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A B S T R A C T   

Data transmission over power line communication (PLC) infrastructure will proliferate light
weight Internet of Things (IoT) nodes in 5G and 6G networks. Consequently, a corresponding 
lightweight multi-hop routing protocol (LMRP) with reduced path loss and computational com
plexities will be required at the edges of PLC networks to connect the cloud sinks. Using a multi- 
layered system architecture, we present an LMRP for optimal routing and highlight the compo
nents of a smart PLC network comprising edge power pool orchestration, edge layer service 
provisioning, fog latency layer, and cloud resilient backbone. The LMRP reduces path loss and 
node failure states at the edge while optimising throughputs, minimum cost flow, and signal 
stability. A multi-hop deterministic testbed is designed and applied in three different locations to 
estimate path loss leveraging TelosB IoT node, Raspberry Pi (RPI) with NesC, and Java scripted 
logger application. Three different testbeds of varying path loss characteristics at the Federal 
University of Technology Owerri (FUTO) are used while the analysis was completed at Man
chester Metropolitan University engineering LAB. The result of PL mitigation in Location 1 (sonic 
FUTO) shows 33.89%, 33.25%, and 32.77% with genetic algorithm (GA), particle swarm opti
misation (PSO), and the proposed LMRP, respectively. In Location 2 (Old SEET Complex, FUTO), 
the PL obtained are 33.81%, 33.57%, and 32.62%, while Location 3 (New SEET Complex, FUTO) 
yields 33.65%, 33.41%, and 32.74% in PL mitigation for GA, PSO, and LMRP, respectively. 
Despite improved PL mitigation, the results also show that the proposed scheme offers a light
weight routing performance of at least 76.30% compared to similar schemes.   

1. Introduction 

Recent trends in smart infrastructure (e.g., driverless cars, smart grids, and several automated systems) show an increased need for 
power line communication (PLC) networks to transfer converged traffic (e.g., data, voice, and video). The PLC in IoT is standardised by 
ITU-T G.9903 to digitally route data over conventional electric power lines [1]. Although largely discussed in terms of other physical 
layer requirements, PLC networks require an efficient routing policy and minimised path loss incidents to achieve high-speed, 
dependable, secure, and bidirectional data communications. This is the major constraint to the development trends in smart grids 
[2] and several other cyber-physical applications, such as driverless smart transport systems [3]. 
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Future connected grid networks have a lot of potential to utilise the Internet of Things (IoT)-enabled PLC systems. As an established, 
affordable, and reliable communication technology, PLC is now much more appealing for such networks because of new research 
efforts in the “In-band full-duplex (IBFD) broadband PLC (BB-PLC)” application [3]. IBFD can boost data throughput and spectrum 
efficiency in communication networks. Due to their lightweight characteristics on network resources, IoT devices are versatile and can 
be installed in various low-latency and high-throughput applications. IoT-PLC edge routing (ITU-T G.9903) is a pertinent technology 
standardised through IPV6 routing protocol for low-power and lossy networks (RPL RFC6550) [1]. Additionally, PLC technology is 
now advanced, affordable, dependable, and safe with this routing protocol [4]. According to their transmission frequencies, the narrow 
band PLC (NB-PLC) and the broadband PLC (BB-PLC) are two prominent PLC technologies. Both systems have difficulties when 
millions of devices transmit and receive data, and each one has a role in different setup scenarios and regulatory regimes [4]. The 
IoT-Lightweight PLC (IoT-LPLC) perfectly fits large networks and distant factories under optimised RPL. The RPL IPV6 is widely 
utilised in many fields, including the military, industry, smart cities, and smart buildings via outlet and switch ports. The reason for 
wide adoption is that it offers a straightforward method of utilising the same infrastructure seamlessly while addressing issues about 
data transmissions such as path loss, fault tolerance, security, energy usage, and load balancing [5]. This popular routing protocol for 
low-power and lossy networks has not yet been fully optimised for real-time adaption in cyber-physical systems [6]. For instance, using 
IoT-PLC integrated Layer 2 devices, the existing smart factory floor equipment must be controlled with a lightweight edge routing 
scheme [6]. Any edge node could be connected throughout the office building, providing stable communication between inside and 
outside of the building while connecting multiple nodes. Due to strong encryption and the flexibility of interconnecting and grouping 
devices, industry 4.0 will benefit significantly. IoT-LPLC is remarkably safe, dependable, and secure. This confers excellent market 
differentiation from past alternatives. 

Additionally, the need for data speeds and network coverage is growing at the edge. The use of IBFD technology is one way to meet 
the growing need for data interchange in PLC networks [7,8]. As demonstrated in these works, the IBFD technology could boost data 
speeds and reduce latency in BB-PLC. Also, it can extend network reachability by utilising full-duplex Fog relay nodes. Like most 
communication devices, a PLC channel has issues with spread-spectrum radio transmissions in a crowded setting [9]. Implementing 
IBFD for BB-PLC becomes challenging due to path loss constraints. There are several fundamental obstacles to IBFD technology. For 
instance, at 28 GHz, signal path loss (PL) is prominent [10,11]. Some propagation measurement studies demonstrate how mmWave 
attenuation is addressed while utilising the available frequency resource in the 5G cellular networks [11]. According to [12], the 
performance of outdoor mmWave ad-hoc networks demonstrates that in the event of some PL blockages, mmWave may support high 
density and substantial spectral efficiency. Path loss could still provide a significant rate coverage challenge. The performance will be 
impaired without an adequate understanding of channel characteristics and lightweight routing schemes. 

A major challenge with IBFD is that the edge computing technologies have failed to account for a robust lightweight routing scheme 
for real-time traffic provisioning while dealing with the issues of PL. The layer-three QoS metrics in legacy PLC network designs are 
severely constrained and cannot support massive traffic workloads due to serious interference and distortion issues within the PLC 
transceiver’s channel block [13]. To address this issue, a resilient-orientated architecture of IoT-PLC clusters was proposed [9]. With a 
connection-orientated network, a reliable routing strategy will create full-duplex routes and carry out data offloading more efficiently. 

From existing literature, various efforts have been made with the PLC fields to improve latency, throughput, path loss efficiency, 
energy drain, and other metrics within PLC ITU-T G.9903 routing at the edge network [4]. To date, there are initiatives to develop IPv6 
routing protocols for lossy and low-power networks (LLNs) [1,14,15]. Several authors created protocols to suit devices with limited 
resources in commercial, domestic, and urban settings [16]. For instance, the authors [1], proposed emergency RPL (EMRPL), which 
can efficiently forecast the course of action and communicate sensory data in real-time. In [17], the authors proposed a PriNergy-RLP 
approach that reduces end-to-end delay, energy consumption, and overhead on mesh IoT networks without considering PL incidents. 
In [18], the authors looked at congestion and QoS-Aware RPL for IoT applications (CQARPL) and used a multi-metric evaluation for 
route conditions. The focus was on transmission and congestion control in IoT nodes. Most works on IPV6 RPL LLNs did not explore PL 
[19]. 

The interface between the IoT-PLC device and the edge-to-Fog network at the application layer handles data display and 
formatting. To distribute communication resources to nodes, the constrained application protocol (CoAP) was employed as a RESTful 
scheduling function [20]. Similarly, the authors [21] focused on Mobile IoT communication using message queuing transport 
telemetry (MQTT) protocol. The authors [22] concentrated on reliability-focused pub/sub messaging protocol, i.e., advanced message 
queuing protocol (AMQP) which was extended to serve as a communication interface for robotic technology (RT) middleware 
(RT-Middleware). The authors [23] presented a lightweight Xtensible message and presence protocol (XMPP) with publish/subscribe 
mechanism for resource constrained IoT devices. RESTful API has been used for web application integration and data tracking [24]. 
These lightweight algorithms are beneficial in cyber-physical applications but may suffer from PL challenges. Hence, further opti
misation is needed at the edge. 

Regarding edge communication optimisation, the work [25] proposed a multi-objective QoS optimisation routing in the industrial 
IoT domain. In [26], the authors proposed a unique algorithm for locating routing paths with the least amount of power loss while 
enhancing the optical signal-to-noise ratio of the routing paths. In [27], an artificial neural network (ANN), the multi-layer perceptron 
(MLP) neural network was used to precisely forecast PL. In [28], the authors focused on an exhaustive search algorithm (ESA) based on 
weighted least square (WLS) minimisation for network localisation. An algorithm for queen honeybee migration for routing and 
transmission paths was discussed [29]. Other routing and PL optimisation models were investigated, such as genetic algorithm (GA) 
[30], ant colony algorithm (ACA) [31], gravitational search algorithm [32], co-evolutionary optimisation algorithm (CEOA) [33], 
particle swarm optimisation (PSO) [34], whale optimisation (WO) [35] and flower pollination algorithm (FPA) [36]. The works in 
[37–40] contributed significantly to PL propagation and optimisation. But while various efforts came with great traffic provisioning, 
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new challenges for the current PLC network have emerged with traffic routing and PL optimisation. But research on the multi-path 
lightweight routing of PLC networks is seldom reported. 

