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SPORTS MEDICINE AND BIOMECHANICS

Evaluation of a time-varying cut-off frequency low-pass filter for assessing knee joint 
moments and ACL injury risk
Simon Augustus a, Blake Riversa, James Brounera and Neal Smithb

aDepartment of Applied and Human Science, Faculty of Health, Sciences, Social Care and Education, Kingston University, London, UK; bSchool of 
Sport and Exercise Sciences, University of Chichester, Chichester, UK

ABSTRACT
Conventional low-pass filtering of 3D motion capture signals prior to estimating knee joint moments and 
ACL injury risk has known limitations. This study aimed to evaluate the fractional Fourier filter (FrFF), 
which employs a time-varying cut-off frequency, for assessing peak knee moments during common ACL 
injury risk screening tasks. Ground reaction force and motion data were collected from 23 team sport 
athletes performing 45° unanticipated sidesteps and drop jumps. Peak knee abduction, internal rotation 
and non-sagittal moments were estimated using inverse dynamics after five different low-pass filter 
approaches were applied (FrFF vs. four variations of a fourth-order Butterworth filter). The FrFF produced 
peak knee moments larger than “matched” (i.e. force and motion cut-off frequencies were equivalent) 
and closer to “unmatched” (i.e. force and motion cut-offs were different) Butterworth filter approaches 
and removed problems with representing foot-to-ground impact peaks. Participants with larger peak 
moments were identified as “at risk” of injury irrespective of filter approach, but the FrFF identified “at 
risk” classifications conventional approaches did not. Preliminary evidence suggests that the FrFF displays 
enhanced sensitivity to movement strategies that induce high knee loads. This was most evident for 
sidestepping, with more research warranted to optimise the FrFF for drop jumps.
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Introduction

Anterior cruciate ligament (ACL) ruptures are devastating knee 
injuries that incur huge financial (Abram et al., 2018) and per
sonal cost (Filbay et al., 2022). Surgical reconstruction remains 
the gold standard treatment, but only 33–78% of reconstructed 
athletes return to pre-injury activity levels (Weir et al., 2019). 
Those who do not return to participation are 4–6 times more 
likely to develop osteoarthritis (Poulsen et al., 2019) and may 
suffer negative psychological consequences related to physical 
inactivity (Filbay et al., 2022). Given injury rates continue to 
grow (Saxby et al., 2023) and ~70% of injuries occur in non- 
contact situations (Krosshaug et al., 2007), classification of “at 
risk” individuals offers opportunities for targeted interventions 
to reduce injury rates. Numerous risk factors have been identi
fied (e.g., hormonal, genetic and anatomical; Myer et al., 2008), 
but risk reduction research has focused on biomechanical fac
tors, as these are more easily modified through physical inter
vention (Weir et al., 2019).

Estimates of knee loads during high impact, multiplanar 
activities such as drop jumps and sidestep cutting have been 
used as indicators of ACL injury risk (Hewett et al., 2005; 
Kristianslund & Krosshaug, 2013). Specifically, since ACL injuries 
likely occur ~50–60 ms following initial foot-to-ground contact 
(Cerulli et al., 2003), peak moments observed during the initial 
weight acceptance phase of these tasks have been used to infer 
injury risk (Weir, 2021). However, whilst large anterior tibial 
shear forces coupled with frontal and transverse moments 

have been associated with ACL strain in cadaveric and simula
tion studies (Markolf et al., 1995; Ueno et al., 2020), using 
resultant joint moments derived from 3D motion capture as 
surrogates of ACL strain (and thus injury risk) have been con
tentious. Elevated peak knee abduction moments (PKAM) 
(Hewett et al., 2005) and internal rotation moments (PIRM) 
(Chinnasee et al., 2018) have shown to be predictive of ACL 
injury risk, and peak non-sagittal moments (PNSM; vector mag
nitude of knee abduction and internal rotation moments) have 
identified “at risk” individuals where PKAM and PIRM alone 
could not (Robinson et al., 2021). In contrast, a few prospective 
studies (Krosshaug et al., 2016; Leppänen et al., 2017) and 
a meta-analysis (Cronström et al., 2020) have contended these 
variables have no predictive utility for ACL injury.

One reason for equivocal findings is variation in processing 
required to derive joint loads. Knee moments estimated from 
3D motion capture and inverse dynamics rely on obtaining 
valid ground reaction forces (GRFs), segment inertial para
meters and lower limb kinematics (e.g., velocities and accelera
tions). While the former are relatively simple to determine, 
accurate acquisition of kinematic parameters is challenging. 
Noise associated with soft-tissue artefact and 3D system preci
sion limitations (e.g., electronic noise, marker tracking errors) is 
amplified when body segment positions and orientations are 
differentiated. Marker and GRF signals are thus often low-pass 
filtered (e.g., Butterworth digital filter) before calculating joint 
moments (Derrick et al., 2020). However, transition from aerial 
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to foot-to-ground contact phases of drop jump and sidestep
ping induces rapid expansion of kinematic frequency content 
and large lower-limb segment acceleration impact peaks. If 
these signals are not appropriately treated, they can confound 
knee loads and injury risk classifications.

Some studies have justified filtering marker signals at lower 
cut-off frequencies (e.g., 5–20 hz) than GRFs (e.g., 50–150 hz) 
(Hewett et al., 2005; Sigward & Powers, 2007; Ueno et al., 2020), 
but there are concerns so-called “unmatched” approaches cre
ate spurious peaks in computed joint moments (Kristianslund 
et al., 2012). Such an approach retains physiologically mean
ingful impact peaks in GRFs but removes them from kinematic 
signals, leading to inconsistencies in the equations of motion 
that manifest as errors in joint kinetics (Bisseling & Hof, 2006). 
The prevailing convention has thus been to filter marker and 
GRF signals at the same lower “matched” cut-off frequency 
(e.g., 10 and 10, or 20 and 20 hz; Krosshaug et al., 2016; 
Robinson et al., 2021; Weir et al., 2019). This ensures no dis
crepancy in the frequency content of input signals and may 
result in more accurate representations of knee moments 
(Bisseling & Hof, 2006; van den Bogert & de Koning, 1996). 
Unfortunately, this approach has also been criticised as it 
removes important impact peaks from both kinematic and 
kinetic signals following foot-to-ground contact (Roewer 
et al., 2014). As previously noted, since non-contact ACL injuries 
occur soon ~50–60 ms initial ground contact (i.e., during 
weight acceptance; Cerulli et al., 2003), this is problematic as 
over-smoothed input variables can also distort peak knee 
moment estimates.

If conventional low-pass filters cannot adequately represent 
knee loads during ACL injury risk screening tasks, their applica
tion should be reviewed. One alternative is to use a filter with 
a time-varying cut-off frequency. Increasing cut-off frequencies 
when foot-to-ground contact induces sudden (de)acceleration 
of the lower limbs can ensure optimal retention of physically 
meaningful impact peaks and removal of noise from kinematic 
and GRF signals across the entire task. Such techniques are 
widely used in optics, speech and music processing, and 
mechanical vibrations analysis (Ozaktas et al., 1999; Wei & 
Ran, 2013), but have been largely ignored in human movement 
studies. Methods based on wavelet transforms (Wachowiak 
et al., 2000), singular spectrum analysis (Alonso et al., 2005) 
and the Wigner distribution (Georgakis et al., 2002) have been 
used in biomechanics, but problems regarding computational 
complexity (e.g., non-linear algorithms) and ease of implemen
tation has meant they are not widely adopted.

