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Abstract—Infectious diseases like COVID-19 have remained
a primary public and global health concern. Internet of Things
(IoT) of networked robots and physiological intervention can
be combined to identify and control the spread of the different
variants of COVID-19 disease. With this approach, governments and
healthcare institutions can plan for such diseases in the future. This
paper presents a compact computational model (CCM) to identify
and control different COVID-19 variants using IoT-networked
robots. The CCM comprises seven physiological variables (PV)
and robotic identification (RI) of infected individuals as alternative
intervention strategies. The study uses Market Place Service
Robots that correctly identify PV and RI for positively infected
individuals. The conditions of the existence and the solution of the
deterministic model are derived from a compact flow architecture
that we develop. We show that the model has COVID-19-free
equilibrium and endemic equilibrium. While PV with appropriate
isolation and hospital treatment reduces the COVID-19 disease
impact by 19% more than RI alone, the study also shows that
combining two PV with RI minimises the impact better than PV
or RI alone, by 36% and 43%, respectively. When the PV control
parameters are increased, up to five, in the presence of IoT and
RI, up to 99.99% improvement is seen. With all seven PV control
parameters in the presence of IoT and RI, the proposed CCM
guarantees an infection-free population.

Index Terms—Computational Intelligence, Computational Com-
plexity, COVID-19 infection, Global Vaccination, Internet of Things,
Market Place Service Robot, Smart Health Infrastructure.

I. Introduction
On 31 December 2019, the World Health Organisation (WHO)

”picked up a media statement” about the outbreak of a novel
coronavirus [1], [2]. The virus was later identified as severe
acute respiratory (SAR) syndrome coronavirus 2 (SARS-CoV-2)
[1]–[3]. Reports showed that this infectious disease started in
Wuhan City, China, in November 2019 [3], [4] and the disease
caused by the SARS-CoV-2 is referred to as Coronavirus disease
2019 (COVID-19) [5]. On 11th March 2020, WHO declared the
disease a global pandemic due to its high spreading rate and
fatalities, surpassing 118,000 people in over 114 countries with
4,291 deaths [6]. The early stages of COVID-19 are characterised
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by fever, cough, tiredness, and myalgia [7]. More extreme
circumstances can result in pneumonia, an SAR respiratory
illness, cardiac issues, and even death. As a temporary measure,
national governments such as the United Kingdom enacted
several lockdown rules and this crippled lots of economies.
Market Place Service Robots (MPSRs) terminated at the edges
of Internet of Things (IoT) networks can be combined with
physiological strategies to mitigate the spread of COVID-19
disease in closed populations. We refer to a closed population
as a deterministic sample cluster of a definite size (large
or small) with predictors for COVID-19 spread. These time-
varying predictors are widely used epidemic variables, namely
susceptible S (t), asymptomatically infected A(t), vaccinated
V(t), exposed E(t), hospitalised H(t), symptomatically infected
I(t) and treated T (t). These seven physiological variables will
be hereinafter referred to as SAVEHIT.

Although the impacts of COVID-19 disease have been
contained globally, its effects have not been eradicated. For
example, the effects of the COVID-19 pandemic will incur about
e18T global economic loss between 2020 and 2025 [8]. With
smart infrastructure, such as MPSR, artificial intelligence (AI),
data analytics, IoT and computational modelling, the endemic
and economic effects of COVID-19 and its new variants can be
mitigated. Smart healthcare infrastructure (SHI), such as stream
robots, wearables, AI, and other IoT-driven systems, is now
an active part of healthcare cyber-physical systems positioned
to enhance the detection, reporting and control of infectious
diseases, such as COVID-19, etc. For example, BlueDot – a
Canadian startup tech company, warned early that the world
might be experiencing a new virus outbreak using AI within
the first 38 days of COVID-19 before the Chinese officials
identified the virus [3].

IoT-based technologies are used to collect data for machine
learning in managing COVID-19-infected patients [9]. Although
there are different variants of COVID-19 [10], IoT devices are
suitably used to identify and classify them correctly [11]. In the
new system, variations are currently emerging. Some indicators
include growth rate, changes in transmissibility, severity, or
immune evasion, among others. With current dominant variants,
variant classifications have been reported without compactness
property [12]. Previous classifications of COVID-19 no longer
meet requirements within the re-classified modifications, which
became operative on April 1, 2022 [10]. New classifications
include variants of concern (VoC), Variants of Interest (VoI),
Variants under Monitoring (VuM), and De-escalated variants [10].
Several domestic and foreign health organisations, including the
US Center for Disease Control and Prevention, England Public
Health, and various COVID-19 Consortia in the UK, Canada,
etc., use the following benchmarks to evaluate COVID-19 [10]:
increased risk of ”long COVID, increased risk of transmission,
increased morbidity and increased death, capacity to evade
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detection by diagnostic procedures, immunity evasion, and
ability to cause reinfections among others.

Computational modelling of infectious diseases, such as
COVID-19, is another aspect of interventions. For instance,
non-integer order differential equations in dynamical systems,
classical mathematical models of the integer-order derivatives,
and integer-order models using optimal control, among others,
examined the impact of various non-pharmaceutical interventions
on the control of the disease [13]–[15]. Fractional derivatives
have been employed as a useful computational model, especially
in epidemiological modelling of infectious diseases [16].
Examples of such models include Atangana-Baleanu and Caputo-
Fabrizio [17], Caputo, Riemann-Liouville [18], Grunwald-
Letnikov [19], Riemann-Liouville derivative [20] and Mittag-
Leffler function [21]. The benefit of these compact models is to
capture real-world problems in mathematical models, which is
simpler to employ in theoretical analysis, numerical calculations
and in planning interventions for future pandemics.