Regarding the market, this article proposes a next-generation IoT-Lightweight PLC (IoT-LPLC) that significantly impacts the edge 
automation layer. It maximises performance and versatility, providing an edge over other legacy PLC solutions currently on the 
market. This study suggests a connection-orientated resilient routing approach for any edge computing system in a typical PLC 
network. 

To prevent data stream distortion between adjacent nodes while sending high-speed data traffic, this article explores the principle 
of connection-orientated signalling. The proposed robust routing strategy specifies the robust weighted value of each connection. 

Now, no RPL-based routing protocol exists for real-time efficient routing in cyber-physical edge networks. Chanel traffic signalling 
[41] and RPL protocols for connection-level QoS are largely missing especially for time-stamped CPS. As a result, it is possible to 
significantly enhance routing resilience in edge-distributed IoT-PLC architecture. This article seeks to fix the problems of reactive RPL 
(PLC ITU-T G.9903), and channel characteristics at the edge layers. 

The main contributions of this paper include:  

• For the PLC datastream routing policy, a novel SPLCN architecture is designed to optimise the k-shortest routing policy.  
• For the edge layer, data transmission is proposed with a minimum cost flow problem to determine the best communication route 

that saves energy, reduces PL and computational complexity.  
• Testbed characterisation of lightweight PL environment with optimisation validation involving GA and PSO respectively.  
• Edge routing validation with lightweight application routing protocols such as REST, CoAP, MQTT, XMPP, and AMQP. 

The remaining parts of this paper are organised as follows. Section II presents the baseline system model. Section III reports the 
experimental path loss theory with other research efforts. Section IV discussed the experimental designs, radio models, and their 
significance at deployment sites. Section V presents results on PL mitigation, energy depletion, frequency comparisons, and optimi
sation evaluations. Section VI presents experimental validations while the work concludes in Section VII. 

2. System model 

This study proposes an SPLCN architecture to support PL and routing optimisations. Fig. 1 shows a 2 × 2 MIMO BBPLC with IBFD- 
enabled features. It has two modems interacting with one another simultaneously. Transceivers TRX1 and TRX3 are present in the first 
modem (local node), whereas TRX2 and TRX4 are present in the second modem (remote node). Signals sent by transmitters TX1 and 
TX3 of the local node are signals of interest (SI), whereas those sent by transmitters TX2 and TX4 of the remote node are SI at the edge 
layer. 

We represent the data received by jth − receiver, which is typically in the time domain, as: 

Fig. 1. A redesigned 2 × 2 MIMO IBFD communication system for SPLCN architecture.  
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γj(t) =
∑n− 1

i=0
Li(t) ∗ hij(t) + ωj(t) (1)  

where n is the default number of active transceivers, Li(t) is the lightweight signal of the ith transmitter, hij(t) is the channel impulse 
response from the connection between ith transmitter and jth receiver, and ωj(t) represents the impulsive and white Gaussian noise 
captured at the jth receiver. But at the edge layer, poor PLC channel characteristics and signal interference between edge nodes create a 
routing loop problem considering (1). Current multi-path routing methods are not suited for large BPLC networks, hence PLC ITU-T 
G.9903 routing was introduced in the validations. Also, PL must be significantly reduced for long-range payload delivery in Fig. 2. 

2.1. SPLCN architecture 

Distributed edge computing with lightweight processing and storage capabilities is used to enable local data processing in Fig. 2 
before applying the routing scheme. The fundamental concept behind the proposed connection-orientated routing strategy is that the 
routing calculation in the IoT-PLC network may be performed using the shortest path, thereby overcoming the limitations of (1). 

In addition, terminal nodes that work with edge computing resources will use the routing policy exchange signals. While the full- 

Fig. 2. The proposed multi-layer SPLCN architecture shows four network layers from the edge devices to the cloud; the layers include the smart 
power pool isolation layer (SPPIL), the edge automation layer (EAL), the Fog latency layer (FLL), and the cloud core resilient layers (CCRL). 
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duplex route is operational in (1), new links can be constructed, and the related surrounding nodes use it to route to the upper layers. 
Initial route data can be disseminated around the edge network and stored on possible edge servers. When the service request is 
received, the closest edge node is selected as the edge data cluster head (EDCH). As the original data are resource intensive, they are 
processed at edge cluster heads and updated to the cloud data centre. 

Fig. 2 shows the layered SPLCN architecture for a transparent routing scheme. Its main elements include the smart power pool 
isolation layer (SPPIL), the edge automation layer (EAL), the Fog latency layer (FLL), and the cloud core resilient layer (CCRL). The 
edge natives are a subset of the global grid cluster mapped into the Fog implementation layer of the SPLCN. The stream power pool 
(which provides energy-neutral IoT) is a fundamental advantage of lightweight IoT-PLC technology over other communication 
schemes. The FLL is used for latency reduction and resource maximisation during upward datastream offloading into the cloud. 

Finally, the CCRL plays a very vital role in the entire architecture. In this case, the technique of anticipating potential disruptions to 
computational service offloading is known as cloud resilience. This offers service continuity and figures out the best recovery strategy 
without losing the network data. Cloud systems’ resilience depicts their capacity to respond to failure while continuing to operate. 
Fig. 2 shows the built cloud-native services running at the resilient cloud backbone (RCB). This is fault/failure tolerant for massive 
traffic workloads. 

Here, we require to determine the most affordable way to transmit a specific amount of data across the edge-layered network in 
Fig. 1. 

In this context, constrained application protocol is required and maintains acceptable PL. This is useful for efficient data trans
mission. Since the IoT-PLC system requires performance considerations, lightweight MCFP can lower capacity restrictions for data
stream flow provisioning. This is replaced by a demand condition or minimum routing [42]. The edge source is connected to a smart 
PLC adaptor embedded in the distribution controllers in the implementation. This multi-hop functionality is shown in Fig. 2. 

At the layer 2 edge network, the powerline is reused to achieve data offload infrastructure needed for the distributed smart grid 
utility. In the design, the IoT-LPLC nodes are kept at rest to deliver data streams quickly and energy efficiently through cluster gateway 
having active communication links. Edge location sensor nodes (i.e., cluster heads) route data streams through labelled shortest- 
distance paths. Section II-C details the concept of minimum cost flow problem formulation (MCFPF). But this helps to route clus
tered nodes with time-varying link attributes (e.g., impulsive noise). It provides optimal path allocation and time-stamped links with 
auto-scaling. Hence, it is feasible to formulate a resilient routing algorithm that can optimise PL and still maintain reliability. The 
algorithm can support unicast, broadcast, and multicast transmission for converged traffic. These are useful for the overall compu
tational efficiency and will improve routing concurrency in SPLCN. 

2.2. Linear node distribution 

The proposed system can be viewed as a directed graph G = { V, E} where V denotes the collection of vertices or nodes, V = 1, ⋯,

N, and E denotes the collection of edges or links (connectivity of nodes). The edge Nodes at Layer 1 or cluster head sink node can be 
positioned inside or outside the monitored area, as shown in Fig. 2. 

In the case of a network with N linearly distributed nodes, a link E(i, j) exists between nodes i and j with a Euclidean distance di,j, 
which must be less than the radio transmission radius ℜ, i.e., di,j < ℜ. 

2.3. Minimum cost flow problem formulation (MCFPF) 

Notations: For any IoT-PLC node γj(t), an edge layer subnet-set is denoted by G (Ψ) = {1,⋯, a} and the PL nodes set is denoted by 
ρ = {a + 1,⋯., N}. We let Lw = {1,⋯, lw,⋯, L w} where L w represents the IoT-PLC wireless links and L p = {1,⋯, lp,⋯,L p}where 
L p is the number of PL links. Here, lwϵ L w denotes the index for the lthw wireless broadband link and lp ϵL p denotes lthp PL link. In 
addition, L = L w

⋃
L p represents all hybrid networks. Radio channel matrix L connects node i transmitter to node j and is described 

via (i, j). The optimisation design for lightweight routing information is provided for deployment localisation at the edge layers. 
Let G = (V,E) be an internally connected digraph for edge nodes in Fig. 1:  

• Upstream and lower stream capacity functions b : E→ℜ and c : E→ℜ, respectively;  
• overhead cost payload function γ : E→ℜ;  
• Cluster demand function d : V→ℜ with 

∑

v∈V
d(v) = 0. 