To address the former, Georgakis and Subramaniam (2009) 
proposed the fractional Fourier filter (FrFF). The FrFF leverages 
the fractional Fourier transform to render a faster, more linear 
algorithm; and employs a triangular, time-varying cut-off fre
quency boundary that permits retention of higher frequency 
kinematic (and/or kinetic) content during impact (e.g., foot-to- 
ground contact; Figure 1). Filter parameters are chosen to 
represent the impact characteristics (i.e., magnitude and dura
tion) of a given signal and create an optimal filter solution 
(Georgakis & Subramaniam, 2009). The FrFF has outperformed 
conventional low-pass (e.g., Butterworth filters) and other time- 
frequency filter methods for a) estimating lower leg accelera
tions during drop landings (Georgakis & Subramaniam, 2009) 

and b) representing changes in kick leg kinematics during foot- 
to-ball contact of ball kicking (Augustus et al., 2020). To date, 
however, the efficacy of the FrFF for determining knee joint 
kinetics and classifying ACL injury risk remains to be verified. If 
more precise estimates of lower leg kinematics (e.g., foot and 
shank accelerations) and GRFs can be derived, it is logical that 
joint moment estimates and injury risk classifications would 
also be more precise. Correctly identifying “at risk” individuals 
is paramount if attempts to mitigate ACL injury rates are to be 
successful. The first aim of this study was thus to compare the 
FrFF with conventional “matched” and “unmatched” 
Butterworth low-pass filter approaches for deriving peak knee 
joint moments during ACL injury risk screening tasks. 
A secondary aim was to assess how filter approach affects injury 
risk classifications.

Materials and methods

Participants and study design

Twenty-three recreationally active men and women (13 men, 
27.5 ± 4.3 years, 83.9 ± 6.5 kg, 1.80 ± 0.05 m; 10 women, 23.9 ±  
3.2 years, 65.9 ± 11.0 kg, 1.68 ± .07 m) were recruited from team 
sports (e.g., soccer, netball, field hockey). All were free from 
injury 12 months preceding data collection and participated in 
their sport at least twice per week. Those with previous con
firmed ACL injury were excluded and approval granted by the 
University’s ethics committee (MR-3030). A cross-sectional 
approach was adopted whereby peak knee joint moments 
associated with ACL injury risk were estimated during common 
screening tasks after application of five different low-pass fil
ters. For this repeated measures design, a priori analysis indi
cated a sample of 21 participants would achieve statistical 
power of 0.95 with ɑ = 0.05, expected strong correlation 
between repeated measures (r = 0.7) and medium effect sizes 
(ηp

2 = 0.06; Kristianslund et al., 2012; G*Power 3.1.9.7).

Data collection and modelling

After 10 min of warm-up and familiarisation, participants 
completed single leg drop jump (SLDJ), bilateral drop jump 
(BDJ) and unanticipated sidestep change of directions (SS) in 

Figure 1. Illustration of the FrFF triangular cut-off frequency filter boundary. The 
time-varying cut-off frequency (black line; Fc) was designed to increase during 
weight acceptance. That is, between initial ground contact (vGRF > 25 N; first 
dashed vertical line) and the first trough in vGRF following the impact peak 
(minimum vGRF value between impact and active peaks; second dashed vertical 
line). These events denote the width of the FrFF triangular filter boundary and 
correspond to the duration of weight acceptance, as shown.
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a random order. The SLDJ and BDJ were performed by step
ping off a 30 cm box (Hewett et al., 2005) and exploding 
vertically into a maximal vertical jump upon contact with 
a force platform (1000 hz; 9286C, Kistler, Switzerland). An 
overhead target ensured maximal effort. Three repetitions 
were performed on each leg for SLDJ, and the dominant 
leg (i.e., the leg predominantly used to kick a ball) contacted 
the force platform for the BDJ. For SS, participants performed 
a 45° sidestep with the cutting step on the force platform. 
A straight 7 m approach was used and timing gates 
(Smartspeed Plus, VALD Ltd., UK) determined approach velo
cities 2.9 m before the force platform. Breaking the gates 
triggered a visual LED stimulus that indicated the required 
change of direction at random. This afforded approximately 
400 ms to react to the stimulus and perform the task. Only 
trials with approach velocities of 4–5 m/s (Vanrenterghem 
et al., 2012) and where the entire stance foot contacted the 
force platform were included. Three successful trials were 
performed in each direction (left and right).

Fifty-two spherical reflective markers (12.6 mm diameter) 
determined lower-limb and torso kinematics using a 10- 
camera three-dimensional motion capture system (250 hz; 
Vicon T40S, OMG Plc, UK). This sampling frequency replicated 
those used in previous studies. Static calibration defined neu
tral pose of feet, shanks, thighs, pelvis and a torso in Visual 3D 
(v2023.03.01; C-Motion, USA). All segments were rigid geo
metric volumes scaled to participant height and mass, with 
inertial parameters according to de Leva (1996). The feet were 
modelled as single rigid bodies using malleoli markers to define 
the proximal diameter and ankle joint centre, and the second 
and fifth metatarsal markers to define the distal radius. The 
shanks used femoral epicondyle markers to define the proximal 
diameter and knee joint centre, and malleoli markers to define 
the distal diameter. Proximal and distal thighs were defined 
using the method of Bell et al. (1990) to estimate the hip joint 
centre, and femoral epicondyles, respectively. Anatomical coor
dinate systems were thus created at the proximal end of each 
segment (i.e., joint centre locations), where positive Z pointed 
superiorly with the long axis of the segment, positive X pointed 
towards the lateral calibration marker, and positive Y anteriorly 
as the cross product of ZX. Segment motion was tracked in six 
degrees of freedom using triad marker clusters attached to 
thighs and shanks (Cappozzo et al., 1995); and individual mar
kers placed on the head of second and fifth metatarsals, and 
posterior calcaneus for the feet.

Low-pass filter approaches

Marker trajectories and GRFs were exported to Visual 3D 
(v2023.03.01; C-Motion, USA) and processed for each low-pass 
filter approach. To represent methods conventionally used to 
filter signals before estimating knee joint loads, four combina
tions of a fourth-order, zero lag, Butterworth low-pass filter 
were used. Two were “matched” (10–10 hz and 20–20 hz) and 
two “unmatched” (10–50 hz and 20–50 hz), where the first 
and second values in each combination refer to kinematic 
(marker) and kinetic (GRF and centre of pressure) cut-off fre
quencies, respectively. These combinations were chosen to 
closely represent those most commonly adopted in previous 

study of ACL injury risk (e.g., Kristianslund et al., 2012; Hewett 
et al., 2005; Ueno et al., 2020; Vanrenterghem et al., 2012).