This article models COVID-19 spread in a closed population
as a statistical process using a compact computational model
(CCM). The model envisages an SHI of an IoT network where
MPSRs operate at the edges. These specialist robots, MPSRs,
are able to obtain COVID-19 health status of an individual at a
distance of 100 m thereby minimising health risks to healthcare
professionals. The proposed CCM uses seven physiological
variables (i.e., SAVEHIT) as a deterministic variable (DV)
and robotic identification and reporting (RI) parameters. We
benchmark our model on the most widely used fractional
derivative for modelling biological processes such as the generic
Atangana-Baleanu derivative [17]. In terms of computational
complexity, this will be used to validate the model because
it captures memory impacts as it is a non-local and non-
singular kernel [14]. We will show that the proposed model (i.e.,
CCM with DV+RI) outperforms existing computational models
within SHI robotic execution time. Our idea is to demonstrate
that deploying the CCM with DV+RI in a closed population
can protect vulnerable persons from COVID-19 and future
pandemics, thus, controlling its spread.

When fewer control variables are applied (e.g., three control
variables), our results show that a maximum of 56.98%
improvement was realised. This result is better by 1.98%
than the ones reported by [22] when the fractional order
derivative model alone was used. However, when the number
of physiological control variables is increased (e.g., up to five),
99.99% improvement was achieved. This result is better by
9% than using AI classification model proposed by [4] and
43.01% than using the fractional order model proposed by [22].
With all seven SAVEHIT variables combined with RI and IoT,
infectious diseases such as COVID-19 can be totally mitigated.

CCM users must understand which control variable is required
among the seven (SVEAIHT) variables when implemented. The
users will involve multidisciplinary experts (i.e., technical and
non-technical). Depending on the resources provided to support
the intervention, healthcare experts will receive training on
which control variable(s) to enable at each investigation period.
Engineers and technicians will be prepared to understand the
operations of the robots and IoT networks and how to maintain
their continuous service. Social scientists will be trained to
explore the ethical issues in deploying the model during any

epidemic scenario. Data scientists will be equipped with the data
realised from the processes to interpret the data and propose
what they can be used for.

The main contributions of this article are as follows:
• We develop an IoT-based model to manage infectious

diseases, such as COVID-19, spread in a closed population.
We install specialist robots, MPSR, at the network edges
that automates the process and minimises health risks.

• Using the setup, we derive CCM that minimises contracting
post-COVID-19 VoC when combined with DV and RI;

• We characterise the model to show COVID-19 infection-
free equilibrium (CIFE), global stability of CIFE for post-
covid-19, including existence and stability of infection
endemic equilibrium (CIEE);

• For practical setup, we describe a proof of concept
strategy for the IoT-networked robots for mitigating
infectious diseases spread (e.g., COVID-19), potential
issues, complexities that surround adaptation to existing
health infrastructure and sustainability concerns.

SAVEHIT are well-known epidemic parameters that can be
applied to any infectious disease, including waterborne disease,
COVID-19, HIV, Tuberculosis, etc. Our study takes these seven
physiological parameters (i.e., SAVEHIT) to propose a CCM
in the presence of IoT and robots terminated at the edges
of the IoT network. We adopted COVID-19 as an infectious
disease example. If the detection properties of the robot can be
modified, then our model can be extended to the new infectious
disease study of interest. With the robots at the edges of the IoT
network, the community, local or national governments can plan
a well-coordinated health intervention for any selected closed
population. For example, the robots can be used for immunisation
at selected health centres (i.e., edges of the network) while
the SAVEHIT data is collected through edge, fog and cloud
networks for further analysis, planning and improvements. All
of these can be operated in real-time. It allows multidisciplinary
collaboration in planning and mitigating any future pandemics.

The remaining parts of the paper are organised as follows.
Section II presents the system model, Section III presents the
results and discussions and conclusion in Section IV.

II. SystemModel and Design
Consider a closed population of N(t) persons. In this study, a

closed population is a deterministic sample cluster of a definite
size (large or small) with predictors for COVID-19 spread.
These predictors are the seven well-known SAVEHIT epidemic
parameters. These seven SAVEHIT parameters are time-varying;
that is, each of them changes with time, t. These parameters can
be investigated for any population size, N(t), at any given time,
t. Thus, if the population size changes from, say, N1 to N2, the
CCM model continues to operate with the new population, and
as such, we emphasise that the model adapts to the prevailing
population size N(t), thereby solving the scalability problem.
In terms of the infrastructure, IoT technologies such as LoRa,
amongst other LPWANs [23], is well-known for scalability,
coverage and low-power consumption [24]. Robots terminated
at the edges of the IoT network can always continue to assess
any number of persons, provided it is electrically powered.

Figure 1 depicts an IoT network of MPSR for detecting and
controlling COVID-19 disease spread in a closed population. The
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Figure 1: IoT-networked robots for identifying and controlling
infectious disease spread (e.g., COVID-19) in a closed popu-
lation. This proof of concept benefits from task-offloading in
MPSR [25].

model shows proof of concept of DV + RI testbed used for the
real-world demonstration of the study. Based on this, we present
a COVID-19-based robotic CCM which uses a flow diagram
shown in Figure 2 with the state variables. Attributes such as
boundedness and positivity of solutions are discussed. The IoT
network is terminated with robots (i.e., MPSR) that collect the
COVID-19 status of an individual and report it for actions by
healthcare professionals. These records are securely transmitted
via SHI to the servers in an edge, fog or cloud computing fashion.
Note that this study requires a robust technological infrastructure
to deploy the CCM for disease control, such as COVID-19, in
closed populations. This includes IoT infrastructure such as
LoRA, MPSRs for autonomous tasks, MK 1000 IoT sensors for
real-time data collecting, and a data analytics platform for pattern
identification. On-the-fly processing from the edge locations in
Figure 1 is facilitated by stream processing with kinesis, while
identity access management (IAM) and cybersecurity controls
guarantee data integrity.