The edge MCFP determination has a mapping f : E→ℜ with minimal routing cost for γj(t). Hence, the new formulation is given as: 

j(t) = γj(t) +
∑n

i=1
qc,i ∗

∑mi

j=1
bz

i,j (2a) 

Subject to: 

b(e) ≤ f (e) ≤ c(e) ∀e ∈ E (2b)  
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∑

e+=v

f (e) −
∑

e− =v
f (e) = d(v) ∀v ∈ V (2c) 

Here, n represents an IoT-LPLC node port; qc,i depicts ith node in the qth cluster location; q depicts location of a strong reception map, 
z designates non-overlapping channels; mi depicts jth node port at the ith IoT-LPLC node. Note that j(t) ≤ l is a critical objective in which 
l depicts IoT-LPLC nodes placed in a defined location domain. (2b) represents the node cluster capacity restrictions, and (2c) represents 
the node cluster demand restrictions. 

For short linear node broadcasts, a cut represents a partition V = S ∪ T, and the capacity of the relay cluster head is given as 

c(S, T) =
∑

e− ∈S,e+∈ T

c(e) −
∑

e+ ∈S,e− ∈ T

b(e) (3)  

where S is the IoT-PLC source, T is the IoT-PLC time stamp, c(e) represents the IoT-PLC cluster head, and b(e) represents IoT-PLC buffer 
overflow. In the formulation, the flow in an edge cluster is a map f : E→ℜ meeting the resource demand constraints for all ∈ V; again, if 
the capacity restrictions stand for all e ∈ E, this is now representing the cluster admissible flow. As a result, the MCFP requires a flow of 
minimum cost overhead to save the battery life of the IoT-PLC node. This is realised with k-node shortest path constructs. 

2.4. K -Node shortest path 

This is very important in Fig. 2, especially in dealing with reliability at both edge layer service provisioning and fog latency layers. 
As part of the PL mitigation, we are to find the shortest path between edge source s and destination Fog t using non-negative link 
weights, then the second shortest path, etc., up to the Kth shortest path. The Algorithm I describe the optimal K -shortest paths, i.e.., K 

= {P 1,P 1,P 1, ⋯,P k }. 
In Algorithm I, the method finishes after finding the unique shortest path for K = 1. Otherwise, a complex technique is used to 

identify each of the shortest pathways after the initial one. To modify the set x of potential shortest paths. The process uses an auxiliary 
set S which is made up of pairs of the form (Q , v), where Q is a path from s to t and v ϵ Q . This is used to modify a cluster of potential 
shortest paths. In the algorithm, θ stands for the operator opposite concatenation ⊕. Additionally, sub Q (v,w) signifies the sub-path of 
Q from node v to node w. 

The process modifies the set of potential paths x by adding the shortest path P to set K from the previous iteration. After doing 
this, it uses the function shortest (x) to discover the shortest path in this set and adds it as the subsequent shortest path to set K . 

The next adjustment is made to Set x. The unique pair of the form (P , w) in set S and the related deviation vertex w associated with 
path P are first found using the function GetDeviationVertex (S ,P ). Then, we consider all the subsequent vertices in the sub-path 
subp(w, t) except for the destination t. These are referred to as deviation vertices. 

We identify the deviation path—also known as the shortest route—from each such vertex v to the destination t, and we combine it 
with the sub-path of P , subp(s,v), which begins in s and ends in v, to create path Q from s to t. Then set x receives Path Q . 

We must alter the graph using the function DisableV erticesAndEdges to ensure that path Q has not previously been formed before the 
Dijkstra algorithm is run. This function eliminates from graph G all vertices that make up the sequence subp(s,v)⊖ v, together with all 
edge incident to those vertices. Notably, this guarantees that the newly created path Q is straightforward. Additionally, we take away 
the edge extending from the vertex v towards the target (t) for each previously discovered shortest path P

′

∈ K ∪ {P }. This has the 
property: subp(s,v) = sub

P
′ (s,v). When path Q has been determined for each deviation vertex v, pair (Q , v) is added to set S . 

2.5. Node energy problem formulation 

The edge power pool orchestration requires resource optimisation. Hence, it is feasible to convert battery lifetime into MCFPs. 
Assuming the initial energy is Ec, the lifetime of the node i during routing is given as 

Ti =
Ec

∑
lw ∈ O(i)βlw(1 + α) tlw

T

(4)  

where βlw is routing multistep transactions over the PL channel. lw is i ∈ W. O(i) and I(j) denote outgoing and incoming links at the IoT- 

PLC deployment edge network. The state vectors at kth is given as s(k)
̅̅→

= [ S1,2(k),……Si,j(k) − 1]Ti . Now, a lifetime of the network is 
given as 

Tnet = min
i∈W

Ti . (5) 

The first objective is to maximise the IoT-PLC network life at the edge during the routing phases. Therefore, the network lifetime 
maximisation problem is formulated below as a mixed integer convex optimisation problem [43] in (6): 

min
i∈W

1
Tnet

(6a)  
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s.t. Tnet ≤
Ec

∑
lw ∈ O(i)βlw(1 + α) tlw

T

(i ∈ W) (6b)  

Wl ≥ 0 (6d)  

tl ∈ {0,Δ, 2,Δ,⋯} (6e) 

The variables Tnet , Wl, and tl must be considered in the routing scheme concerning γj(t). Δ is the weight interval for the compu
tation of the variables in (6). The first inequality in (3) states that each IoT-PLC node’s energy usage during routing must not be greater 
than the battery’s capacity for the whole network lifetime. The maximum transmission power restriction for all links makes up the 
second inequality. The restriction ensures that the data transmission is completed in time T. The energy flow conservation for all nodes 
is in (5). If the integer restrictions on tl are relaxed for this formulation, the optimisation challenge would be convex type. Section IV 
discussed the explicit radio model. 

2.6. Node link problem formulation 

Apart from node energy Optimisation, creating an IoT-PLC node-link formulation is solved with mixed-integer programming (MIP). 
Only the edge variables are integer-constrained to depletion rates under an active state. This is the next step in the SPLCN design. Let’s 
imagine a two-layer probe arranged into N layers. The N-layer design issue with link capacities ye for the top layer (Layer 2) is 
considered. This intermediate demand is met at the downstream or lower layer (i.e., layers 1–2) using a lightweight routing flow that 
drains less energy. This results in the identification of the optimised layer link capacity, ug. 

Assume for a moment that the bottom layers are joined by a new layer. Accordingly, the traffic demand intensity for replicated layer 
1, (i.e., which must be routed to the next Fog layer), ug becomes the link path of the present lower layer. This ultimately determines the 
link bandwidth data stream offloading. The next step in the process is to continue making the basic observation (on-demand traffic) for 
a specific layer (downstream) to match the connection resource capacity required for the upstream layer. This can be seen in factory 
automation pyramids driving cyber-physical systems. 

As a result, if an IoT-PLC edge link in layer l is represented by el , then its capacity, yl
el , is sent to layer (l − 1) via aggregated flows 

as xl
el pl − 1 .To identify the datastream edge device cluster capacities in layer (l − 1), we denoted this variable with xl − 1

el − 1 . This represents 
the designated redundant flows or traffic demand needed to test resilience in an active link. 

There are two subscript elements introduced, d for demand and e for the link—with the datastream N-layer model, which assumes 
an upward orientation in SPLCN design. The Fog layer can be simply one layer above the higher one (or layer l in the multi-layer case). 
As a result, layer l has a demanding workload placed on it by layer l + 1, which is a hypothetical layer. The location of the initial 
demand workload d is also known. Thus, we can deploy the demand layer as the layer l + 1 immediately above the topmost Fog layer l 
as it currently exists. Therefore, we can equally analyse the generic relationship yl +1

el +1 and yl
el for an edge-to-Fog layer l in place of the 

relationship between hd and ye. It should be noticed that for the top (demand) layer, we have hd = yL+1
eL+1 . Once the relationship between 

two neighbouring layers has been established, the layer l link-path indicator can be written as δl
el el +1pl . 