The fifth approach filtered ground-contacting foot and 
shank markers using the FrFF (Georgakis & Subramaniam, 
2009). A triangular cut-off frequency boundary was designed 
to optimise retention of physiologically meaningful impact 
related frequency content during weight acceptance 
(Figure 1). Each marker was processed separately so the peak 
cut-off frequency corresponded temporally to the instance of 
its own peak acceleration (i.e, apex of the triangle). Specifically, 
for all tasks, a pre-ground contact cut-off frequency of 20 hz 
linearly increased at the instance of initial ground contact (i.e, 
vertical GRF > 25 N) to a peak of 60 hz at the time of the peak 
marker acceleration, and linearly decreased back to 20 hz at the 
instance of the first trough in the vertical GRF following the 
impact peak (i.e., lowest vertical GRF value between impact and 
active peaks). These events were defined automatically using 
a Visual 3D pipeline so the temporal width of the base of the 
triangle corresponded to the duration of weight acceptance 
from unprocessed signals on a trial by trial basis.

The pre- and post-weight acceptance cut-off frequency 
(20 hz) and the peak frequency at the apex of the triangle 
(60 hz) were determined by pilot work conducted on a sub- 
sample of the main analysis, and these parameters did not vary 
across trials and tasks. To select these parameters, residual 
(Winter, 2009) and frequency analyses (frequency at which 
95% of content was retained) were performed on marker tra
jectories truncated to each phase of each task (i.e., on each pre- 
weight acceptance, weight acceptance and post-weight accep
tance separately; Augustus & Smith, 2023). For peak cut-off 
frequencies during weight acceptance, optimally determined 
values of 20–60 hz were evident across marker locations (i.e., 
foot vs. shank) and screening tasks (i.e., BDJ vs. SS) (Augustus & 
Smith, 2023). Given this variation, we chose the highest value to 
limit loss of physiologically meaningful signal. However, we 
acknowledge this meant some noise might have been retained 
in some instances. Optimally determined pre- and post-weight 
acceptance cut-off values also varied between 3 and 20 hz 
(Augustus & Smith, 2023). Again, the highest value was chosen 
to ensure limited loss of physically meaningful signal. This was 
not deemed problematic as joint moment estimates were not 
of interest during these phases of the tasks. The GRFs and 
centre of pressure data were filtered using these same para
meters to help ensure no discrepancy in the frequency content 
of the kinematic and kinetic signals (Bisseling & Hof, 2006).

All conventional Butterworth filtering was performed in 
Visual 3D, and for the FrFF by exporting unprocessed marker 
trajectories and kinetic data to Matlab (R2022a, MathWorks, 
USA), where custom written scripts processed the data. 
Examples of the scripts can be found at GitHub: s-augustus04/ 
Fractional-Fourier-Low-Pass-Filter. FrFF processed marker tra
jectories and GRFs were re-imported back to Visual 3D where 
peak knee moment variables were derived.

Data and statistical analyses

For all trials, resultant knee joint moments were derived 
using standard Newton–Euler inverse dynamics in Visual 
3D. These moments were resolved to the proximal (thigh) 
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segment and normalised to body mass. PKAM and PIRM 
were determined during weight acceptance from frontal 
and transverse time-series moments, respectively, and 
reported as external moments. In absence of knee abduc
tion or internal rotation moments, the smallest adduction or 
external rotation moment was used. PNSM was determined 
from the vector magnitude of frontal and transverse 
moments (Robinson et al., 2021). All peak moments were 
averaged across each participant’s three trials per task to 
obtain a mean response, and these were used for further 
analysis.

Peak moment data were assessed for normality using the 
Shapiro–Wilks test. Then, one-way repeated-measures 
ANOVAs evaluated differences across filter approach. If 
sphericity was violated, Greenhouse-Geisser adjustments 
were used. Alpha was Bonferroni adjusted for multiple 
comparisons (5 tasks × 3 peak moment variables; α =  
0.003). For significant main effects, post hoc Bonferroni 
paired t-tests assessed differences between each conven
tional filter approach and the FrFF (N = 4 paired compari
sons per variable, α = 0.013). This method was chosen as 
a balanced approach to mitigate against Type I (i.e., family
wise error inflation) and Type II error (i.e., reduced statistical 
power) (Toothaker, 1993). Spearman’s rank correlations 
assessed consistency in participant rankings for each peak 
moment variable (0–0.2 = no correlation, 0.2–0.4 = weak, 
0.4–0.7 = moderate, 0.7–1.0 = strong). All statistical compar
isons were performed in JASP (0.16.3, https://jasp-stats.org/ 
). To evaluate if filter approach influenced injury risk classi
fication, a risk threshold of sample mean + 1.6 standard 
deviations (SD) was used (Robinson et al., 2014). If any 
participant’s mean response for a peak moment exceeded 
this threshold, they were classified as “at risk” of ACL injury. 
This approach was based on recommendations for similar 
populations (Chinnasee et al., 2018) and because risk classi
fications have been shown as robust between mean + 1 SD 
to + 2 SD (Robinson et al., 2021).

Results

Main effects were identified across all screening tasks (p <  
0.003, Table 1). The exception was PIRM in the left leg SLDJ. 
Generally, the FrFF produced larger peak moments than 
matched 10–10 hz and 20–20 hz approaches, with medium to 
large effect sizes (d > 0.60, p < 0.013; Table 2). These differences 
were more pronounced in SS compared to BDJ and SLDJ 
(Table 2, Figure 2). Peak moments from unmatched approaches 
were mostly not different to the FrFF with small to medium 
effect sizes (d = 0.10–0.60). However, 10–50 hz PKAM and PNSM 
in the right leg SLDJ, and 20–50 hz PKAM and PNSM in the left 
leg SLDJ were smaller than the FrFF (p < 0.013), with small to 
large effects (Table 2, Figure 2). Like the matched approaches, 
the magnitude of differences between FrFF and unmatched 
approaches was more pronounced in the SS compared to 
drop jumps (Table 2).

Spearman’s correlations showed moderate to strong 
associations between participant rankings for FrFF and con
ventional filter approaches (Table 3). Irrespective of task, 
participant rankings were more consistent between the 
FrFF and unmatched approaches, with weakest correlations 
between FrFF and 10–10 hz. There were some exceptions, 
notably where FrFF showed better consistency with 
20–20 hz than 10–50 hz for PKAM in both SLDJ tasks. 
Correlations between FrFF and conventional approaches in 
SS were stronger for PKAM than for PIRM and PNSM. This 
consistency extended across all filter approaches, with little 
variation in participant rankings (Figure 3). In contrast, for 
drop jumps, correlations between FrFF and conventional 
approaches were stronger for PIRM, compared to PKAM 
and PNSM. This consistency is also highlighted across all 
filter approaches (Figure 3).

For injury risk classifications in SS, matched approaches were 
most conservative, with more individuals classified as “at risk” 
by FrFF and 20–50 hz (Figure 2). Unmatched approach classifi
cations were closer to the FrFF, but the FrFF still uniquely 
identified individuals that were not classified as “at risk” in 

Table 1. Mean (SD) peak knee abduction (PKAM), internal rotation (PIRM) and non-sagittal moments (PNSM) (Nm/kg) in each filter approach, across 
screening tasks. * indicates a repeated measures ANOVA significant main effect (p < 0.003). ηp

2 = partial eta squared effect sizes (>0.01 = small, 
> 0.06 = medium and > 0.13 = large).