To ensure patient privacy, the General Data Protection
Regulation (GDPR) and the Health Insurance Portability and
Accountability Act (HIPAA) through the use of certificate author-
ity and asymmetric cryptography in the architecture. Together,
these elements create a functional CCM that improves resource
allocation, response coordination, and disease monitoring in the
fight against infectious diseases. We envisaged and accounted
for scalability problems using the robotic and IoT infrastructure
for a time-varying population, N(t). For example, the more
IoT-sensed traffic comes to the infrastructure load balancers,
the more the system triggers robin-heuristics for autoscaling the
predictor variables. This resilient, dynamic behaviour carries out
fleet management, thereby addressing scalability concerns for
closed population workloads. The infrastructure offers active-
active fault tolerance and high availability as the IoT Arm®

Cortex®-M0 32-bit SAMD21 CPU, the MKR 1000 WiFi can

be employed with ECC508 crypto-chip security.

Figure 2: Compact flow diagram of the COVID-19 infection
spread in a closed population.

In general, deploying robots across every foreseeable human
traffic concourse in any community or population is practically
impossible. On the other hand, it is possible to deploy SAVEHIT-
aware robots at the strategic perimeters of any community to
detect infectious diseases, such as COVID-19. Implementing
networked robots and the IoT in managing pandemics requires
a substantial upfront investment and continuous operating costs,
but a worthy investment. In terms of hardware, robots, sensors,
LPWANs, edge-Fog-Cloud networks and data centers, and
technician and healthcare staff training are among the initial
costs. Energy requirements, data administration, and maintenance
are long-term costs. Through NPV, ROI calculations and cost-
benefit evaluations, economic viability is evaluated with an eye
on prospective improvements in disease surveillance, response
times, and transmission risk reduction.

Long-term sustainability requires flexible and scalable solu-
tions. For deploying networked robots and IoT in managing
pandemics, the prerequisites for resources include highly skilled
experts, adequate funding, cutting-edge technology such as
API microservices and infrastructure security. However, the
advantages of better disease control and public health outcomes
can outweigh the initial capital invested at the beginning of the
disease control or planning phase. To effectively deploy these
technologies in pandemic management, it is imperative to ensure
economic feasibility through careful analysis, scaling planning,
and efficient resource management for closed populations.

Although there were, and still are, concerns about privacy
and ethical issues in deploying IoT and robotic technologies in
monitoring and controlling diseases, efforts are being made to
enhance these in the scientific community. In the UK, Secure
by Design is an essential strategy that enforces security features
into IoT products from the design stage. Data collected from
individuals will be transmitted over secure networks to ensure
high data fidelity and privacy for everyone. During pandemics,
public education on deploying IoT and robotic technologies will
be promoted to enhance public awareness of the infrastructure
used in mitigating the pandemic with a given population.
Getting informed permission, guaranteeing data ownership
rights and anonymity, and safeguarding sensitive health data
with encryption and access controls are critical ethical issues. It
is imperative to mitigate algorithmic bias, minimise monitoring
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and stigmatisation, and guarantee equal access. Robotics and
IoT technologies are used to monitor health and control disease
while considering ethical issues. These comply with the HIPAA
and GDPR.

A. Model Formulation
From Figure 2, let N1 (t) be the human population at time

t. We break this into seven mutually exclusive groups: 1)
Susceptible individuals, S (t) - who have not come in contact
with COVID-19-infected individuals but are at risk of being
infected with COVID-19 infection; 2) individuals who have
received vaccination, V (t), against COVID-19 infection; 3) non-
vaccinated individuals exposed to COVID-19 infection, E (t); 4)
asymptomatic individuals – individuals infected without symp-
toms, A (t); 5) symptomatic individuals –individuals infected
with symptoms, I (t). 6) individuals detected with COVID-19
infection and isolated for treatment in the hospital, H (t); 7)
individuals who recovered after treatment, T (t). In this context,
the Robots detect the exposed, infected without symptoms, and
infected with symptoms to reduce the transmission rate, R (t),
due to contact.

B. Proposed Compact Computational Model
Figure 2 depicts the flow structure of individuals in a sample

space with the possibility of acquiring COVID-19 at time t. We
assume that mixing between people happens uniformly (i.e.,
compact homogeneity attribute). Only the exposed compartment
after infection produces the population of people with either
symptomatic or asymptomatic COVID-19 infection. We further
assume that exposed individuals who may not be infectious
may acquire some immunity through vaccination, reducing the
risk of subsequent infection. On top of that, exposed persons
develop some immunity from the infection, which lowers the
chance of re-infection but does not completely shield them
against contracting COVID-19 infection. The acquired vaccine-
induced immunity of the vaccinated people may deteriorate with
time. Susceptible individuals who have never been successfully
vaccinated acquire infection with COVID-19, while those whose
protective effect of vaccination has worn off move back to the
susceptible compartment.

Consider a hybrid population sample of humans (Figure 2)
and robots, which can be expressed as:

N(t) = N1(t) + N2(t) =
k∑

i=1

pi(t) +
∞∑

n=k+1

pn(t) (1)

where N1(t) =
∑

i pi(t) = S (t)+V(t)+E(t)+A(t)+I(t)+H(t)+T (t)
and N2(t) =

∑
n pn(t) = R(t) denote the total population of robots.

Following effective contact with symptomatic and asymptomatic
COVID-19, the rate of infection is modelled as:

λ = β

(
I

1 + α1I
+

ρA
1 + α2I

)
(2)

where β is the effective contact rate (contact sufficient to result
in COVID-19 infection) and the modification parameter ρ ≥ 1
accounts for the relative infectiousness of individuals with
asymptomatic COVID-19, where 1

1+α1
and 1

1+α2
measures the

inhibitory effect from the behavioural change of susceptible

individuals when their number increases or from the crowding
effect of the infectious individuals [26].

