each timepoint (here, at the first timepoint t = 1), the BOLD phase from each 
region of interest (ROI) is characterised by an arrow that indicates the phase orientation of that ROI and is positioned at the centre of gravity of that ROI (a) in cortical 
space and (b) in complex plane. The leading eigenvector (V1) is depicted as a dashed arrow. (c) The horizontal bar plot displays the relative contribution of each ROI 
to V1 at a given timepoint (here, the first volume t = 1). Phases are split into two communities (blue or red) based on their projection onto V1. (d) The 105 × 105 
dynamic phase-locking matrix dPL(t) shows the level of synchrony between pairs of ROI phases at a specific timepoint (here, the first volume t = 1). Warmer colours 
indicate greater synchrony between ROI phases. (e) All leading eigenvectors V1 from all timepoints and all participants are clustered into k groups using k-means 
clustering (k = 12 in this case). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Bar graph featuring the mean values of each baseline variable (i.e., age, 
forgetfulness, distractibility and false triggering), for each group (i.e., controls 
and lifeguards), with error bars (n.s. = non-significant).
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lifeguards.

3.3. LEiDA

3.3.1. Drowning detection task
The Dunn scored revealed that the optimal number of states that best 

explain the drowning detection fMRI data is 12. In the following ana
lyses, we will label each of these 12 states as “state D” followed by the 
state number, “D” referring to “drowning”.

Fig. 5 displays the rendering of each state on the cortex. The areas 
highlighted in brown correspond to brain regions that are in synchrony 
with each other and that positively project onto V1 for a given state.

State D3 did not significantly correlate with any network, and 
therefore can referred to as the global coherence network. State D1 
significantly correlated with the dorsal attention (r = 0.23) and Default 
Mode (r = 0.25) networks; state D2, with the dorsal attention (r = 0.56) 
and frontoparietal (r = 0.41) networks; state D4, with the Default Mode 
network (r = 0.67); state D5, with the visual network (r = 0.77); state 
D6, with the frontoparietal network (r = 0.73); state D7, with the 
somato-motor network (r = 0.53); state D8, with the somato-motor 
network (r = 0.69); state D9, with the visual network (r = 0.61); state 
D10, with the ventral attention network (r = 0.74); state D11, with the 
dorsal attention network (r = 0.47), and state D12, with the Default 
Mode network (r = 0.37).

As illustrated in Fig. 6, there was a significant difference in proba
bility of occurrence between ‘controls pre’ and ‘controls post’ (9.0 % vs 

6.4 %; t(15) = 3.72, pFDR = 0.003) and between ‘controls pre’ and 
‘lifeguards’ (9.0 % vs 6.4 %; t(15) = 2.79, pFDR = 0.047) for the fron
toparietal network (i.e., state D6). There was no significant difference in 
probability of occurrence between groups and within group for any of 
the other 11 states (p > 0.05).

3.3.2. Resting-state
For the resting-state sequence, the optimal number of states identi

fied by the Dunn score following k-means clustering analyses was 6. In 
the following analyses, we will label each of these 6 states as “state R” 
followed by the state number, “R” referring to “resting-state”.

Fig. 7 displays the rendering of each state on the cortex.
State R5 did not significantly correlate with any network, and 

therefore can referred to as the global coherence network. State R1 
significantly correlated with the somato-motor (r = 0.65) and ventral 
attention networks (r = 0.55); state R2, with the Default Mode Network 
(r = 0.50); state R3, with the frontoparietal network (r = 0.57); state R4, 
with the dorsal attention network (r = 0.72); and state R6, with the 
visual network (r = 0.68).

As illustrated in Fig. 8, there was a significant difference in proba
bility of occurrence between ‘controls pre’ and ‘controls post’ (13.2 % vs 
17.8 %; t(15) = -2.07, pFDR = 0.026) for the somato-motor and ventral 
attention networks (i.e., state R1). There was also a significant differ
ence between ‘controls pre’ and ‘controls post’ (25.0 % vs 17.3 %; t(15) =

1.75, pFDR = 0.046) and between ‘controls pre’ and ‘lifeguards’ (25.0 % 
vs 14.0 %; t(15) = 1.74, pFDR = 0.044) for the Default Mode Network (i. 