FrFF 10-10 10-50 20-20 20-50 p-value ηp
2

Sidestep Left Leg
PKAM 0.88 (0.74) 0.20 (0.36) 0.60 (0.73) 0.45 (0.59) 0.70 (0.64) <0.001* 0.47
PIRM 0.14 (0.08) 0.06 (0.05) 0.11 (0.07) 0.10 (0.06) 0.14 (0.06) <0.001* 0.47
PNSM 1.15 (0.58) 0.55 (0.21) 1.02 (0.40) 0.77 (0.45) 0.99 (0.48) <0.001* 0.54

Sidestep Right Leg
PKAM 1.33 (0.91) 0.54 (0.54) 1.22 (0.80) 0.86 (0.71) 1.15 (0.86) <0.001* 0.62
PIRM 0.16 (0.11) 0.03 (0.08) 0.11 (0.09) 0.08 (0.06) 0.14 (0.08) <0.001* 0.53
PNSM 1.47 (0.80) 0.71 (0.41) 1.32 (0.70) 1.00 (0.60) 1.29 (0.76) <0.001* 0.61

Bilateral Drop Jump
PKAM 0.51 (0.35) 0.31 (0.29) 0.48 (0.36) 0.49 (0.32) 0.52 (0.32) <0.001* 0.45
PIRM 0.12 (0.11) 0.08 (0.09) 0.11 (0.10) 0.11 (0.10) 0.13 (0.10) <0.001* 0.57
PNSM 0.61 (0.42) 0.40 (0.34) 0.57 (0.37) 0.58 (0.44) 0.62 (0.42) <0.001* 0.39

Single Leg Drop Jump Left Leg
PKAM 0.37 (0.26) 0.03 (0.15) 0.24 (0.23) 0.17 (0.17) 0.22 (0.19) <0.001* 0.51
PIRM 0.14 (0.11) 0.10 (0.10) 0.13 (0.11) 0.12 (0.10) 0.13 (0.11) <0.027 0.12
PNSM 0.71 (0.23) 0.49 (0.22) 0.64 (0.25) 0.62 (0.24) 0.62 (0.24) <0.001* 0.47

Single Leg Drop Jump Right Leg
PKAM 0.46 (0.30) 0.08 (0.16) 0.22 (0.17) 0.27 (0.29) 0.31 (0.28) <0.001* 0.51
PIRM 0.19 (0.18) 0.14 (0.17) 0.16 (0.17) 0.18 (0.18) 0.23 (0.19) <0.001* 0.43
PNSM 0.97 (0.52) 0.67 (0.42) 0.83 (0.42) 0.85 (0.46) 0.89 (0.47) <0.001* 0.41
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Figure 2. Swarm plots showing peak knee abduction (PKAM, first column), internal rotation (PIRM, second column) and non-sagittal moments (PNSM, third column) for 
each filter approach across the screening tasks. Horizontal solid lines indicate mean values per filter approach and dashed lines the corresponding injury risk threshold 
(mean + SD*1.6). Participant numbers printed above each threshold highlight individuals classed as “at risk” for that filter approach. The * next to x-axis labels indicates 
that filter approach was significantly different to the FrFF (p < 0.013).
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any other approach (left leg SS = participant 18 for PKAM and 
PNSM, and participant 2 for PIRM; right leg SS = participant 20 
for PIRM). No conventional approach identified an “at risk” case 
where the FrFF did not make the same classification. For drop 
jumps, classifications were more consistent (Figure 2). All 
approaches identified the same individuals for PKAM and 
PIRM in the BDJ (participants 5 and 13), but 20–20 hz and 
20–50 hz precluded participant 13 as “at risk” for PNSM. 
Similar to SS, lower cut-off frequency combinations precluded 
some individuals compared to the FrFF in the SLDJ. This was 
mostly for 10–10 hz, but also 10–50 hz did not classify indivi
duals captured by a) the FrFF and 20–50 hz for the left leg SLDJ 
PKAM (participant 22) and b) FrFF, 20–50 hz and 20-20 hz for 
left leg PNSM (participant 10). The FrFF did not uniquely iden
tify any “at risk” individual compared to conventional 
approaches for the SLDJ, but like for the SS, conventional 
approaches did not identify any individual as “at risk” where 
the FrFF did not make the same classification.

Discussion

The first aim of this study was to compare the FrFF with con
ventional Butterworth “matched” and “unmatched” low-pass 
filter approaches for deriving peak knee joint moments during 
ACL injury risk screening tasks. Generally, the FrFF produced 
PKAM, PIRM and PNSM values larger than those from 
“matched” approaches and closer to those from “unmatched” 
approaches. This was expected, as lower and matched cut-off 

frequencies are known to produce smaller and smoother knee 
moment profiles (Kristianslund et al., 2012; Roewer et al., 2014). 
Such methods ensure the frequency content of kinematic and 
GRF signals are consistent, but at the cost of removing physio
logic impact peaks that may be important for understanding 
ACL injury risk (Roewer et al., 2014). In contrast, unmatched 
approaches retained impact peaks in the GRFs, resulting in 
larger peak knee moments consistent with those previously 
reported (Kristianslund et al., 2012). However, since impact 
peaks were removed from corresponding kinematic signals, 
the resulting moments may suffer from error owing to discre
pancies in the frequency content of the signals. Bisseling and 
Hof (2006) highlighted how such errors manifest, but Roewer 
et al. (2014) contend that some individuals may not be affected 
by this problem. To date, no study has provided an in-depth 
analysis to determine the extent of this issue. In comparison, 
the FrFF used a time-varying cut-off frequency to ensure a) 
important lower limb frequency content was retained in both 
kinematic and GRF signals following foot-to-ground contact 
and b) no discrepancies in the frequency content of these 
signals. Larger peak moments observed for the FrFF were 
thus solely determined by experimental data and were not 
contaminated by error associated with inconsistencies in the 
frequency content of kinematic and kinetic inputs to the equa
tions of motion. Previous work has shown the benefits of using 
time-varying cut-off frequencies over conventional low-pass 
filters to estimate lower leg kinematics during foot-to-ground 
contact of drop landing and running tasks (Davis & Challis, 

Table 3. Spearman’s rank correlations (95% CI) between the FrFF and conventional filter approaches for peak knee abduction 
(PKAM), internal rotation (PIRM) and non-sagittal moments (NSM), across screening tasks.

FrFF vs 10–10 FrFF vs 10–50 FrFF vs 20–20 FrFF vs 20–50

Sidestep Left Leg
PKAM 0.859 

(0.675, 0.939)
0.889 

(0.731, 0.964)
0.944 

(0.857, 0.973)
0.934 

(0.788, 0.985)
PIRM 0.561 

(0.115, 0.850)
0.742 

(0.395, 0.899)
0.770 

(0.481, 0.919)
0.881 

(0.680, 0.963)
PNSM 0.632 

(0.250, 0.845)
0.768 

(0.462, 0.915)
0.699 

(0.379, 0.867)
0.808 

(0.530, 0.925)
Sidestep Right Leg

PKAM 0.777 
(0.472, 0.919)

0.884 
(0.706, 0.957)

0.825 
(0.564, 0.934)

0.919 
(0.773, 0.986)

PIRM 0.680 
(0.413, 0.854)

0.829 
(0.618, 0.950)

0.724 
(0.419, 0.901)

0.851 
(0.590, 0.965)

PNSM 0.772 
(0.381, 0.906)

0.893 
(0.708, 0.961)

0.731 
(0.361, 0.919)