Let ω be the susceptible population with successful vaccina-
tion, which wanes at a rate ϖ. The susceptible and vaccinated
compartments are generated by the recruitment of individuals
into the population from birth and immigration and successful
vaccination against COVID-19 infection at the rates φ (1 − η)
and φη respectively. Within the human population, natural death
occurs at the rate µ. A fraction ∅ε of newly infected susceptible
individuals (exposed individuals) is assumed to undergo a fast
progression directly to the asymptomatic infectious compartment
A (t), while the remainder ∅(1 − ε) progresses to a symptomatic
infectious compartment.

At the edges of the IoT network, MPSRs detect all stages of
COVID-19 infection; exposed, asymptomatic or symptomatic.
These individuals are immediately taken to the isolation/hospi-
talised compartment at the rate υR, σR and γR, respectively,
where υ, σ and γ are isolation/hospitalisation rate of exposed,
infection without symptoms and infected with symptoms after
being detected by MPSRs. ξ models a variable (i.e., increasing
the recovered compartment) due to of the effective treatment of
the isolated/hospitalised individuals. COVID-19 symptomatic
infectious individuals and those hospitalised for treatment die
due to the infection at the rate κ and ∆ respectively.

Furthermore, ϱ is the reducing rate of the risk of COVID-19
infection due to the acquisition of immunity by the exposed
individuals. These are moved to the treated and recovered, while
some proportion denoted by τϱ is moved to the vaccinated
compartment due to vaccination.

Assuming ζ is the effective performance rate of the robot
(possible generation of data by the robot per individual) and δ
is the rate at which the Robot breaks down. Based on these,
the CCM is described as a system of nonlinear differential
equations of the form:

dS (t)
dt
= φ(1 − η) +ϖVt) + θT (t)−(
µ + ω + β

[
I(t)

1 + α1I
+

ρA(t)
1 + α2I

])
S (t) (3a)

dV (t)
dt
= ηφ + τϱE (t) + ωS (t) − (µ +ϖ) V (t) (3b)

dE (t)
dt
= β

(
I (t)

1 + α1I
+

ρA (t)
1 + α2I

)
S (t)−

(µ + τϱ + υR (t) + ϱ + ∅) E (t) (3c)
dA (t)

dt
= ∅εE (t) − (µ + σR (t)) A (t) (3d)

dI (t)
dt
= ∅ (1 − ε) E (t) − (µ + κ + γR (t)) I (t) (3e)

dH (t)
dt

= (υE (t) + σA (t) + γI (t)) R (t) − (µ + ∆ + ξ) H (t)

(3f)
dT (t)

dt
= ξH (t) + ϱE (t) − (µ + θ) T (t) (3g)

dR (t)
dt
= ψζ − δR (t) . (3h)

where ζ = Λe−t(π−π̂), ψ = recruitment rate of robots, ζ =
effective performance rate of the robot, δ = robot performance
breakdown rate, Λ = possible generation of data by the robot
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per individual ID t= time, π represents the distance at which
the data is generated by the Robot and the battery life and π̂ =
represents half of the distance and battery life understudy.

C. Positivity of Solution and Well-Posedness of the Model
The deterministic system model in (3) carries out two

important tasks, namely: 1) monitors the dynamics of the
interaction (transfer) effect of COVID-19 infection between the
compartments; 2) track the impact of Stream Robot (i.e. MPSR)
in detecting individuals infected with the COVID-19 virus.

The population under study relates to physical quantities and
therefore cannot be negative. Given this scenario, there is a need
to prove that all state variables are non-negative for all time (t).
Also, the proof must establish (3) to be epidemiologically and
mathematically meaningful in SHI. Thus, the solution of (3)
with positive initial data will remain positive for all t ≥ 0. This
then means that it is feasible to have:

Lemma 1: The biologically feasible region

D = (S (t) + V (t) + E (t) + A (t) + I (t) + H (t) + T (t) + R (t))

∈ R8
+ : N1 ≤

φ

µ
; N2 ≤

ψζ

δ
(4)

Proof: Notice from (1) that D is a positively invariant set since
adding the first seven sub-equations, that is,

N1 (t) = S (t) + V (t) + E (t) + A (t) + I (t) + H (t) + T (t) (5)

dN1 (t)
dt

= φ − µ (S (t) + V (t) + E (t) + A (t) + I (t) + H (t))

+ T (t) − ∆H (t) − κI (t) . (6)

But at COVID-19 infection-free equilibrium, ∆H (t) = κI (t) = 0

dN1 (t)
dt

= φ − µN1 (t) . (7)

Observe that dN1(t)
dt is bounded by φ − µN1 (t), therefore

dN1 (t)
dt

≤ φ − µN1 (t) . (8)

And so dN1(t)
dt < 0 if N1 (t) > φ

µ
. Thus, from (2) and Gronwell’s

inequality, it follows that

N1 (t) ≤ N1 (0) e−µt +
φ

µ

(
1 − e−µt

)
. (9)

By Birkhff and Rota’s theorem on differential inequality [27]:

0 ≤ N1 ≤
φ

µ
, t −→ ∞. (10)

Therefore, N1 (t) ≤ φ
µ

provided N1 (0) ≤ φ
µ

.
Hence, D is a positively invariant set; so, the model is well-

posed analytically and epidemiologically. Thus, the dynamical
flow of the model can sufficiently be considered in D.

D. Equilibrium and Stability Analysis
The analysis of epidemiological models for SHI requires the

determination of the asymptotic behaviour of their solution.
This is usually based on the associated equilibria [28]. It is
clear to note that the model has two equilibria, namely: CIFE,
(i.e., Γ0 and the CIEE (Γ1). These equilibria are obtained by
setting the right-hand sides of (3) to zero.