Another way to look at this is to think of the "links" in layer l + 1 as the constraints placed on the IoT-PLC nodes. The resource layer 
problem can then be thought of as (l +1) layer design challenge. This would imply that the N resource layer problems presented in the 
design could be generalised within a complex-layered space. Finally, the lightweight multi-hop routing protocol (LMRP) is a multi-hop 
routing protocol for PLC that minimises routing paths in SPLCN. The LMRP aims to optimise resources according to: 

Min F =
∑L

l =1

∑

el

ξl
el yl

el (7a) 

Subject to: 
(
∑

l >0
pl xl

el +1pl = yl +1
el +1

)

(7b)  

(
∑

l >0
pl δl

el el +1pl xl
el +1pl = yl

el

)

(7c) 

Where F denotes overall efficiency covering sets of nodes, overhead cost vector, clusters, PL channels resource provisioning. 
As previously shown in [43], single-layer and two-layer IoT-PLC sensor arrays can have the shortest-path allocation rule applied for 

l = 1⋯ ∞. Therefore, the lightweight resource allocation policy (LRAP) for the general multi-layer case in Fig. 2 is shown with 
Algorithm 1. In its structure, it could be noticed that ζl = (ζl

1 , ζl
2 ,…,ζl

El ) depicts the vector representing the accumulated costs of the 
entire layered linkages l (l = 1, 2, …,L). Considering only the layer-specific overhead, ξl

el of link el while reducing the link cost of 
IoT-PLC node clusters below l , the function length_shortest_path (el +1, ζl ) returns the total shortest path on the routing list of the link 
el +1. 

From Line 1, the routing scheme commenced with the nodes first powered by an edge stream power pool that charges the battery. 
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This then provides depletable energy communication from the nodes to the cluster heads. The link state layers are then established 
from the edge to the fog while allowing the cloud resilient layer to orchestrate datastream. Auto-scaling based on resource availability 
is realised. The traffic request message, confirm message and release message designates the three different categories of signalling 
messages during routing. Routing computation is done by Dijkstra’s shortest path and reliability degree value during active operation. 
This sorts every link according to its availability, chooses the best link, and adds it to the available topology. The route computation is 
then finished after getting the route result. To get the route result and the list of involved nodes, the resilient routing calculation is 
carried out. 

The resilient routing computation is employed to provide the algorithm result and the list of participating nodes. The major 
problem is that resilient routing computational complexity must be implemented and compared with other RPL schemes. The reli
ability requires two multiple operations, with O-level complexity (1). For the dependability routing service in IoT-PLC networks, the 
complexity is only O(n)O (1) when the number of complex network nodes approaches n. 

As an important edge communication metric, the PL in IoT-PLC interfaces is further investigated for outdoor deployments. In this 
use case, the electromagnetic wave propagation in IoT-PLC wireless channel is represented as a power law function with a separation 
between the RF transmitter and receiver. The free space model and the two-ray model are considered. When there is a direct, un
impeded line of sight (LoS) between the transmitter and receiver, the received signal strength is predicted using free space propagation. 

Given that the free space power received by an IoT-PLC receiver radio is d miles away from transmitting edge-node. As shown in 
Fig. 1, PL is the difference (in dB) between the effective transmitted power and the received power during the routing operation. This is 
used to depict signal attenuation as a positive number measured in dB. In this context, the following equations illustrate the influence 
of node antenna gain [44]. 

Pr(d) =

[
PtGtGrλ2

(4π)2d2L

]

(8)  

where Pt = IoT transmitted power, Pr = IoT received power and Pr(d) = received power, which depends on the T-R (transmitter- 
receiver) spacing distance d. 

Gt = transmitter antenna gain, Gr = receiver antenna gain, L = non-propagation-related system loss factor, L ≥ 1 and λ = Wave
length (m). 

Gt and Gr are dimensionless quantities, however the values of Pr and Pt are in the same unit. The IoT-PLC RF, and filter losses as well 
as the transmission space diversity generate signal losses L(L > 1). The received power diminishes with the square of the T − R sep
aration distance, according to the free space (1). This suggests that the received power decreases by 20 dB/decade as a function of 
distance. During the experiment in Section IV, the transmitted power Pt is obtained. But the PL measurements are calculated using (9a). 

Pr(dBm) = Pt(dBm) − PL(dB) (9a)  

PL(dB) = 10log

[
GtGrλ2

(4π)2d2

]

(9b)  

PL(dB) = − 10log

[
λ2

(4π)2d2

]

(9c) 

By substituting (8) into (9a), this gives (9b). The free space model can accurately estimate Pr only for d values that are in the 
transmitting antenna’s far field. (9d) can be obtained by simplifying (9c). To obtain the free space PL formula, we obtain (9d). 

PL = 20log10(4π) + 20log10(d) − 20log10(λ) (9d) 

If we put λ(km) = 0.3/f(MHz) into (9d), and simplify further, we have (9e). 

PL(dB) = 3.25 + 20log10(d) + 20log10(f ) (9e) 

In the experimental testbed, 1 m is used as the received power reference Pr(d) in the close-range measurement. At any distance d 
> d0, the received power, Pr(d), is related to Pr at d0. In the radio setup domain, the value Pr(d0) was determined by averaging the 
received power Pr at numerous locations d0 away from the transmitter. Given that the received power Pr was obtained during the 
experiment and the transmitted power Pt obtained, path loss measurements (PLMs) were calculated using (8). 

From (8), the experiment’s Pt value was set 0dBm, such that Prin free space at a distance d > d0 is then given by (10). 

Pr(d) = Pr (d0)

(
d0

d

)2

(10) 

At high values of d, the Pr and PL in the two-ray model becomes frequency independent. In terms of dB, the PL for the two-ray model 
is given as (11). 

PL(dB)= 40logd − (10logGt + 10logGr + 20loght + 20loghr (11) 

By calculating the received signal intensity as a function of distance, PL can be used to forecast other channel parameters. Equ. (12) 
uses a route loss exponent, n, to express the average PL for each transmitter-receiver separation distance d. 
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PL(d)∝
(

d
d0

)n

(12)  

PL(dB) = PL(d0) + 10nlog
(

d
d0

)

(13) 

Where the average PL between the sender and receiver is measured in dB. PL(d0) denotes referenced PL model (dB). When the d 
between the receiver and transmitter is at reference d0, With d0, as the close-in reference distance d0, we can calculate the PL 
exponent, n from measurements taken close to the transmitter. This represents the rate at which the PL rises with distance d which 
gives T-R separation. 

The edge network propagation environment has specific characteristics that affect the value of n. For instance, n = 2 in free space; 
nevertheless, n will increase in value in the presence of impediments. The free space PL formula is used to compute the reference PL 
(13). 

Now, the estimated PL is calculated using (14), where n can be manually calculated or obtained with a linear regression analysis 
approach: 

n =
PL(d) − PL(d0)

10log10(d/d0)
. (14) 

By reducing the gap between the observed data and the anticipated PL value of (13), the PL exponent can be calculated from the 
measured data using LR. The PL exponent is given by (15a): 

E(n) =
{

PLm − PLp
}2 (15a)  

where PLp is the experimental PL at d using (136). PLm is the measured PL at distance d in dB. The model (14) is obtained when (13) is 
substituted for PLp in (158). The PL exponent is then given by (14)

E(n) =
∑k

i=1
[PLm − PL(d0] − 10nLog10

(
d
d0

)2

(15a) 

By differentiating (15a), this gives 

∂E(n)
∂n

= − 20nlog10

(
d
do

)
∑k

i=1
[PLm − PL(d0] − 10nLog10

(
d
d0

)

(15b) 

Let ∂E(n)
∂n = 0 and equate both the left-hand side and right-hand side, this implied that − 20nlog10

(
d
do

)
yields: 

∑k

i=1
[PLm − PL(d0)] −

∑k

i=1
10nlog10

(
d
d0

)

= 0 (15c) 

Making n the subject in (15c) yields the PL exponent n: 

n =

∑k
i=1[PLm − PL(d0]

∑k
i=110nlog10

(
d
d0

) (16) 

With MATLAB scripts, n was computed (16). 

PL(dB) = PL(d0) + 10nlog10
(

d
d0

)

+ Xσ (17) 

Where Xσ is a zero-mean, Gaussian-distributed random variable with a standard deviation of σ; both values are in decibels. σ is 
computed with (16) to yield (18). 

σ(dB) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑k

i=1

(
PLm − PLp

)2

N

√
√
√
√ (18)  

Where PLm = experimental PL (dB) 
PLp = predicted PL (dB) 
N = No of data points = 25; σ = 2.3; PL(d0) = 43.83 These values were computed with MATLAB [45] for the derived PL model. 
Now, by substituting these values in (17), this gives outdoor PL with IoT-PLC TelosB in (7). 