0.886 
(0.660, 0.975)

Bilateral Drop Jump
PKAM 0.874 

(0.706, 0.950)
0.882 

(0.694, 0.951)
0.841 

(0.612, 0.946)
0.864 

(0.635, 0.966)
PIRM 0.947 

(0.818, 0.988)
0.950 

(0.820, 0.989)
0.937 

(0.795, 0.985)
0.958 

(0.846, 0.991)
PNSM 0.816 

(0.573, 0.937)
0.797 

(0.531, 0.937)
0.778 

(0.505, 0.926)
0.815 

(0.534, 0.957)
Single Leg Drop Jump Left Leg

PKAM 0.671 
(0.390, 0.864)

0.727 
(0.470, 0.892)

0.754 
(0.432, 0.927)

0.869 
(0.693, 0.930)

PIRM 0.902 
(0.727, 0.973)

0.966 
(0.997, 0.992)

0.943 
(0.797, 0.981)

0.957 
(0.852, 0.995)

PNSM 0.667 
(0.256, 0.899)

0.695 
(0.273, 0.916)

0.665 
(0.282, 0.871)

0.828 
(0.500, 0.969)

Single Leg Drop Jump Right Leg
PKAM 0.457 

(0.063, 0.731)
0.432 

(0.011, 0.750)
0.582 

(0.172, 0.835)
0.614 

(0.220, 0.858)
PIRM 0.969 

(0.887, 0.994)
0.976 

(0.919, 0.994)
0.950 

(0.826, 0.990)
0.956 

(0.840, 0.993)
PNSM 0.826 

(0.532, 0.965)
0.912 

(0.721, 0.983)
0.814 

(0.451, 0.974)
0.839 

(0.480, 0.990)
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2021; Georgakis & Subramaniam, 2009; Georgakis et al., 2002). 
From a theoretical perspective, use of the FrFF or other similar 
methods may therefore be preferable in the context of proces
sing kinematic and kinetic signals as a precursor to determining 
knee joint loads as well.

The retention of higher frequency content in kinematic and 
kinetic signals is further exemplified by representative time- 
series joint moment, GRF and lower limb accelerations during 
a single SS (Figure 4). For the FrFF, GRF and acceleration signals 
were closer to the unprocessed peak values during weight 

acceptance, and this higher-frequency content was also evi
dent in the joint moments. While this suggests FrFF derived 
moments would be more accurate estimates of “true” knee 
moments, it is pertinent to comment on the source of these 
accelerations. GRFs from a force platform are relatively noise 
free compared to motion data (Lees & Lake, 2008), so matching 
the FrFF solution to the unprocessed peak vertical GRFs should 
be considered an improvement over the conventional 
approaches (Figure 4). It is plausible, however, some noisy 
oscillations were retained in FrFF marker accelerations that 

Figure 3. Participant rankings (1–23) for peak knee abduction (PKAM), internal rotation (PIRM) and non-sagittal moments (PNSM) within filter approach and screening 
task. Each line connects an individual’s ranking across filter approach. Horizontal lines show consistent rankings across within filter approach and line crossings 
inconsistent rankings within filter approach. SS = sidestep change of direction, BDJ = bilateral drop jump, SLDJ = single leg drop jump.
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propagated in the joint moments. It is thus difficult to imply 
FrFF derived knee moments were entirely representative of real 
joint loads. Evaluation of the FrFF with motion data with known 
intersegmental loads (e.g., van den Bogert & de Koning, 1996) is 
needed to verify this, and it is for these reasons Bisseling and 
Hof (2006) originally advocated using matched cut-off frequen
cies of ~20 hz to derive knee joint moments during dynamic 
sporting activity. Unfortunately, it is often overlooked they also 
advised low and matched cut-off frequencies should not be 
used if impact peak moments are of interest in relation to knee 
injuries. While matched approaches are suited to situations 
where general patterns of neuromuscular function are of inter
est (e.g., net moments during walking gait), situations that 

necessitate closer inspection of impact peak accelerations 
might benefit from using the FrFF.

Ideally, motion and GRF signals should be filtered at the 
highest frequency that removes noise yet leaves the physio
logic signal intact (Derrick et al., 2020). The impact peak cut- 
off frequency for the FrFF was thus chosen to capture the 
entire range of lower-limb accelerations induced by foot-to- 
ground contact. It is important to note, however, that given 
variance in impact characteristics, optimal FrFF parameter 
selection may be task (and trial) specific. Compared to drop 
jumps, SS tasks are often performed at higher speeds, with 
larger foot-to-ground impact accelerations and subsequent 
knee joint loading (Kristianslund & Krosshaug, 2013; 

Figure 4. Representative knee abduction (KAM), internal rotation (IRM) and non-sagittal moments (NSM) (top row), ground reaction forces (second row), foot (third 
row) and shank (fourth row) centre of mass accelerations during an unanticipated side step. Vertical dashed lines at 0 s and 0.052 s indicate initial ground contact (IC) 
and the end of weight acceptance, respectively. X = medio-lateral, Y = anterior-posterior and Z = vertical.
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Vanrenterghem et al., 2012). The largest differences in peak 
moments between the FrFF and conventional approaches 
was for the SS, indicating the FrFF was more sensitive to 
these impact peaks for these tasks. In contrast, differences 
between FrFF and conventional approaches were smaller for 
BDJ and SLDJ, and the 20–50 hz approach produced BDJ 
PKAM moments greater than the FrFF. Given high-frequency 
impact peaks are evident in drop jumping tasks (Kristianslund 
& Krosshaug, 2013), this was surprising. Interrogation of indi
vidual trials showed a longer weight acceptance phase in 
drop jumps (~0.12 s compared to ~0.05 s in SS) meant the 
FrFF did not always represent foot and shank kinematics in 
a manner that optimally retained high frequency kinematic 
content (Figure 5). The FrFF better represented GRFs than 

conventional approaches, but did not retain high frequency 
accelerations during weight acceptance. The peak moment 
estimates were thus closer in magnitude to conventional 
“unmatched” approaches.

Despite the highlighted variation in peak moments across 
filter approach and task, there was mostly moderate to excel
lent correlations between participant rankings (Table 3, 
Figure 3). Strong rank correlations have been previously 
shown between matched and unmatched filter approaches 
for PKAM during a similar SS task (Kristianslund et al., 2012), 
and the present study suggests consistency of the FrFF with 
these conventional approaches. The FrFF did show generally 
stronger rank correlations with unmatched compared to 
matched approaches during SS tasks, whereas correlations 

Figure 5. Representative knee abduction (KAM), internal rotation (IRM) and non-sagittal moments (NSM) (top row), ground reaction forces (second row), foot (third row 
row) and shank (fourth row) centre of mass accelerations during a bilateral drop jump. Vertical dashed lines at 0 s and 0.12 s indicate initial ground contact (IC) and the 
end of weight acceptance, respectively. X = medio-lateral, Y = anterior-posterior and Z = vertical.
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were less variable for drop jump tasks. Importantly, this meant 
participants with the highest peak moment responses were 
identified as “at risk” irrespective of filter approach, and indivi
dual injury risk classifications were not drastically altered 
(Figure 2).