E. Local Stability of CIFE
The CIFE, Γ0, of (3), obtained by setting the RHS (3) to

zero is given by:

Γ0 = (S 0, V0, E0, A0, I0, H0, T0, R0)
= (S 0, V0, 0, 0, 0, 0, 0, R0) . (11)

At COVID-19 infection-free equilibrium, COVID-19 infection
is absent in the population and thus, all the compartments
related to infection transmission will be equal to zero, that is,
E0 = A0 = I0 = H0 = T0 = 0. Therefore,

φ (1 − η) +ϖV0 − (µ + ω) S 0 = 0 (12a)
φη + ωS 0 − (µ +ϖ) V0 = 0 (12b)

ψζ − δR0 = 0. (12c)

From (3), we then obtain (13a)

R0 =
ψζ

δ
(13a)

V0 =
φη + ωS 0

µ +ϖ
(13b)

S 0 =
φ (1 − η) +ϖ

(
φη+ωS 0
µ+ϖ

)
µ + ω

. (13c)

By rearranging and substituting (13b) into (13c), then

φ (1 − η) (µ +ϖ) +ϖ φη +ϖωS 0 = (µ +ϖ) (µ + ω) S 0

(14a)

φµ + φϖ − φµη − φϖ η +ϖ φη =
(
µ2 + µω + µϖ

)
S 0+

ϖωS 0 −ϖωS 0 (14b)
φµ + φϖ − φµη

µ2 + µω + µϖ
= S 0 (14c)

φ (ϖ + µ (1 − η))
µ (µ + ω +ϖ)

= S 0. (14d)

By substituting (14d) with (13b), then

V0 =
φη + ω

(
φ(ϖ+µ(1−η))
µ(µ+ω+ϖ)

)
µ +ϖ

(15a)

V0 =
φηµ (µ + ω +ϖ) + ωφ (ϖ + µ (1 − η))

µ(µ +ϖ) (µ + ω +ϖ)
(15b)

V0 =
φη

µ +ϖ
+

ωφ (ϖ + µ (1 − η))
µ(µ +ϖ) (µ + ω +ϖ)

. (15c)

CIFE, Γ0 of the model is determined based on the threshold
parameter known as the basic reproduction number (BRN) [66].
The BRN is designated as RCR describes the average number
of newly infected individuals generated from a single (one)
infectious individual at the beginning of the infectious process.
To compute RCR, we then find the non-negative matrix F of new
COVID-19 Infection (Transmission) terms and the M-matrix V
of transfer (Transition) terms.

By properties of determinants a matrix, we note that: 1)
If every element in a row (or column) of an n × n (i.e., a
square) matrix is zero, then the value of the determinant will
be zero; 2) If the corresponding elements are equal in two
rows (or columns) of an n × n matrix is zero, then the value
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V :=

0 βpS 0 βS 0
0 0 0
0 0 0

 , F :=

µ + τϱ + νR0 + ϱ + ϕ 0 0
−ϕε µ + σR0 0

−ϕ(1 − ε) 0 µ + κ + γR0

 , FV−1 =


βρ∅εS 0
α1
+

β∅(1−ε)S 0
α2

βρS 0
µ+σR0

βS 0
µ+κ+γR0

0 0 0
0 0 0


where α1 = (µ + τϱ + νR0 + ϱ + ∅) (µ + σR0) and α2 = (µ + τϱ + νR0 + ϱ + ∅) (µ + κ + γR0) . (16)

of the determinant will be zero. Since (16) satisfies these two
properties, then

∣∣∣FV−1
∣∣∣ = 0. Let Φ = FV−1, then

RCR =
1
2

(
trace (Φ) +

√
(trace (Φ))2 − 4det (Φ)

)
=

1
2

(trace (Φ) + trace (Φ)) =
1
2

(2 (trace (Φ)))

= trace (Φ) =
βρ∅εS 0

α1
+
β∅(1 − ε)S 0

α2
. (17)

This implies that the basic reproduction number of COVID-19
infection RCR = trace (Φ) is now given by

RCR = max {R0A, R0I} (18)

where R0A, represents the basic reproduction number of the
infectious without symptoms and R0I , is the basic reproduction
number of the infectious with symptoms. Therefore, we obtain

R0A =
βρ∅εφ (ϖ + µ (1 − η))
µ (µ + ω +ϖ)α1

(19a)

R0I =
β∅φ(1 − ε) (ϖ + µ (1 − η))

µ (µ + ω +ϖ)α2
(19b)

RCR =

β∅φ (ϖ+µ (1−η))
[
ρε

(
µ+κ+γ

ψζ
δ

)(
µ+σ

ψζ
δ

) +(1−ε)
]

µ (µ+ω+ϖ)α2
. (19c)

Lemma 2: The CIFE of (3) given by (11) is locally
asymptotically stable if R0A ≤ 1 and R0I ≤ 1 (or RCR ≤ 1)
and unstable if R0A > 1 and R0I > 1 (or RCR > 1).

The epidemiological suggestion is that COVID-19 infection
can be eradicated from the population only when the basic
reproduction number is less than the unity (i.e., RCR < 1). This
means that R0A must be less than unity(R0A < 1) and R0I less
than unity (R0I < 1), if the initial concentration of the models
compartments is in the basin of attraction of Γ0. The local
stability of the COVID-19 infection-free equilibrium point is
computed with the Jacobian matrix of (3) at CIFE and thus:

J (Γ0) =



J1,1 ϖ 0 J1,4 J1,5 0θ 0
ω J2,2 J2,3 0 0 0 0 0
0 0 J3,3 J3,4 J3,5 0 0 0
0 0 J4,3 J4,4 0 0 0 0
0 0 J5,3 0 J5,5 0 0 0
0 0 J6,3 J6,4 J6,5 J6,6 0 0
0 0 ϱ 0 0 ξ J7,7 0
0 0 0 0 0 0 0 −δ


(20)

where J1,1 = − (µ + ω),J1,4 = −βρS 0, J1,5 = −βS 0, J2,2 =

− (µ +ϖ), J2,3 = τϱ , J3,3 = − (µ + τϱ + νR0 + ϱ + ∅), J3,4 =

βρS 0, J3,5 = βS 0, J4,3 = ∅ε, J4,4 = − (µ + σR0), J5,3 = ∅ (1 − ε),
J5,5 = − (µ + κ + γR0), J6,3 = νR0, J6,4 = σR0, J6,5 = γR0,
J6,6 = − (µ + ∆ + ξ), J7,7 = − (µ + θ).