PL(dB) = 43.83 + 10(2.67)log
(

d
d0

)

+ 2.3 (1913)
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PL(d) = 43.83 + 10(2.67)log
(

d
d0

)

(20) 

The PL in (20) represents the PL model for any random distance d from the transmitter as the outdoor scenario for TelosB. The 
average PL of the indoor environment was determined using (9a). This is done with the transmitted power set at 0 dBm and the 
received power measured at various distances from 10 to 60 m at intervals of 1 m. The determined average PL of the indoor envi
ronment for the TelosB nodes is later discussed in section IV. 

3. Radio energy model 

Consider the edge node cluster comprising N IoT nodes {S1,⋯, Sn} used in Fig. 2. The nearest IoT node to the edge network Sn and 
the farthest is S1. During the multi-hop transmission of data, S1 sends its data to the cluster head and the sink seamlessly. The 
transmission power influences the node transmission range. Therefore, the nodes are linearly placed from source to sink with their 
respective distances {d1,d2,⋯,dn}. The edge-to-Fog distance d is given by 

d =
∑N

i=1
di (21) 

The necessary transmission of one way to model energy is given as 

Et(μ, d) = μ(λt + ξdn) (22) 

Additionally, the receiver’s energy usage for the same bitstream given as 

Et(μ) = μλr  

where μ = No of bits, λt and λr = Energy/bit consumed in the Tx and Rx, respectively. 

d = distance 
n = Path loss exponent (for perfect LoS between the transmitter and receiver, n = 2; n = 4 in dense urban locations) 
λt = λr =λe 
λe = Electronics Energy(23a) and (23b) are obtained from (22) considering the crossover distance (i.e. approximately 87.6 m). 

Et(d) =
{

μλe + μξfsd2}if d < dq (23a)  

Et(d) =
{

μλe + μξmgd4}if d ≥ dq (23b) 

The authority to route or distribute this message is 

Ef (μ, d) = Ee(μ, d) + Ee(μ) (24)  

Ef = 2μλe + μξfsd2 d < dq (25a)  

Or 

Ef = 2μλe + μξmpd4if d ≥ dq (25b)  

where 
dq = threshold distance is given as 

dq =

̅̅̅̅̅̅̅
ξfs

ξmp

√

(26) 

According to the experiment, the PL exponents for the indoor and outdoor testbeds, respectively, were calculated to be 2.67 and 
2.77. Thus, using (23a) and (23b) respectively, we now provide the amount of energy used by the IoT transmitter to power the radio 
electronics and the amplifier for outdoor and inside use. 

Et(d) =
{

μλe + μξfsd2.67} (24ab)  

Et(d) =
{

μλe + μξfsd2.77} (24bb) 

Using the determined PL, the energy required to transmit the message can be given as 

Ef = 2μλe + μξfsd2.67 (25ab)  

Ef = 2μλe + μξfsd2.77 (25bb) 
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The edge source IoT node will transmit j bits data stream to the distant sink node through direct or multi-top transmission when it 
detects an event. The N-hop transmission is explored from source to sink node because multi-hop transmission is more energy efficient 
when d is large. For each node to use the least amount of energy at the same pace, we must determine the ideal multi-hop number and 
each distance d. The total energy required to transmit one bit of data (μ = 1) over an N-hop route will be calculated using (26) and (27). 

EN =
∑N

i=1

(
λe + ξdn

1

)
+
∑N

i=2
λe (26)  

EN = λe + ξdn
1 +

∑N

i=1

(
2λe + ξdn

1

)
(27)  

Where ξ = ξfs when n = 2 and ξ = ξmp when n = 4 

EN = (2N − 1)λe +
∑N

i=1
ξdn

1 (28) 

For the same distance between nodes 
∑N

i=1di = d,
∑N

i=1di in (15) has an optimised value if d1 = d2 = ⋯.dn = H/n.H is the 
deployment length. Then EN is then equal to 

EN = (2N − 1)λe + ξN1− ndn (29) 

Then (29) is the minimum when EN = 0. 
Since the distance di and traffic length is the same for all sensor nodes, the sensor nodes consume energy at the same rate. Hence, 

λ1 ≈ λ2 ≈ λ3 ≈ λN 
The radio parameters are given as λe=50nJ/bit, ξfs = 10pJ/bit/m2 E0 = 0.5J, ξmp = 0.0013pJ/bit/m4 and 16 bytes. If these values 

are inserted into (24a) and (24b), the energy consumed for transmission and reception of data for various distances used in the 
experiment was calculated. 

The ideal number of IoT S(≥ Smin, the transmission distance di, and the corresponding power level P(di), for each sensor node Si(i =
1,⋯.N) such that the energy consumption of the sensor nodes is equal or that the sensor nodes deplete their energy at the same rate 
(30). This must be determined to achieve the maximum lifetime of the sensor nodes. 

Finding Si and di that reduces the energy consumed by each sensor node is the goal. 

Min{λ1 ≈ λ2 ≈ λ3 ≈ λN (31a) 

Subject to 

di ≤ Rmax (31b)  

∑n

i=1
di ≥ H (31c)  

where the first condition (31b) identifies each node’s transmission limit and the second (31c) guarantees that the nodes can cover the 
infrastructure locations under consideration. 

In (31a), (31b), and (31c), we assume that the sensor nodes being examined have w distinct power levels, denoted by (Pi,Ri), (Pw,

Rw), where Pi is the power level at which sensor nodes communicate; Ri is the transmission range. The maximum transmission range is 
restricted to being (Rmax = Rw)the maximum transmission power level Pmax = Pw. Like this, the sensor nodes can broadcast data up to a 
range of Rmin = R1 at the minimal power level Pmin = P1. It could be deduced that PL decreases as the transmission power rises. Also, 
there is a relationship between PL and the square of the signal frequency transmitter–receiver distance. The PL affects the degree of 
received power. With less received power, this will mean more PL is evidenced. To increase the power level available at the node 
receiver, efforts are then made to minimise PL using high-gain IoT devices with lightweight routing optimisation. 

4. Experimental design and analysis 

4.1. Testbed setup 

In this section, a low-cost, and resource optimised TelosB IoT platform [45] with Raspberry Pi [46] is deployed. These are portable 
open-source hardware for various field experiments with test parameters [13]. As a deterministic testbed, the TelosB IoT platform is 
driven by the MSP430 CPU core and CC2420-ITU-T G.9903 instead of compatible RF interfaces. Similar experiments were described 
[46,47] but lacked PL Optimisation contributions. In both indoor and outdoor location settings, this study focused on the PL, and 
battery depletion efficiency of edge-to-CH data stream transmission-offloading. Since Raspberry Pi (RPI), is not G.9903 compatible by 
default, the TelosB USB port is connected directly to the RPI module as shown in Fig. 1. Keep in mind that the RPI has an ARM 
configuration, a quad-core CPU running at 1.2 GHz, a RAM size of 1GB, and a Linux OS. A Fog layer is used to store data streams from 
TelosB-based IoT devices in the Fog gateway. RPI offered a lightweight platform for TinyOS which supports the pass-through for Fog 
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over the Internet (FoI) and hence designated as the sink data logger in Fig. 3. It can also run an edge instance locally. 

4.2. System operating kernel 

As shown in Fig. 3, the TelosB device has 10Kbyte RAM with 48Kbyte flash memory. Hence, the OS for IoT devices has a minimal 
memory footprint. Due to these limitations, general-purpose OS is not supported by the TelosB platform. Therefore, the TelosB 
transceivers coupled to the RPI module are controlled by the IoT software platform called TinyOS [48]. 

4.3. Software framework integration 

NesC and Java are the two programming languages used to configure the CC2420 TelosB IoT nodes. The readings from the nodes 
were directly converted to values using NesC programs. The source codes were executed on TinyOS 2.x. For the MSP430 platform, 
TinyOS 2.x provides Java 1.5 cross-compilers and tools that are connected to TinyOS/NesC. The mote’s USB port was used to compile 
and load the TinyOS code. For the compilation procedures, four files were created: the Make file, the Header file, the Configuration file, 
and the module file. In the testbed experiment, the nodes are set up to send data every 5 s, and when the message is sent successfully, 
the radio is turned off to save power. Most conversions for the typical measurement data are also encoded into the nodes, and the 
software has their readings set to SI units. 