Fig. 4. Bar graphs illustrating the mean values of ‘Correct’, ‘False positives’ and each NASA Task Load variable (i.e., mental demand, physical demand, temporal 
demand, performance, effort, frustration), for each group (i.e., ‘controls pre’, ‘controls post’ and ‘lifeguards’), with error bars (n.s. = non-significant; * = pFDR 
< 0.05).

Fig. 5. Rendering of brain regions with positive projections onto V1 for each of the k = 12 states, for the drowning detection task.
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e., state R2). Finally, there was also a significant difference between 
‘controls pre’ and ‘controls post’ (13.0 % vs 18.4 %; t(15) = -2.48, pFDR 
= 0.009) and between ‘controls pre’ and ‘lifeguards’ (13.0 % vs 19.9 %; 
t(15) = -2.19, pFDR = 0.021) for the visual network (i.e., state R6). There 
was no significant difference in probability of occurrence between 
groups and within group for any of the other 3 states (p > 0.05).

4. Discussion

The present study employed a two-part experimental design to 
investigate neural mechanisms underlying drowning detection exper
tise. Study 1 compared brain function between experienced lifeguards 
and novice controls, while Study 2 examined training-induced changes 
in brain dynamics within the control group.

Fig. 6. Bar graph representing the probability of occurrence of each state, for each group, for the drowning detection task, with error bars (n.s. = non-significant; * =
pFDR < 0.05; ** = pFDR < 0.01). DAN = dorsal attention network; DMN = Default Mode Network; GCN = global coherence network; VN = visual network; FPN =
frontoparietal network; SMN = somato-motor network; VAN = ventral attention network.

Fig. 7. Rendering of brain regions with positive projections onto V1 for each of the k = 6 states, for the resting-state sequence.

Fig. 8. Bar graph representing the probability of occurrence of each state, for each group, for the resting-state sequence, with error bars (n.s. = non-significant; * =
pFDR < 0.05; ** = pFDR < 0.01). SMN = somato-motor network; VAN = ventral attention network; DMN = Default Mode Network; FPN = frontoparietal network; 
DAN = dorsal attention network; GCN = global coherence network; VN = visual network.
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4.1. Study 1: between-group differences (Lifeguards vs. Controls)

Our Study 1 findings provided mixed support for our hypotheses, 
with some supported and others not supported based on statistical sig
nificance testing. Contrary to our first hypothesis, we did not find a 
significant difference in drowning detection performance between 
controls and lifeguards at baseline. This unexpected finding may be 
attributed to the shortened 30-minute task duration necessitated by MRI 
constraints, compared to the standard 60-minute protocols used in 
previous lifeguard research (Sharpe et al., 2024). The reduced task 
duration may have limited cognitive fatigue effects that typically 
distinguish expert from novice performance in sustained attention tasks. 
Despite the absence of behavioural differences, we observed significant 
neural differences between groups. Specifically, lifeguards showed 
reduced recruitment of the frontoparietal network during the drowning 
detection task compared to controls at baseline. The frontoparietal 
network is critically involved in effortful cognitive control and complex 
problem-solving (Botvinick & Cohen, 2014; Duncan, 2010). The reduced 
activation in lifeguards suggests more efficient neural processing, 
requiring less effortful cognitive control to achieve similar performance 
levels. This pattern is consistent with expertise research showing that 
experts often demonstrate more efficient brain function, achieving 
equivalent or superior performance with reduced neural effort 
(Kempton et al., 2011). At rest, lifeguards exhibited significantly lower 
activation of the Default Mode Network compared to controls. The 
Default Mode Network is associated with mind-wandering and 
internally-directed attention (Mason et al., 2007), and its reduced acti
vation in experts suggests enhanced capacity for maintaining focused, 
externally-directed attention even during rest periods.