In this subsection, the performance analysis of the threshold
quantities R0A, R0I and RCR to ascertain the effectiveness of

vaccine strategy and the robotic detection impacts within a
COVID-19-infected population.

Theorem 1: The CIFE with vaccination effect on COVID-19
infected individuals and effective Robotic detection of individuals
infected with COVID-19 exists and is locally asymptotically
stable if R0A(ω) ≤ 1 and R0I(ω) ≤ 1 or RCR(ω) ≤ 1 and R0A(R0) ≤

1, R0I(R0) ≤ 1 or RCR(R0) ≤ 1.
Proof: The partial derivative of R0A(ω) and R0I(ω) (or RCR(ω))

with respect to ω are shown in (21) in the next page: where B =(
µ + τϱ + νψζ

δ
+ ϱ + ∅

)
, C =

(
µ + κ + γ ψζ

δ

)
, and G =

(
µ + σψζ

δ

)
.

This implies that the value of R0A and R0I(or RCR) decreases
as ω increases when the partial derivative ∂R0A

∂ω
and ∂R0I

∂ω

(
or ∂RCR

∂ω

)
are less than zero. Vaccination is effective as ω approaches
infinity. Since R0A + R0I = RCR, therefore,

∂R0A

∂R0
+
∂R0I

∂R0
=
∂RCR

∂R0
, (23)

it follows that ∂RCR
∂R0

results as shown in (24).
Also, the robotic detection of COVID-19-infected individuals

reduces the contact rate of the infectious individuals with the
susceptible individuals, thereby reducing the effective transmis-
sion rate. Therefore, a highly effective vaccine administration
to the susceptible population with elevated successful detection
of the infected (infectious) individuals can lead to effective
COVID-19 infection control.

III. Simulation Results and Discussion
We use numerical simulation to demonstrate the effect of

various control strategies on the transmission dynamics of
COVID-19 infection. The simulation implements the proposed
CCM model in (3) on MATLAB (version R2023b) using DV and
RI control variables over a [0, 100] time interval. We also adopt
the initial conditions S (0) = 5000, V (0) = 1500, E (0) =
2003, A (0) = 416, I (0) = 208, H (0) = 404, T (0) =
115 and R (0) = 500 described in [29], [30]. The step size
used for the simulation is h = 0.02 and Nh = 100.

A. Evaluation of CCM Under Different Control Strategies
Figure 3 shows the varying effect of υ, σ and γ, that is,

effective detection of COVID-19 infective by stream robots
on the exposed, asymptotically infected and symptomatically
infected population. From these results, we observe that as the
value of υ, σ and γ increases from 0.005 to 1.0, the population
of the infected persons gradually decreases; this will help in
reducing the number of effective contacts between the infected
and the susceptible individuals in the population consequently
resulting in few infections. By implication, the results indicate
that MPSRs effectively detect infected individuals and can
significantly reduce COVID-19 infection in a population.

A high value of υ, σ and γ indicates that the robotic control
is highly effective while a low value indicates the reverse. This
demonstrates that the fight against COVID-19 infection can be
successfully addressed if measures that can reduce the spread
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∂R0A

∂ω
= −

βρ∅εφµ (ϖ + µ (1 − η))
(
µ + τϱ + νψζ

δ
+ ϱ + ∅

) (
µ + σψζ

δ

)
[
µ (µ + ω +ϖ)

(
µ + τϱ + νψζ

δ
+ ϱ + ∅

) (
µ + σψζ

δ

)]2 < 0 (21a)

∂R0I

∂ω
= −

β∅φµ(1 − ε) (ϖ + µ (1 − η))
(
µ + τϱ + νψζ

δ
+ ϱ + ∅

) (
µ + κ + γ ψζ

δ

)
[
µ (µ + ω +ϖ)

(
µ + τϱ + νψζ

δ
+ ϱ + ∅

) (
µ + σψζ

δ

)]2 < 0 (21b)

∂RCR

∂ω
= −

β∅φµ (ϖ + µ (1 − η))
[
ρε

(
µ + κ + γ ψζ

δ

)
+ (1 − ε)

(
µ + σψζ

δ

)]
BCG[

µ (µ + ω +ϖ) BCG
]2 < 0. (21c)

∂R0A

∂R0
= −

βρ∅εφµ (ϖ + µ (1 − η)) (µ + ω +ϖ)
[
σ (µ + τϱ + νR0 + ϱ + ∅) + ν (µ + σR0)

][
µ (µ + ω +ϖ) (µ + τϱ + νR0 + ϱ + ∅) (µ + σR0)

]2 < 0 (22a)

∂R0I

∂R0
= −

β∅φµ (1 − ε) (ϖ + µ (1 − η)) (µ + ω +ϖ)
[
γ (µ + τϱ + νR0 + ϱ + ∅) + ν (µ + κ + γR0)

][
µ (µ + ω +ϖ) (µ + τϱ + νR0 + ϱ + ∅) (µ + κ + γR0)

]2 < 0. (22b)

∂RCR

∂R0
= −

[
βρ∅εφµ (ϖ + µ (1 − η)) (µ + ω +ϖ)

[
σ (µ + τϱ + νR0 + ϱ + ∅) + ν (µ + σR0)

][
µ (µ + ω +ϖ) (µ + τϱ + νR0 + ϱ + ∅) (µ + σR0)

]2 (24a)

+
β∅φµ (1 − ε) (ϖ + µ (1 − η)) (µ + ω +ϖ)

[
γ (µ + τϱ + νR0 + ϱ + ∅) + ν (µ + κ + γR0)

][
µ (µ + ω +ϖ) (µ + τϱ + νR0 + ϱ + ∅) (µ + κ + γR0)

]2

]
. (24b)

of the infection such as vaccination and robotic control, are put
in place. Also, measures like minimising contact between the
infected and susceptible and using stream robots to detect and
report infected individuals through IoT networks are impactful.