Following that, a Java graphic user interface was created and utilised for data collection in Fig. 5. The application shows the data as 
it is sent and presents a graphical representation of the relationships between the sensor nodes for voltage, temperature, light intensity, 
and humidity [47]. PL was derived from the received signal strength datasets. Options to save data, clear data, start monitoring, and 

Fig. 3. An experimental outdoor testbed for edge-Fog PL investigations.  

Fig. 4. TelosB Indoor Calibration with CH sink Injection.  
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stop monitoring are available on the graphical display. Data supplied every 5 s up to 2 min was saved and maintained. The work 
averaged the saved data, which included up to 1000 separate counts. The datasets for the listed parameters were obtained for six 
weeks, with daily readings from 6 am morning to 6 pm. 

With the node integration, the software composition largely adheres to the spine-leaf architecture highlighted in Fig. 2. Data stream 
dissemination is made possible by software components using the two primary communication protocols. The forwarding of trans
mitted data streams (TX) is achieved with the layer 3 Internet Protocol (IP V6) design between the edge-Fog layer and the RPI 
controller located powering the Internet. Meanwhile, ITU-T G.9903 sets up seamless communication between TelosB nodes trans
mitting the edge data streams (TXs) to the controller RPI. On the RPI, the TinyOS mines data locally while serving as the raw data 
gathering environment with TelosB nodes. The RPI data collection repository is shown in Fig. 4. Since the channel capacity of IEEE 
802.15.4 is not compatible, G.9903 is then explored. 

The edge-Fog TX is put together by the Fog container wallet, which is implemented as a TinyOS image. This collects PL data from 
the edge sensors. Security functions are used by the Fog container wallet engine to assemble the edge-Fog TX. The SHA3–256 [46] 
provides cryptographic digests, while SHA3–256 delivers 256-byte-long transaction signatures. Because SHA3–256 is a quick and 

Fig. 5. TelosB virtua machine JAVA GUI instance with no readings.  

Table 1 
Average outdoor environment PL for IoT TelosB nodes.  

Distance Avg. PL (dB) 
Node 1 

Avg. PL (dB) 
Node 2 

Avg. PL (dB) 
Node 3 

Avg. PL (dB) 
Node 4 

1 40.7 46.0 44.8 43.83 
5 61.4 64.1 62.3 62.60 
10 68.1 69.6 65.8 67.83 
15 82.4 75.9 74.7 77.67 
20 80.3 77.7 81.9 79.97 
25 77.6 88.5 81.3 82.47 
30 81.5 88.5 89.5 86.50 
35 88.7 89.2 84.7 87.53 
40 75.8 88.2 86.3 83.40 
45 82.3 91.8 85.5 86.53 
50 84.7 91.8 92.2 89.57 
55 78.8 88.8 89.3 85.63 
60 92.2 92.43 92.3 92.3  
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resource-conserving cryptographic primitive, its use is acceptable. Only one TelosB Sensor node at a time is used to send edge-Fog TXs 
on the testbed for this study which is powered by AA batteries (3.3v). Using channel 26 (2.4 GHz) and the TinyOS mac channel access 
mechanism, the TelosB device transmits data at a bandwidth of 250 kbit/s [46]. TelosB uses the CC2420 Transceiver chip, which 

Table 2 
Average experimental and predicted PL.  

Distance (m) Avg. Experimental PLm (dB) Avg. predicted PLp (dB) 

1 43.83 43.83 
5 62.60 61.96 
10 67.83 70.52 
15 77.67 75.32 
20 79.97 78.66 
25 82.47 81.34 
30 86.50 83.36 
35 87.53 85.15 
40 83.40 86.70 
45 86.53 88.06 
50 89.57 89.28 
55 85.63 90.39 
60 92.30 91.39  

Table 3 
Average measured and predicted PL.  

Distance (m) Avg. measured PL (dB) Avg. Predicted PL (dB) 

1 44.90 44.90 
2 56.53 52.94 
3 63.67 57.82 
4 61.50 61.28 
5 62.83 63.96 
6 64.73 66.15 
7 62.83 68.01  

Table 4 
Average indoor environment PL for IoT TelosB nodes.  

Distance Avg. PL (dB) 
Node 1 

Avg. PL (dB) Node 2 Mean PL (dB) Node 3 Mean PL (dB) 
Node 4 

1 44.6 52.0 38.1 44.90 
2 58.5 57.3 53.25 56.53 
3 74.1 60.4 56.5 63.67 
4 57.0 67.7 59.8 61.50 
5 68.5 57.7 62.3 62.83 
6 70.2 64.0 60.0 64.73 
7 57.3 72.5 58.7 62.83  

Table 5 
Average energy depletion cycles for IoT TelosB nodes.  

Distance Time 
(min) 

Battery voltage for IoT-PLC 
Node 1 

Battery voltage of IoT-PLC 
Node 2 

Battery voltage of IoT-PLC 
Node 3 

Ave. Battery voltage of IoT-PLC 
Node 4 

1 2 2.781 2.722 2.813 2.772 
5 4 2.779 2.720 2.810 2.770 
10 6 2.777 2.717 2.807 2.767 
15 8 2.775 2.716 2.805 2.765 
20 10 2.772 2.712 2.802 2.762 
25 12 2.771 2.712 2.801 2.761 
30 14 2.770 2.710 2.798 2.760 
35 16 2.764 2.706 2.793 2.754 
40 18 2.763 2.705 2.793 2.754 
45 20 2.762 2.704 2.792 2.753 
50 22 2.761 2.702 2.789 2.751 
55 24 2.756 2.700 2.783 2.746 
60 26 2.752 2.694 2.780 2.742  
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complies with 802.15.4 [46]. This configuration also sets the CC2420′s default transmission power to 0 dBm. Also, Line-of-Sight (LOS) 
and Non-Line of Sight (NLOS) are two experimental configurations that used indoor and out PL measurements respectively. Each edge 
node has a customisable ID with signed data packets. Also, each data size weighs 20 Bytes. If the expected ACK is absent, a packet is 
sent up to ten times again. 

The evaluation of the edge-Fog TX technique looked at the transmission performance based on the volume of traffic expressed in 
bytes and the number of packets delivered, including retransmissions. In the LOS scenario, the packet overhead, or the percentage of 
extra packets transmitted on top of data packets, is always around 100%, whereas greater packet values are observed in the NLOS 

Table 6 
Average energy depletion cycles for IoT TelosB nodes.  

Distance Time 
(min) 

IoT-PLC Node 1 Depletion 
Rate 

IoT-PLC Node 2 Depletion 
Rate 

IoT-PLC Node 3 Depletion 
Rate 

IoT-PLC Node 4 Depletion 
Rate 

1 2 0 0 0 0 
5 4 0.002 0.002 0.003 0.002 
10 6 0.004 0.005 0.006 0.005 
15 8 0.006 0.006 0.008 0.007 
20 10 0.009 0.010 0.010 0.010 
25 12 0.010 0.010 0.011 0.011 
30 14 0.011 0.012 0.014 0.012 
35 16 0.017 0.016 0.019 0.018 
40 18 0.018 0.017 0.019 0.018 
45 20 0.019 0.018 0.020 0.019 
50 22 0.020 0.020 0.023 0.021 
55 24 0.025 0.022 0.029 0.026 
60 26 0.029 0.028 0.032 0.030  

Fig. 6. TelosB virtua machine TinyOS instance (Upstate).  
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situation owing to retransmissions. The result of ACK messages verifying each packet sent is this significant packet overhead. The 
TelosB-RPI platform may function for roughly 10 years if the deep inactive current is less than 0A, has two AA batteries with 
1,200mWh each; and wakes up once/day for measurements. A traffic volume that is around 10 times the size of the data block is seen 
when a TX is made up entirely of payloads. 

We observed that energy efficiency rises when more data streams are contained within a single TX, per energy usage measurements. 
This overhead is added by TinyOS because of the costly calculations needed. Therefore, it is desirable to send multiple data streams; 
each signed with a TelosB signature. Since the node uses less energy, this platform’s energy efficiency is slightly lower than the results 
reported in [47]. 

5. Result analysis 

In this section, the results from the edge network PL studies and lightweight routing validations are presented. The relevance of this 
section is to enable the construction of reliable IoT PLC edge networks. This is by understanding the impact energy drain of a wave 
propagating between the transmitter and the receiver, under the routing scheme. 