4.2. Study 2: training effects within controls

Our Study 2 findings supported our hypotheses based on statistical 
significance testing. The main goals of this part of the study were to 
explore changes in brain networks associated with drowning detection 
training in the control group. Our results showed a significant 
improvement in drowning detection performance (i.e., number of 
correctly identified drowning events) in the control group after 
drowning detection training compared to before, which is in line with 
the results of Sharpe et al. (2025). Notably, trained controls showed 
numerically superior performance compared to lifeguards, though this 
difference did not reach statistical significance. While this preliminary 
finding suggests potential for specialized training to enhance novice 
performance, the non-significant difference and study limitations 
necessitate cautious interpretation and replication before drawing 
definitive conclusions about training effectiveness relative to existing 
lifeguard expertise. At the neural level, training-induced changes in 
controls resulted in brain activation patterns that closely resembled 
those observed in lifeguards. More specifically, the probability of 
occurrence of the frontoparietal network decreased within the control 
group after training, reaching a similar value to that of the lifeguards. 
This could reflect that, before training, controls had to make more effort 
than after training to reach a drowning detection performance that re
sembles that of the lifeguards. Similar findings have previously been 
observed in the context of dehydration in healthy adolescents (Kempton 
et al., 2011). Dehydrated participants exhibited an increased BOLD 
response in the frontoparietal network during an executive function task 
(i.e., Tower of London) in order to achieve the same level of performance 
as before dehydration, which the authors interpreted as a suboptimal 
use of brain energy after dehydration (Kempton et al., 2011). In 
particular, the frontoparietal network has typically been associated with 
effortful cognitive control and complex problem solving (Botvinick & 
Cohen, 2014; Duncan, 2010). In fact, in the present study, in addition to 
displaying reduced recruitment of the frontoparietal network after 
training, controls also scored significantly lower on the ’effort’ subscale 
of the NASA questionnaire, suggesting that they found the task easier to 

carry out after training. Regarding resting-state, we observed within- 
group and between-groups differences in the recruitment of three 
different LEiDA states, providing insights into how training reshapes 
baseline brain function.

First, there was a significant increase in the recruitment of the 
somato-motor and ventral attention networks (i.e., state R1) in controls 
after training, compared to before. The ventral attention network is a 
stimulus-driven network known for its role in reorienting attention to
wards unexpected salient cues (Seeburger et al., 2024). In a meta-anal
ysis, Kim (2014) showed that this network is essential for maintaining 
alertness and being able to swiftly detect and respond to significant 
changes in the environment. In conjunction with the somato-motor 
network, the ventral attention network supports adaptive and respon
sive behaviours, sending signals to the motor cortex to execute appro
priate motor responses (Herman et al., 2020), which are essential 
lifeguarding skills (Sharpe et al., 2023; 2024). Second, we observed a 
significant decrease in the probability of occurrence of the Default Mode 
Network (i.e., state R2) within the control group after training. Addi
tionally, lifeguards exhibited significantly lower recruitment of that 
network compared to controls at baseline. Increased activation of the 
Default Mode Network has typically been associated with mind wan
dering (Mason et al., 2007) and reduced performance on attention- 
related tasks (Hinds et al., 2013). Together with greater recruitment of 
the ventral attention network, decreased activation of the Default Mode 
Network has previously been observed in practitioners of attention- 
based meditation (Brefczynski-Lewis et al., 2007; Brewer et al., 2011), 
suggesting that increased sustained attention is associated with Default 
Mode network suppression combined with ventral attention network 
activation (Pamplona et al., 2020). Finally, we observed a significant 
increase in the recruitment of the visual network (i.e., state R6) within 
the control group after training compared to before, as well as a 
significantly higher activation of that network in the lifeguards 
compared to the controls at baseline. The visual cortex is known for 
playing an essential role in attentional control and spatial attention in 
the context of visual search tasks (Connolly et al., 2016), suggesting that 
training may enhance visual processing capabilities relevant to 
drowning detection.

4.3. Implications for drowning prevention and lifeguard training

The findings from both studies have important implications for un
derstanding how specialized training can enhance drowning detection 
capabilities and inform evidence-based approaches to lifeguard training 
programs. Our results suggest that current lifeguard certification 
training, while valuable, may not fully optimize drowning detection 
capabilities. The preliminary finding that trained novices achieved 
numerically similar performance levels to certified lifeguards, while not 
statistically significant, suggests potential areas for exploration in 
training protocols. However, given the study’s limitations including 
small sample size, shortened task duration, and laboratory setting, these 
findings should be interpreted cautiously and require replication in 
larger, more ecologically valid studies before informing changes to 
established training protocols. Any modifications to current lifeguard 
certification standards would require extensive validation in real-world 
settings to ensure community safety is maintained. The neural efficiency 
observed in both lifeguards and trained controls provides insights into 
the mechanisms underlying expertise in surveillance tasks. The reduced 
frontoparietal network activation and decreased Default Mode Network 
activity suggest that effective training should focus on developing 
automatic, less effortful detection processes while minimizing mind- 
wandering tendencies. These findings could inform the development 
of training programs that specifically target these neural mechanisms. 
Furthermore, the observed changes in resting-state brain dynamics 
suggest that effective training produces lasting changes in baseline brain 
function, not just task-specific improvements. This indicates that well- 
designed training programs may have benefits that extend beyond the 
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specific trained task, potentially improving overall attentional 
capabilities.