We also investigate the performance of the proposed CCM
in the absence of vaccination and robotic control as shown in
Figure 4. In this case, only the immune system combats the
infection. It can be observed that the infection continues to
exist in the population, indicating that the immune system alone
is not an effective control strategy.

In Figure 5, we compare the results of robotic detection with
and without vaccination based on the proposed CMM. Note that
the role of robots is to detect and report COVID-19-infected
persons at the edges of the IoT network. The results show
that in the absence of control, the exposed, asymptomatically
infected, and symptomatically infected population continuously
increases, indicating that COVID-19 may not be eradicated
from such a population.

On the other hand, with vaccination and robots to detect
infected individuals, the results show that there will be a
rise in the number of vaccinated, isolated/hospitalised due
to effective identification by robots and treatment/recovery. This
is because of successful and effective vaccination with effective
robotic detection leading to correctly identified persons being
isolated/hospitalised and thus will be treated and subsequently
recover from the infection.

From Figure 5, Table I presents the percentage decrease
of exposed, asymptomatically infected, and symptomatically
infected using either vaccination or robotic control strategies
and a combination of both strategies. This shows only a vaccine
control strategy is applied for COVID-19 infections. Obviously,
applying only vaccination as a control strategy for COVID-19
infection shows a little above-average effect on the infection,
thus insufficient to eradicate the exposed, asymptotically infected,

Table I: Percentage decrease in the number of Exposed,
Asymptomatically Infected, and Symptomatically Infected when
only vaccination control (η and ω) is applied.

Vaccination
Control

No Con-
trol

With Con-
trol

%
Decrease

Exposed 3111.2592 1385.8839 55.46
Asymptomatic 1602.4767 532.573 66.77
Symptomatic 716.2707 242.0808 66.20

and symptomatically infected population.
Table II shows the result of the robotic control strategy

for COVID-19 infection. The percentage decrease of the
exposed is below average, while the percentage decrease of
the asymptomatically and symptomatically infected is slightly
above the average. This implies that robotic control only as a
strategy is not enough to eradicate COVID-19 infection in the
population.

Table II: Percentage decreases in the number of Exposed,
Asymptomatically Infected, and symptomatically Infected when
Robotic control measure (υ, σ and γ) is applied.

Robotic Control No control With con-
trol

%
Decrease

Exposed 3111.2592 1970.8572 36.65
Asymptomatic 1602.4767 689.4637 56.98
Symptomatic 716.2707 328.1867 54.18

Although the two control strategies (i.e., robotic and vaccina-
tion) demonstrated in Tables I and II significantly minimise the
infection when applied separately, however, neither of them is
robust enough to eradicate the infection from the population.

Finally, Table III shows the percentage decrease in the
number of COVID-19 infections when the two control strategies
are combined. Combining the two control strategies greatly
affects the infection in the population. From this result, it
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Figure 3: Impact of Robotic Control Parameters on exposed, asymptomatically infected and symptomatically infected population.

Figure 4: Effect of immunity as a control strategy on the exposed,
asymptomatically, and symptomatically infected (τ = 0.25 and
ϱ = 0.25001 and vaccine rate of η = 0.95 and 0.75).

Table III: Percentage decrease in the number of Exposed, Asymp-
tomatically and Symptomatically Infected when Vaccination
and Robotic controls (η, ω, υ, σ and γ) are applied.

Vaccination and
Robotic Controls

No
Control

With
control

%
Decrease

Exposed 3111.2592 0.3775 99.99
Asymptomatic 1602.4767 0.3775 99.98
Symptomatic 716.2707 0.3775 99.95

was observed that combined intervention of vaccination and
robotic control (η, ω, υ, σandγ) is a better control strategy for
COVID-19 infection and needs to be effectively deployed to
reduce COVID-19 infection to the barest minimum within the
population even in future pandemics.

B. Complexity Analysis of the Proposed Model
Consider n → f (n) in our computational engine where n

denotes the size of inputs and f (n) is observed for worst-case
complexity. The number of computational elementary operations

O(n) performed on n is typically used to define time complexity,
where computational operations are considered to take a constant
amount of time on a machine and change only by a constant
factor when performed on another machine.

Considering Figure 6, the proposed CCM with DV+RI uses
more resources than the EBMOChOA-FW [31] but less than
three other models [32]. The implications for (3) is that this has
established strong existence and uniqueness results, unlike the
Atangana-Baleanu fractional derivative scheme that uses Banach
fixed point theorem and whose numerical method is based
on the collocation approach. Finally, the EBMOCChOA-FW
scheme is badly amortised regarding space complexity but offers
optimal CPU latency.

C. Comparison with Other Models
Our results show that when smaller number of control

variables are applied (e.g., three control variables, as in Table
II), a maximum of 56.98% improvement was realised. This
result is better by 1.98% than the ones reported by [22] when
the fractional order derivative model alone was used. However,
when the number of physiological control variables is increased
(e.g., up to five, as in Table III), 99.99% improvement was
achieved. This result is better by 9% than using AI classification
model proposed by [4] and 43.01% than using fractional order
model proposed by [22].