5.1. Path loss mitigation analysis 

The theoretical models in Section In Table 1, the TelosB node characterisation of the outdoor empirical measurement environment 
was determined using (1). The transmitted power was set at 0 dBm while the received power was measured at various distances from 
10 to 60 m at intervals of 10 m. The calculated average PL in the outdoor setting is shown in Table 1. 

Under multi-hub routing, numerous factors, including free-space loss, refraction, diffraction, reflection, aperture-medium coupling 
loss, and absorption, contributed to PL experienced in Figs. 8, 9, and 10. Along with topographical contours, environment (e.g., urban/ 
rural, vegetation, and foliage), propagation medium (dry or moist air), the distance between transmitter and receiver, and antenna 
height and placement, PL was influenced by these factors too. However, the PL estimation is better compared with [49], and [50] in 
free space using the deterministic approach. The proposed technique relies on the correct and thorough description of every item in the 
propagation space, including buildings, roofs, windows, doors, and walls, and is predicted to yield more accurate and trustworthy 
forecasts of the PL than the empirical techniques as shown in Fig. 9. This observation will be useful for short propagation paths in 
connected vehicular models because of the above factors. Tables 2 and 3 shows the mean experimental and predicted PL values ob
tained while Table 4 shows the indoor PL measurements in this study. 

Fig. 7. TelosB virtual machine JAVA GUI instance with readings.  
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5.2. Energy depletion analysis 

The First-order radio energy dissipation model was explored in [49] and later used in other research to investigate the energy 
consumption pattern. E91-AA alkaline battery model and its operational characteristics were used to estimate the transceivers’ battery 
life. The receiver uses energy to power the radio electronics, while the transmitter uses energy to run the radio electronics and power 
amplifier as shown in Table 5 and Table 6 respectively. Energy depletion cycles are shown in Table 6 which highlights significant 
energy drain during active states. 

5.3. Frequency comparison with mmWave IoT-PLC devices 

From Fig. 12, ignoring the directional antenna gain implies that mmWave IoT-PLC device experience more severe PL than con
ventional Wi-Fi access point devices. IoT-PLC beamforming and directional antennas have been shown to have significantly lower PL 
than comparable Wi-Fi devices for short distances, though this is only true for omnidirectional antennas [48,51]. These facts indicate 
that the IoT-PLC nodes that use Wi-Fi frequencies are tended to transmit messages to farther nodes, which results in more propagation 
loss (and a greater likelihood of message errors and a reduction in delivery ratio), while the IoT-PLC nodes using mmwave is tended to 
transmit messages to closer nodes and with narrow beams and high directional gains, which results in less propagation loss. 

Finally, additional effort is introduced to verify edge network scenarios and compare these scenarios. The idea is to see whether the 
proposed routing protocol in SPLCN performs better when utilising mmwave than when using the sub-6 GHz band. 

5.4. Optimisation evaluation 

In this subsection, a highly provisioned closed-loop method was adopted for data collection from the IoT network in the study areas. 
When deploying the optimisation algorithm for the network system, observations were recorded on a log file using the TelosB 
application developed in Section V-C. This was installed on the Corei3, 2.4 GHz, 8 G laptop. The NodeID is used to initiate different 
network data transmissions with testbed integration. The recorded data on the TelosB log files are later processed with excel CSV for 
further analysis. LMRP optimisation algorithm was then employed to enhance the developed PL model for better performance. The PL 
test routes and measured data for locations L1, L2, and L3 are shown in Tables 4 and 5, respectively. 

Fig. 8. PL prediction with live nodes (L1).  
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Fig. 9. PL prediction Vs experimental with live nodes.  

Fig. 10. PL prediction with Live Nodes (L2).  
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Using the scenarios described in Tables 3 and 4 for PL optimisation estimations, this article explored the case of one Genetic al
gorithm described in [30,50] and particle optimisation [32,34]. The PL is characterised by the dispatched IoT nodes, but the objective 
is to evaluate the Optimisation impact and how it could reduce losses at the edge. This is useful for Fog devices in Fig. 2 during active 
routing operation. We assume that all the IoT Nodes within these locations are served by only one cluster head like LoRaWAN or any 
other LP-WAN infrastructure [36]. Each node connects the sinking facility as shown in Fig. 1. We assume the SPLCN just like the 
LoRaWAN network is stable. The datasets are generated uniformly distributed random variables using the MATLAB tool. The opti
misation schemes are evaluated with results summarised in Table 8. 

Fig. 11. Energy optimisation with live nodes (L2).  

Fig. 12. PL frequency comparison.  
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Fig. 13. PL optimisation validation with live nodes (L1).  

Fig. 14. PL optimisation validation with live nodes (L2).  
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So far, a prototype edge communication network testbed based on the limited IoT MSP430 platform is discussed. It runs in an 
indoor setting using TelosB ITU-T G.9903 API interfaces. Fragmentation and reassembly are active at run time on the network since the 
maximum translation unit (MTU) for ITU-T G.9903 alongside IPv6 MTU is enabled at run time. This IoT environment incorporates PL 
network infrastructure capabilities. Edge-to-Fog datastream delivery and lightweight overhead were determined to be at a reasonable 
level using Algorithm 2. The shortest path communication during routing is achieved with Algorithm 1. In contrast to the previous 
work [47], the ITU-T G.9903 MTU permits a lower PL transmission fragmentation than in GA [30,50] and PSO networks [32,34], while 
the IEEE 802.15.4 network does not need fragmenting the signature [50]. However, TelosB’s lightweight energy consumption is 
significantly lower than the energy consumption in most open-source hardware discussed [46,47,53]. This allows for longer active 
operational deployments even in production environments. It is important to note that the energy depletion rates during PL traffic (i.e., 

Fig. 15. PL optimisation validation with live nodes (L3).  

Fig. 16. : Edge-to-fog throughput comparison with node increments.  
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signal data steam) propagation remain at a low level while PL incidents under lightweight optimisation remain equally lower than 
other schemes. Since the software structures used are flexible and modular, the system is still up for enhancement in an ongoing 
container platform for driverless or connected vehicular computing. With GA, PSO, and the proposed scheme, optimal PL for L1, L2, 
and L3 are shown in Figs. 13, 14, and 15 respectively. 

At the network planning level, PL is a crucial factor in determining the quality of service (QoS) for RPL edge communication. The 
reason for the reduced PL from Table 8 is that we decreased the absorption losses at the deployment sights while guaranteeing 
minimum diffraction at the edge layers, which caused the PL to decrease. To prevent RF attenuation, the topography, buildings, and 
plants were all heavily managed during the routing of sensed payloads. 

6. Experimental validations 

6.1. Comparative analysis 

In this section, the validation of the lightweight scheme for k-shortest path multi-hop routing from the edge to the sink location is 
presented. In context, clustered slave nodes (N = 1000, SN1, SN2,…, SNn-1) were built from Riverbed C++ API library. This validation 
used a simple master-slave network topology to assess the developed routing plan given PL incidents. The requirement for the sensing 
edge layer to collect data with IoT formed a PL case study. A real-time data stream is transmitted while ensuring active and reliable 
data stream events. The setup is provisioned for end-to-end latency and data stream offloading between nodes. The use of edge 
application layer protocols in various use cases is to allow for network and application layer investigations. This is optimal for end-to- 
end throughput and is equally needed to dynamically accelerate PL convergence. IoT lightweight protocols improve reliable real-time 
communications. Since the LMRP addresses routing reliability even under ITU-T G.9903 policy, we then compared the performance 
with earlier reviewed lightweight schemes including CoAP [20], MQTT [21], AMQP [22], XMPP [23] and RESTful-API [24]. In this 
case, to determine the impact of the proposed LMRP, an application layer comparison is made considering minimal PL incidents. The 
validation study considered data stream latency, end-to-end reliability, and computational complexity. The edge communication 
network is then tested for distributed lightweight routing decisions. For simplicity, the proposed lightweight resource allocation policy 

Fig. 17. Edge-to-fog latency provisioning with node increments.  
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is verified with the network nodes accommodated at the edge clusters in subnets. To make it easier to route sensed data to the sink, we 
spaced the sensor nodes 20 m apart and added a cluster head (CH) every 40 m. A bandwidth of 200 Mbit/s to 1.5Gbit/s, 50 ms max 
latency, and 200 m max transmission distance is enabled. Initially, each upstream node generates sensed data using the proposed 
LMRP technique. This sends the information to the subsequent cluster head, which then passes it to a sink. Each sensor transmits a 
maximum of 1500 datastream (or translation units) to the CH in a multi-fashion manner. The selected metrics are discussed below. 