It is crucial to emphasize that these findings should not be inter
preted as evidence that novice individuals with brief training can 
replace certified lifeguards in real-world scenarios. Lifeguard certifica
tion encompasses numerous critical skills beyond drowning detection, 
including water rescue techniques, first aid, CPR, and emergency 
response protocols that were not assessed in this study. The controlled 
laboratory environment and specific task parameters may not generalize 
to the complex, dynamic conditions of actual aquatic environments 
where lifeguards operate. Therefore, while these findings provide 
valuable insights into the neural mechanisms underlying surveillance 
training, they should be considered preliminary evidence requiring 
extensive replication and validation before informing any changes to 
established safety protocols.

4.4. Ecological validity and real-world applications

While our laboratory-based drowning detection task provided 
important insights into the neural mechanisms of surveillance expertise, 
we acknowledge significant limitations in ecological validity that must 
be considered when interpreting these findings for real-world applica
tions. The controlled laboratory environment necessarily omitted many 
factors that characterize real-world lifeguarding scenarios. These 
include environmental distractions (noise, weather conditions, glare), 
three-dimensional water movement, varying lighting conditions, social 
interactions with swimmers, and the physical demands of continuous 
surveillance in outdoor environments. Additionally, real-world 
drowning incidents may present with different characteristics than our 
standardized simulated events. Despite these limitations, several aspects 
of our findings do have ecological relevance. The sustained attention 
demands, visual search requirements, and the need to detect rare but 
critical events in our task mirror key aspects of real-world lifeguarding. 
The neural efficiency patterns we observed align with expertise research 
in other domains and provide mechanistic insights that could inform 
training approaches. However, the practical implications of our findings 
for drowning prevention efforts should be interpreted cautiously. While 
our results suggest that specialized training can enhance drowning 
detection performance and neural efficiency, the translation to real- 
world effectiveness requires validation in naturalistic settings. The 
finding that bathers re-emerged after drowning events in our simulation, 
while necessary for experimental control, represents a significant de
parture from reality that may have influenced detection strategies and 
performance patterns.

5. Limitations

Several limitations of this study warrant consideration. Firstly, the 
30-minute task duration, necessitated by MRI constraints, may have 
limited our ability to detect drowning detection performance differences 
between groups, particularly given that standard protocols typically 
employ 60-minute tasks (Sharpe et al., 2024). This shortened duration 
may have reduced the cognitive fatigue typically experienced during 
longer surveillance periods, potentially masking differences in sustained 
attention capabilities between lifeguards and controls. Secondly, our 
relatively small sample size (18 lifeguards and 16 controls) necessitates 
caution in interpreting the results and limits the generalizability of our 
findings. While our sample size is comparable to similar neuroimaging 
studies, a larger sample would increase statistical power and allow for 
more nuanced analyses of individual differences in training response. 
Thirdly, the controlled laboratory environment of the MRI scanner, 
while necessary for neuroimaging, lacks the ecological validity of real- 
world aquatic environments. The absence of dynamic factors such as 
changing light conditions, water movement, and environmental dis
tractions may have influenced both drowning detection performance 
and neural activation patterns. Additionally, the use of video stimuli, 

while standardized, may not fully capture the multisensory experience 
of real-world lifeguarding, potentially affecting the engagement of 
certain neural networks. Future research should address these limita
tions to enhance the robustness and applicability of these findings to 
real-world lifeguarding scenarios. Fourth, the novice group carried out 
the task twice, once before and once after training, whereas the lifeguard 
group completed it only once. This design limitation makes it chal
lenging to confirm with certainty whether the observed changes in the 
novice group were due to the effectiveness of the drowning detection 
training or if they were simply the result of practice effects and greater 
familiarity with the specific simulation used for testing. Future studies 
should address this limitation by either including an additional control 
group that would complete the task twice without receiving additional 
training, or by having the lifeguard group carry out the task twice as 
well. Fifth, the non-random participant selection, necessitated by the 
specialized nature of the lifeguard population, limits the generalizability 
of our findings to the broader population. Our results should be inter
preted as exploratory findings that require replication in larger, more 
diverse samples. Furthermore, the non-random sampling approach and 
potential for participant interactions during the study period limit the 
generalizability of findings to the broader population and may have 
influenced results in ways that standard hypothesis testing cannot fully 
account for. The statistical significance observed should be interpreted 
within the context of these sampling limitations and the exploratory 
nature of this research.