D. Sustainability of the Proposed CCM
The SAVEHIT epidemic parameters are well-established in

the literature. In most cases, not all seven parameters can be
combined to manage an existing or outbreak infectious disease
due to economic, technical, social, and ethical limitations. The
efficacy of these styles of combinations is demonstrated in Table
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Figure 5: Simulation results of the CCM model showing with and without combined vaccination and Robotic controls.

Figure 6: Comparative assessment of the computational com-
plexity analysis of the proposed CCM with other models.

I (for two parameters), Table II (for three parameters) and Table
III (for five parameters). Practically, the efficacy realised from
applying two parameters (as in Table I) is smaller than the ones
realised from applying increased control parameters (as in Table
III). Consequently, the long-term effectiveness and sustainability
of the proposed model hinge on economic, technical, social,
and ethical limitations.

For long-term effectiveness and sustainability, one, longi-
tudinal and real-world trials and indicators like transmission
rates, morbidity, mortality, and healthcare resource use should
be used to evaluate how well the model controls the disease.
Two, CCMs have the ability to adjust to new threats so that
they are capable of managing novel infections and evolving epi-
demiological conditions. Three, the maintenance, obsolescence,
energy efficiency, and environmental impact of the necessary
technological infrastructure, such as IoT sensors and networked
robots, must be taken into account. Four, while comparing the

CCM with alternative strategies, cost-effectiveness studies should
take into account both the short- and long-term advantages.
Five, it is important to evaluate the model’s resistance to outside
influences such natural disasters and socioeconomic upheavals.
Six, communication and participatory decision-making are
essential for community participation, trust, and acceptance over
time. Seven, it is imperative to guarantee continuous adherence
to ethical standards and regulatory compliance.

Ultimately, boosting innovation and constant improvement
is critical to raising the effectiveness and sustainability of the
CCM. By methodically addressing these variables, stakeholders
may maximise the model’s effectiveness in controlling infectious
diseases and fostering public health resilience.

E. Integrating Proposed CCM with Existing Healthcare Systems
and Emergency Response Protocols

For any disease control in any given community, the
healthcare team usually documents the SAVEHIT statistics
of the community. These parameters were the ones used in the
proposed CCM model. For example, every healthcare system,
including the NHS in the UK, has an Electronic Health Records
system stored in a highly secure server and network. IoT and
Robots proposed in this study can be used to complement the
existing network infrastructure.

Based on these, the proposed CCM can be integrated
with emergency response procedures and current healthcare
systems to efficiently manage emergency and existing healthcare
situations within the emergency and outpatient departments
of hospitals. These will reduce care time in emergencies,
conventional outpatient departments and during pandemics.
For seamless integration into workflows and protocols, with
clearly defined responsibilities and communication channels,
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collaboration between emergency responders, public health
agencies, healthcare providers, and technology vendors is
necessary. Advanced analytics could be used to connect
CCM data with current healthcare data to improve situational
awareness and decision-making. Clinical decision-making and
epidemic response can be aided by real-time data, predictive
analytics, and evidence-based guidelines provided by decision
support systems in the scaled CCM. With documented materials,
procedures, and simulation exercises, it is essential to train
emergency responders and healthcare professionals on how to use
the CCM within a deployment context using system guidelines.
Emergency Operation Centres (EOCs) and the CCM could be
connected to improve resource allocation and communication
in times of crisis.

Maintaining regulatory compliance with data privacy and
security standards such as GDPR and HIPAA is imperative
in context. Persistent assessment and enhancement of the
integration procedure, grounded on feedback and optimal
methodologies, often guarantee the CCM’s efficacy and flexibility
in response to changing healthcare exigencies and hazards.

F. Future Research Directions
To improve our study, the following research direction would

involve physically installing robots at the edges of the IoT
network in real-time for any selected population in monitoring
any infectious disease, such as COVID-19. Data collected from
this can be used by data scientists and AI professionals using
any data analytics method (descriptive, predictive or prescriptive
analytics) to inform healthcare professionals and governments
on the mitigation route. Different LPWANs can be used to
study various phenomena in IoT network. LoRaWAN is a well-
perceived LPWAN for IoT networks due to its tripartite merits,
such as scalability, data rate and low power consumption.

IV. Conclusion
This paper develops a computation model for mitigating

infectious disease spread, such as COVID-19, in a closed
population. The study uses specialist robots, MPSR, installed at
the edges of the IoT network to identify and report the spread of
the disease. Based on this setup, the study develops a compact
computational model that demonstrates the role of combining
seven physiological intervention variables (i.e., vaccination of
susceptible population, recruitment rate, isolation/hospitalisa-
tion of exposed, isolation/hospitalisation of asymptomatically
infected, isolation/hospitalisation of symptomatically infected,
treatment and natural immunity) with robotic identification
and reporting over an IoT network to control the spread of
the disease. Although applying either of the control strategies
(i.e., physiological interventions or robotic identification and
reporting) reduces the endemic impacts of the disease, our
results show that when both strategies are combined, better
results are realised. With vaccination alone, 19% recovery is
seen more than using robots alone. However, 36% recoveries are
recorded when robotic identification and reporting are combined
with vaccination. Applying vaccination and robotic control, 43%
of the population recovered more than using robotic control
alone. It follows that combining vaccination of the susceptible
population with robotic identification and reporting of exposed,

asymptomatically, and symptomatically infected persons over
an IoT network is a better strategy to minimise the spread of
infectious diseases such as the COVID-19 pandemic within a
population. When further physiological control variables are
added, such as treatment, recruitment rate, and immunity, more
population recovered. As these control parameters are increased
up to five in the presence of IoT and Robotic Identification,
COVID-19 disease is better reduced up to 99.99%. When all
seven parameters are applied in the presence of IoT and Robotic
Identification, an infectious-free population is achieved.
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