There were, however, some variation in risk classifications. 
For SS, matched approaches consistently excluded individuals 
that were identified as “at risk” in unmatched and FrFF 
approaches. This was most evident for 10–10 hz, suggesting 
all but the most aggressive filters were sensitive enough to 
identify athletes displaying elevated knee loads. Further, FrFF 
risk classifications were most consistent with 20–50 hz, indicat
ing retention of high-frequency kinematic content is important 
for identifying “at risk” individuals (Roewer et al., 2014). Since a) 
all individual cases collectively identified by the conventional 
approaches were also identified by the FrFF and b) the FrFF 
identified some unique injury risk classifications (Figure 2), pre
liminary evidence is provided the FrFF displays enhanced sen
sitivity to movement strategies that induce higher knee loads 
during SS tasks. The proposed superiority of the FrFF over 
conventional approaches did not, however, extend to drop 
jumps. The previously highlighted inability of the FrFF to retain 
high frequency kinematic content during BDJ might explain 
this, and highlights a need to adjust FrFF parameters based on 
task specific foot-to-ground impact characteristics.

The frequency content that is accepted (and rejected) by the 
FrFF is ultimately determined by the gradient of the triangular 
cut-off boundary. Selecting an appropriate ratio between 
impact duration (width) and magnitude (peak cut-off value) 
becomes essential to obtain an optimal filter solution for 
a given rate of frequency expansion and reduction during the 
impact at hand. Since peak cut-off frequency values were 
unchanged across tasks, the longer weight acceptance dura
tions for BDJ resulted in a shallower increase in cut-off frequen
cies on each side of the triangle and an inability to retain high- 
frequency acceleration and moment impact peaks (Figure 5). 
Peak cut-off frequency values other than 60 hz are thus likely 
optimal for bilateral drop jumping tasks. Further, given the 
absolute rate of expansion (and subsequent reduction) of mar
ker frequency content around the peak impact frequency may 
not necessarily be equal, the isoscelean filter boundary of the 
FrFF might not be best suited in these instances (Georgakis & 
Subramaniam, 2009). Future work should thus attempt to opti
mise FrFF filter design and parameter selection across different 
ACL injury screening tasks to help improve estimates of knee 
loading. This might involve automatic filter parameter selection 
to minimise differences between unprocessed and FrFF signals 
(Georgakis & Subramaniam, 2009). While automating time- 
varying cut-off frequency filters in this way has proved difficult, 
it has been successfully achieved to improve filter performance 
in previous works (Davis & Challis, 2021; Georgakis et al., 2002).

Further limitations of the current study mean the findings 
should be regarded with some caution. Greater certainty 
regarding the origin of high-frequency accelerations in FrFF 
solutions, prospective injury registration data and comparison 
of the FrFF with known knee loading profiles are required to 
fully evaluate the FrFF’s utility for classifying ACL injury risk. For 
the former, ideally the FrFF should be compared against other 
time-varying cut-off filtering methods as well (e.g., Davis & 

Challis, 2021). Given the aim of this study was to identify 
differences between the FrFF and conventionally used filter 
approaches, such a comparison was beyond the scope of this 
study. For the latter, a forward dynamic simulation of running 
has previously been used to identify exact lower-limb interseg
mental loads with noise-free kinematics and compare data 
filtering approaches (van den Bogert & de Koning, 1996). 
Finally, FrFF performance should be evaluated in varied popu
lations and across different screening tests. Interestingly, when 
the current sample was split by sex and analysed separately, 
similar patterns to those noted above emerged (see supple
mental material).

In conclusion, the FrFF produced peak knee moment values 
during the weight acceptance phase of SS and drop jump tasks 
that were larger than those from “matched” approaches and 
closer to those from “unmatched” conventional filter 
approaches. Whilst the athletes with highest peak moment 
responses were classified as “at risk” irrespective of filter 
approach during sidestepping, matched approaches consis
tently excluded individual classifications compared to 
unmatched and FrFF approaches, and the FrFF identified 
unique classifications. Since the FrFF used a time-varying cut- 
off frequency to ensure a) important physiologic lower limb 
frequency content were retained in kinematic and GRF signals 
following foot-to-ground contact and b) consistency in the 
frequency content of these signals, preliminary evidence is 
provided the FrFF displays enhanced sensitivity to movement 
strategies that induce higher knee loads during SS tasks. This 
finding did not extend to drop jumps, and the FrFF should be 
further refined for use with these tasks. The FrFF’s capability to 
identify “at risk” individuals who were excluded by conven
tional filter approaches is a key consideration for those per
forming ACL injury risk screening and/or prevention work using 
3D motion capture. This is especially pertinent especially given 
the highlighted benefits of processing common ACL injury 
screening tasks using time-varying cut-off frequency filters. 
Ultimately, researchers and practitioners should carefully con
sider a) the influence different filter approaches (and their 
parameters) have on data interpretation and b) whether cho
sen filter approaches are appropriate for the context and/or 
variables under investigation.

Acknowledgments

The authors would like to thank Lucy Cooper for her assistance during data 
collection.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The author(s) reported there is no funding associated with the work fea
tured in this article.

ORCID

Simon Augustus http://orcid.org/0000-0001-9138-6962

JOURNAL OF SPORTS SCIENCES 2049



References

Abram, S. G. F., Price, A. J., Judge, A., & Beard, D. J. (2018). Anterior cruciate 
ligament (ACL) reconstruction and meniscal repair rates have both 
increased in the past 20 years in England: Hospital statistics from 1997 
to 2017. British Journal of Sports Medicine, 54(5), 286–291. https://doi.org/ 
10.1136/bjsports-2018-100195  

Alonso, F. J., Castillo, J. M., & Pintado, P. (2005). Application of singular 
spectrum analysis to the smoothing of raw kinematic signals. Journal of 
Biomechanics, 38(5), 1085–1092. https://doi.org/10.1016/j.jbiomech. 
2004.05.031  

Augustus, S., Mithat Amca, A., Hudson, P. E., Smith, N. (2020). Improved 
accuracy of biomechanical motion data obtained during impacts using a 
time-frequency low-pass filter. Journal of Biomechanics, 101, 109639.  
https://doi.org/10.1016/j.jbiomech.2020.109639  

Augustus, S., & Smith, N. (2023). Changes in lower leg kinematic frequency 
content during pre-ground contact and weight acceptance phases of 
ACL injury risk screening tasks. XXIX Congress of International Society of 
Biomechanics, Fukuoka, Japan.