5.1. Possible future directions

Building upon the findings and limitations of the current study, 
several promising directions for future research emerge. To enhance 
ecological validity, future studies should assess the effectiveness of 
drowning detection training in more naturalistic settings, potentially 
through immersive virtual reality environments that simulate real-world 
conditions such as fluctuating lighting, water movement, and external 
distractions. Investigating the translation of laboratory-based improve
ments to actual lifeguarding performance in operational contexts would 
also be valuable. Longitudinal research tracking the long-term effects of 
training on neural plasticity and performance could offer insights into 
the sustainability of training-induced changes and inform the timing and 
necessity of refresher programs. Combining fMRI with other neuro
imaging modalities like EEG or MEG may yield a more nuanced un
derstanding of the spatial and temporal dynamics of brain activity 
during drowning detection tasks, particularly when used alongside VR- 
based simulations. Moreover, examining individual differences, such as 
prior experience, cognitive profiles, and personality traits, could clarify 
why some individuals benefit more from training than others. Future 
studies should also incorporate additional control groups, such as those 
completing the task without any training or receiving unrelated 
attention-based interventions, to better isolate training-specific effects. 
Research into optimizing training protocols, including ideal frequency, 
duration, and content, may help refine educational strategies, while 
evaluating whether specialized training can further enhance the per
formance of already-certified lifeguards could support ongoing profes
sional development. Finally, with the rise of AI-assisted drowning 
detection systems, exploring how neural and behavioural findings from 
this research can inform the design and integration of such technologies, 
and studying the brain dynamics of lifeguards working in tandem with 
AI, offers an exciting and innovative avenue for future investigation.

6. Conclusion

Taken together, our findings from both Study 1 (between-group 
comparisons) and Study 2 (training effects) provide converging evi
dence that specialized drowning detection training can effectively 
reshape attention-related brain networks and improve performance in 
drowning detection tasks. Our results highlight that training improves 
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how efficiently the brain processes information during hazard detection 
tasks and makes it less effortful for individuals to stay on task, as re
flected by a reduction in the occurrence of the frontoparietal network 
and a decrease in self-reported ’effort’ levels after training. In fact, after 
training, the recruitment of the frontoparietal network in controls 
reached a similar pattern of activity to that observed in lifeguards, 
suggesting that targeted training can induce expertise-like neural effi
ciency patterns. The preliminary finding that trained novices achieved 
numerically similar performance levels to experienced lifeguards, while 
not statistically significant, provides initial insights that warrant further 
investigation in larger, more ecologically valid studies. Given the study’s 
limitations including laboratory setting, shortened task duration, and 
small sample size, these findings should be interpreted as exploratory 
rather than definitive. Any consideration of modifications to current 
lifeguard training protocols would require extensive validation in real- 
world settings with larger samples to ensure the safety and effective
ness of drowning prevention efforts. In addition, our results also 
revealed that drowning detection training lessens mind-wandering 
patterns of brain activity at rest, while increasing activity in regions 
responsible for bottom-up responses to unexpected stimuli arising from 
the external environment, which is a key lifeguarding skill. These 
resting-state changes suggest that effective training produces lasting 
alterations in baseline brain function that may enhance overall atten
tional capabilities. However, the translation of these laboratory-based 
findings to real-world drowning prevention efforts requires careful 
consideration of ecological validity limitations. While our results pro
vide valuable mechanistic insights into the neural basis of surveillance 
expertise, validation in naturalistic settings is essential before imple
menting widespread changes to training protocols. These findings pro
vide valuable insights into how specialized training shapes neural 
mechanisms and may improve drowning detection performance in 
critical lifesaving scenarios. Future research addressing the ecological 
validity limitations identified in this study will be essential for trans
lating these findings into effective real-world drowning prevention 
strategies.
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