6.2. Throughput dynamics 

After parameter configurations with G.9903, the throughput model based on CQARPL [18] is used to validate the LMRP method 
considering the edge-to-Fog PLC network. In this case, similar lightweight algorithms such as REST, CoAP, and MQTT were compared 
with the proposed scheme. The idea is to enhance edge computing dependability in a production IoT-PLC deployment. Recall that the 
application layer is the interface between edge nodes and the Fog network communication. It manages datastream presentation, and 
formatting and acts as a link between what a node is doing and how the data it generates is transferred across a network. It is shown 
that the datastream throughput from the edge cluster to the application layer is consistent and optimal at 43.47% as detailed in Table 9. 
This implies that the routing capabilities for IoT-enabled services are fully optimised, unlike REST, CoAP, and MQTT which had 8.70%, 
26.09%, and 21.74% respectively. Another way of looking at Fig. 16 is that it demonstrates the impact of varied edge-node density in 
the context of network permeability. Even though the throughput increases as the number of nodes do, yet the results reveal that LMRP 
performed better with additional nodes. This illustrates that the proposed scheme had greater success with improved QoS routing 
capacity. 

Fig. 18. Edge-to-fog reliability overhead with node increments.  
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6.3. Delay provisioning (Latency phase) 

The delay in the raising phase seen in Fig. 17 is because of the payload overhead which introduces inherent propagation 
convergence latency before the transmission upstream phase. This study reveals convergence time through network latency whenever 
a new node is added or removed. This converges within a few seconds due to the lightweight routing provisioning at the edge. If a node 
is re-established or loses connectivity, it must converge within 0.2 s which is better than RPL [1], CQARPL [18], and CLRPL [54]. Also, 

Fig. 19. Edge-to-fog computational complexity function comparisons.  

Table 6a 
Optimisation transmission parameters.  

Transmission Parameters 

Carrier Frequency 2.4 GHz 
Data rates 250 kbps 
Antenna Integration Onboard 
Battery Model 2X AA batteries 
Sensors Visible light, Humidity, Temperature, Resolution, RSSI, Link indicator, 
Transmission Power 43 dBm 
Transmitter height 60 m 
Transmitter Gain 2.0 dBi 
Receiver Gain 1.8 dBi 
RF Power − 24 dBm to 0 dBm 
Receive Sensitivity − 90 to − 94 dBm 
Outdoor range 75 to 100 m 
Indoor range 20 to 30 m 
Multi-path propagation OFDM  
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if no nodes have dropped in its subnet location, the convergence becomes much smaller < 0.2 s. This leads to lower CPU and memory 
utilisation cycles when considering computational complexity. Therefore, end-to-end latency is used to validate the convergence time 
for data stream propagation considering CoAP, MQTT, AMQP, XMPP, and REST via node synchronous request-response in Table 10. 

Table 7 
IoT test locations.  

(Locations) Area in FUTO zone 

L1 Sonic fast food 
L2 Old SEET block 
L3 SEET complex  

Table 8 
Optimisation results for live site experiments.  

(Locations) Optimisation Schemes Average indicator (%) 

L1 GA 
PSO 
Proposed LMRP 

33.98 
33.25 
32.77 

L2 GA 
PSO 
Proposed LMRP 

33.81 
33.57 
32.62 

L3 GA 
PSO 
Proposed LMRP 

33.65 
33.41 
32.94  

Table 9 
Result summary of edge network throughput metric.  

Lightweight IoT Schemes Throughput (Bytes/sec) 

REST [24] 8.70% 
CoAP [20] 26.90% 
MQTT [21] 21.74% 
Proposed LMRP 43.47%  

Table 10 
Result summary of edge network latency metric.  

Routing Schemes Latency Profile (Secs) 

CoAP [20] 19.74% 
AMQP [22] 21.37% 
REST [24] 22.51% 
MQTT [21] 13.05% 
XAMPP [23] 20.06% 
Proposed LMRP 3.04%  

Table 11 
Result summary of edge network reliability.  

Routing Schemes Reliability 

CoAP [20] 37.04% 
MQTT [21] 46.29% 
Proposed LMRP 16.67%  

Table 12 
Result summary of computational complexity metric.  

Routing Schemes Computational Complexity 

RPL [1] 41.07% 
CQARPL [54] 50.00% 
Proposed LMRP 8.93%  
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Because increasing the datastream traffic rate leads to channel congestion, this directly affects edge network traffic. Nonetheless, 
LMRP experiences less latency (at least 3.04%) than the other protocols as the traffic rate rises. This suggests better LMRP performance 
with more data stream traffic and optimal PL. This could be used to forecast impulsive congestion and direct traffic along the shortest 
least-congested routes. 

From Fig. 18, the minimum overhead with lightweight routing under impulsive noise is 16.67% compared with similar lightweight 
protocols like CoAP and MQTT having 37.04% and 46.29% respectively in Table 11. Every IoT-PLC node is linked to the edge grid 
network with inherent impulsive noise. With Middleton’s class A model [54], and LMRP optimisation strategy, the noise is reduced by 
at least 16.67%. As shown in the plot, the dropping of the peak noise spikes is useful. The Middleton’s class A median filter reduces 
remove impulse noise. Hence, the proposed scheme equally serves as an impulse noise filter. This improves the robustness of the edge 
network channel. A practical application is in adaptive control and IoT pattern recognition systems. 

For the established edge communication network to maintain stability, dynamic reliability is needed to make both node integration 
and routing possible. Network adjacencies must use the RPL to harvest link states in nearby nodes. Each full-duplex path in the edge 
network must avoid routing loops. The implication of the SPLCN architecture under the proposed routing scheme is that transactional 
provisioning of the datastream workload is guaranteed. 

6.4. Computational complexity 

Fig. 19 shows the computational complexity of a recurrence linear search algorithm T(N) = T(N − 1) + 0(1) = O(N). The Big-O is 
active when considering the failure density rate/stability at the edge cluster. MCFP optimisation technique in Section III-C alongside 
the node distributed control is very significant and makes the LMRP algorithm I and II attractive under ITU-T G.9903. It can support 
enterprise-scaled deployments compared to existing lightweight algorithms. It is shown that with an autoscaling algorithm in edge-to- 

Algorithm 1 
Lightweight connection K − shortest path algorithm.  
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Fog layered orchestration (as depicted in Algorithm I). The performance response for the proposed scheme (LMRP), generic RPL [1], 
and CQARPL [18] are 8.98%, 41.07%, and 50.0%, respectively, in Table 12. This result shows that minimum time-space complexity is 
favourable for LMRP in terms of read-read input datasets. 

With lower computational complexity, this will reinforce the confidence of the layered optimisation supports even under other edge 

Algorithm 2 
Lightweight connection-orientated policy.  
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resources like the smart power pool for IoT-PLC edge nodes. Again, the usefulness of the MCFP formulation is that the edge clusters 
gain more stability leading to better performance. Finally, the lightweight link-design for edge networks enhances the overall per
formance of the SPLCN architecture. Computational offloading in SPLCN solves latency problems during routing and optimises PL. 
Uniform workload distribution at the edge-to-Fog layers compensates for cascaded subnet clusters at the edge. This notwithstanding, 
more efforts are needed to consolidate access control such as [56,57]. 

7. Conclusion 

In this article, a layered full-duplex IoT-PLC edge network architecture is proposed for supporting lightweight Multi-hop RPL. For 
edge devices connected to the network, we showed the deployment distribution as a directed graph and highlighted the minimum cost 
flow problem formulation (MCFPF). Algorithms for the shortest path and lightweight connection policy are presented. Practical path 
loss and radio energy models were derived and demonstrated to illustrate edge network deployment context. Path loss mitigation and 
energy depletion of classical TelosB nodes further presented edge computing characteristics. With the proposed LMRP scheme, better 
PL and routing optimisation responses are achieved. Similarly, when subjected to ITU-T G.9903, LMRP performed better than RESTful 
API, CoAP, MQTT, XMPP, and AMQP on four (4) major metrics related to IoT-PLC applications. The application of lightweight pro
tocols can be used to reduce complex channel traffic density and enhance the lifespan of IoT-PLC setups. The proposed algorithm can 
be applied to minimise computational overhead on connection-orientated edge interfaces such as smart grids and driverless cars. 
However, the proposed method did not consider other complex edge computing network features and parameters. Future work will 
improve the proposed lightweight method and deploy it in containerised driverless cars as a use case. Also, edge analytics using 
lightweight spike neural network data stream processing will be addressed. 

Figs. 6, 7, 11-15 and Tables 6a and 7 
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