Bell, A. L., Pedersen, D. R., & Brand, R. A. (1990). A comparison of the 
accuracy of several hip center location prediction methods. Journal of 
Biomechanics, 23(6), 617–621. https://doi.org/10.1016/0021-9290(90) 
90054-7  

Bisseling, R. W., & Hof, A. L. (2006). Handling of impact forces in inverse 
dynamics. Journal of Biomechanics, 39(13), 2438–2444. https://doi.org/ 
10.1016/j.jbiomech.2005.07.021  

Cappozzo, A., Catani, F., Della Croce, U., & Leardini, A. (1995). Position and 
orientation in space of bones during movement: Anatomical frame 
definition and determination. Clinical Biomechanics, 10(4), 171–178.  
https://doi.org/10.1016/0268-0033(95)91394-T  

Cerulli, G., Benoit, D. L., Lamontagne, M., Caraffa, A., & Liti, A. (2003). In vivo 
anterior cruciate ligament strain behaviour during a rapid deceleration 
movement: Case report. Knee Surgery, Sports Traumatology, Arthroscopy, 
11(5), 307–311. https://doi.org/10.1007/s00167-003-0403-6  

Chinnasee, C., Weir, G., Sasimontonkul, S., Alderson, J., & Donnelly, C. (2018). 
A biomechanical comparison of single-leg landing and unplanned 
sidestepping. International Journal of Sports Medicine, 39(8), 636–645.  
https://doi.org/10.1055/a-0592-7422  

Cronström, A., Creaby, M. W., & Ageberg, E. (2020). Do knee abduction 
kinematics and kinetics predict future anterior cruciate ligament injury 
risk? A systematic review and meta-analysis of prospective studies. BMC 
Musculoskeletal Disorders, 21(1), 1–11. https://doi.org/10.1186/s12891- 
020-03552-3  

Davis, D. J., & Challis, J. H. (2021). Vertical ground reaction force estimation 
from benchmark nonstationary kinematic data. Journal of Applied 
Biomechanics, 37(3), 272–276. https://doi.org/10.1123/jab.2020-0237  

de Leva, P. (1996). Adjustments to Zatsiorky-Seluyanov’s segment inertia 
parameters. Journal of Biomechanics, 29(9), 1223–1230. https://doi.org/ 
10.1016/0021-9290(95)00178-6  

Derrick, T. R., van den Bogert, A. J., Cereatti, A., Dumas, R., Fantozzi, S., & 
Leardini, A. (2020). ISB recommendations on the reporting of interseg
mental forces and moments during human motion analysis. Journal of 
Biomechanics, 99, 109533. https://doi.org/10.1016/j.jbiomech.2019. 
109533  

Filbay, S. R., Skou, S. T., Bullock, G. S., Le, C. Y., Räisänen, A. M., Toomey, C., 
Ezzat, A. M., Hayden, A., Culvenor, A. G., Whittaker, J. L., Roos, E. M., 
Crossley, K. M., Juhl, C. B., & Emery, C. (2022). Long-term quality of life, 
work limitation, physical activity, economic cost and disease burden fol
lowing ACL and meniscal injury: A systematic review and meta-analysis for 
the OPTIKNEE consensus. British Journal of Sports Medicine, 56(24), 
1465–1474. https://doi.org/10.1136/bjsports-2022-105626  

Georgakis, A., Stergioulas, L. K., & Giakas, G. (2002). Automatic algorithm for 
filtering kinematic signals with impacts in the Wigner representation. 
Medical & Biological Engineering & Computing, 40(6), 625–633. https:// 
doi.org/10.1007/BF02345300  

Georgakis, A., & Subramaniam, S. R. (2009). Estimation of the second deri
vative of kinematic impact signals using fractional Fourier domain 
filtering. IEEE Transactions on Biomedical Engineering, 56(4), 996–1004.  
https://doi.org/10.1109/TBME.2008.2006507  

Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Jr., Colosimo, A. J., 
McLean, S. G., van den Bogert, A. J., Paterno, M. V., & Succop, P. (2005). 
Biomechanical measures of neuromuscular control and valgus loading 
of the knee predict anterior cruciate ligament injury risk in female 
athletes: A prospective study. American Journal of Sports Medicine, 33 
(4), 492–501. https://doi.org/10.1177/0363546504269591  

Kristianslund, E., & Krosshaug, T. (2013). Comparison of drop jumps and 
sport-specific sidestep cutting: Implications for anterior cruciate liga
ment injury risk screening. American Journal of Sports Medicine, 41(3), 
684–688. https://doi.org/10.1177/0363546512472043  

Kristianslund, E., Krosshaug, T., & Van den Bogert, A. J. (2012). Effect of low 
pass filtering on joint moments from inverse dynamics: Implications for 
injury prevention. Journal of Biomechanics, 45(4), 666–671. https://doi. 
org/10.1016/j.jbiomech.2011.12.011  

Krosshaug, T., Nakamae, A., Boden, B. P., Engebretsen, L., Smith, G., 
Slauterbeck, J. R., Hewett, T. E., & Bahr, R. (2007). Mechanisms of anterior 
cruciate ligament injury in basketball: Video analysis of 39 cases. 
American Journal of Sports Medicine, 35(3), 359–367. https://doi.org/10. 
1177/0363546506293899  

Krosshaug, T., Steffen, K., Kristianslund, E., Nilstad, A., Mok, K. M., 
Myklebust, G., Andersen, T. E., Holme, I., Engebretsen, L., & Bahr, R. 
(2016). The vertical drop jump is a poor screening test for ACL injuries 
in female elite soccer and handball players: A prospective cohort study 
of 710 athletes. American Journal of Sports Medicine, 44(4), 874–883.  
https://doi.org/10.1177/0363546515625048  

Lees, A., & Lake, M. (2008). Force and pressure measurement. In C. Payton 
(Ed.), Biomechanical evaluation of movement in sport and exercise : The 
British Association of Sport and Exercise Sciences guidelines (pp. 53–77). 
Routledge.

Leppänen, M., Pasanen, K., Kujala, U. M., Vasankari, T., Kannus, P., Äyrämö, S., 
Krosshaug, T., Bahr, R., Avela, J., Perttunen, J., & Parkkari, J. (2017). Stiff 
landings are associated with increased ACL injury risk in young female 
basketball and floorball players. American Journal of Sports Medicine, 45 
(2), 386–393. https://doi.org/10.1177/0363546516665810  

Markolf, K. L., Burchfield, D. M., Shapiro, M. M., Shepard, M. F., 
Finerman, G. A., & Slauterbeck, J. L. (1995). Combined knee loading states 
that generate high anterior cruciate ligament forces. Journal of 
Orthopaedic Research: Official Publication of the Orthopaedic Research 
Society, 13(6), 930–935. https://doi.org/10.1002/jor.1100130618  

Myer, G. D., Ford, K. R., Paterno, M. V., Nick, T. G., & Hewett, T. E. (2008). The 
effects of generalized joint laxity on risk of anterior cruciate ligament 
injury in young female athletes. American Journal of Sports Medicine, 36 
(6), 1073–1080. https://doi.org/10.1177/0363546507313572  

Ozaktas, H. M., Kutay, M. A., & Mendlovic, D. (1999). Introduction to the 
fractional Fourier transform and its applications. In P. Hawkes (Ed.), 
Advances in imaging and electron physics (Vol. 106, pp. 239–291). 
Elsevier. https://doi.org/10.1016/S1076-5670(08)70272-6  

Poulsen, E., Goncalves, G. H., Bricca, A., Roos, E., Thorlund, J. B., & Juhl, C. B. 
(2019). Knee osteoarthritis risk is increased 4-6 fold after knee injury—A 
systematic review and meta-analysis. British Journal of Sports Medicine, 
53(23), 1454–1463. https://doi.org/10.1136/bjsports-2018-100022  

Robinson, M. A., Donnelly, C. J., Tsao, J., & Vanrenterghem, J. (2014). Impact 
of knee modeling approach on indicators and classification of anterior 
cruciate ligament injury risk. Medicine & Science in Sports and Exercise, 46 
(7), 1269–1276. https://doi.org/10.1249/MSS.0000000000000236  

Robinson, M. A., Sharir, R., Rafeeuddin, R., Vanrenterghem, J., & 
Donnelly, C. J. (2021). The non-sagittal knee moment vector identifies 
‘at risk’ individuals that the knee abduction moment alone does not. 
Sports Biomechanics, 22(1), 80–90. https://doi.org/10.1080/14763141. 
2021.1903981  

Roewer, B. D., Ford, K. R., Myer, G. D., & Hewett, T. E. (2014). The ‘impact’ of 
force filtering cut-off frequency on the peak knee abduction moment 
during landing: Artefact or ‘artifiction’? British Journal of Sports Medicine, 
48(6), 464–468. https://doi.org/10.1136/bjsports-2012-091398  

Saxby, D. J., Catelli, D. S., Lloyd, D. G., & Sawacha, Z. (2023). Editorial: The role 
of biomechanics in anterior cruciate ligament injuries prevention. 
Frontiers in Sports and Active Living, 5(1134969). https://doi.org/10. 
3389/fspor.2023.1134969  

Sigward, S. M., & Powers, C. M. (2007). Loading characteristics of females 
exhibiting excessive valgus moments during cutting. Clinical 

2050 S. AUGUSTUS ET AL.

https://doi.org/10.1136/bjsports-2018-100195
https://doi.org/10.1136/bjsports-2018-100195
https://doi.org/10.1016/j.jbiomech.2004.05.031
https://doi.org/10.1016/j.jbiomech.2004.05.031
https://doi.org/10.1016/j.jbiomech.2020.109639
https://doi.org/10.1016/j.jbiomech.2020.109639
https://doi.org/10.1016/0021-9290(90)90054-7
https://doi.org/10.1016/0021-9290(90)90054-7
https://doi.org/10.1016/j.jbiomech.2005.07.021
https://doi.org/10.1016/j.jbiomech.2005.07.021
https://doi.org/10.1016/0268-0033(95)91394-T
https://doi.org/10.1016/0268-0033(95)91394-T
https://doi.org/10.1007/s00167-003-0403-6
https://doi.org/10.1055/a-0592-7422
https://doi.org/10.1055/a-0592-7422
https://doi.org/10.1186/s12891-020-03552-3
https://doi.org/10.1186/s12891-020-03552-3
https://doi.org/10.1123/jab.2020-0237
https://doi.org/10.1016/0021-9290(95)00178-6
https://doi.org/10.1016/0021-9290(95)00178-6
https://doi.org/10.1016/j.jbiomech.2019.109533
https://doi.org/10.1016/j.jbiomech.2019.109533
https://doi.org/10.1136/bjsports-2022-105626
https://doi.org/10.1007/BF02345300
https://doi.org/10.1007/BF02345300
https://doi.org/10.1109/TBME.2008.2006507
https://doi.org/10.1109/TBME.2008.2006507
https://doi.org/10.1177/0363546504269591
https://doi.org/10.1177/0363546512472043
https://doi.org/10.1016/j.jbiomech.2011.12.011
https://doi.org/10.1016/j.jbiomech.2011.12.011
https://doi.org/10.1177/0363546506293899
https://doi.org/10.1177/0363546506293899
https://doi.org/10.1177/0363546515625048
https://doi.org/10.1177/0363546515625048
https://doi.org/10.1177/0363546516665810
https://doi.org/10.1002/jor.1100130618
https://doi.org/10.1177/0363546507313572
https://doi.org/10.1016/S1076-5670(08)70272-6
https://doi.org/10.1136/bjsports-2018-100022
https://doi.org/10.1249/MSS.0000000000000236
https://doi.org/10.1080/14763141.2021.1903981
https://doi.org/10.1080/14763141.2021.1903981
https://doi.org/10.1136/bjsports-2012-091398
https://doi.org/10.3389/fspor.2023.1134969
https://doi.org/10.3389/fspor.2023.1134969


Biomechanics, 22(7), 827–833. https://doi.org/10.1016/j.clinbiomech. 
2007.04.003  

Toothaker, E. L. (1993). Multiple comparison procedures. SAGE Publications, 
Inc. https://doi.org/10.4135/9781412985178  

Ueno, R., Navacchia, A., Bates, N. A., Schilaty, N. D., Krych, A. J., & Hewett, T. E. 
(2020). Analysis of internal knee forces allows for the prediction of 
rupture events in a clinically relevant model of anterior cruciate ligament 
injuries. Orthopaedic Journal of Sports Medicine, 8(1), 1–13. https://doi. 
org/10.1177/2325967119893758  

van den Bogert, A. J., & de Koning, J. J. (1996). On optimal filtering for 
inverse dynamics analysis. Proceedings of the IXth Biennial 
Conference of the Canadian Society for Biomechanics (pp. 214–215). 
Vancouver.

Vanrenterghem, J., Venables, E., Pataky, T., & Robinson, M. A. (2012). The 
effect of running speed on knee mechanical loading in females during 
side cutting. Journal of Biomechanics, 45(14), 2444–2449. https://doi.org/ 
10.1016/j.jbiomech.2012.06.029  

Wachowiak, M. P., Rash, G. S., Quesada, P. M., & Desoky, A. H. (2000). 
Wavelet-based noise removal for biomechanical signals: A comparative 
study. IEEE Transactions on Biomedical Engineering, 47(3), 360–368.  
https://doi.org/10.1109/10.827298  

Wei, D., & Ran, Q. (2013). Multiplicative filtering in the fractional Fourier 
domain. Signal, Image and Video Processing, 7(3), 575–580. https://doi. 
org/10.1007/s11760-011-0261-5  

Weir, G. (2021). Anterior cruciate ligament injury prevention in sport: 
Biomechanically informed approaches. Sports Biomechanics, 00(00), 1– 
21. https://doi.org/10.1080/14763141.2021.2016925  

Weir, G., Alderson, J., Elliott, B., Lee, S., Devaprakash, D., Starre, K., 
Goodman, C., Cooke, J., Rechichi, C., Armstrong, J., Jackson, B., & 
Donnelly, C. (2019). A 2-yr biomechanically informed ACL injury preven
tion training intervention in female field hockey players. Translational 
Journal of the American College of Sports Medicine, 4(19), 206. https://doi. 
org/10.1249/TJX.0000000000000105  

Winter, D. A. (2009). Biomechanics and motor control of human movement. 
John Wiley & Sons.

JOURNAL OF SPORTS SCIENCES 2051

https://doi.org/10.1016/j.clinbiomech.2007.04.003
https://doi.org/10.1016/j.clinbiomech.2007.04.003
https://doi.org/10.4135/9781412985178
https://doi.org/10.1177/2325967119893758
https://doi.org/10.1177/2325967119893758
https://doi.org/10.1016/j.jbiomech.2012.06.029
https://doi.org/10.1016/j.jbiomech.2012.06.029
https://doi.org/10.1109/10.827298
https://doi.org/10.1109/10.827298
https://doi.org/10.1007/s11760-011-0261-5
https://doi.org/10.1007/s11760-011-0261-5
https://doi.org/10.1080/14763141.2021.2016925
https://doi.org/10.1249/TJX.0000000000000105
https://doi.org/10.1249/TJX.0000000000000105

	Abstract
	Introduction
	Materials and methods
	Participants and study design
	Data collection and modelling
	Low-pass filter approaches
	Data and statistical analyses

	Results
	Discussion
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

