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Figure | — A comparative model of procedural programming Figure 2 — A systematic, multi-modal model of interpretive content analysis
and machine learning. collective set. for application of deep learning for complex qualitative data sets.
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New Methods of Content Analysis and Experimental Findings
|. Literal Data Modelling 2. Observational Data Modelling

Lexicographical analysis and linear regression are applied to high- Word pairs are semantically grouped and modelled to find
level data from the sample (such as seminar titles) and used to aggregate trends across the samples using recursive
identify localised patterns within the data set. analysis.
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Figure 4 — A recursive model is used to identify initial trends over aggregate data.
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Tip: Compile a lexicography filtering out stop words and then compile one

which retains them, analysing both.

Character
Plaver
ol

Your Game

Direction
Cluir

Frogrammer

MM M M =2 M =] =] =] O
[

A o | of f o > A » »
= m] =] =] A DA A LM
(| L 5 T e e B | 1
U T T et T [ I Y = o R o I e R N

kA | F F F F F F P
(A R R R L R R

N A M M @ d = = =l

-]
1
-2
tn

Social Lewel

Phrase Accumulator Stop words lack semantic meaning when analysed in isolation, but add details to
word pairs. E.g. “Your game’ is prescriptive, but ‘our game’ is reflective.

Figure 3 — A word-pairing algorithm combined with natural language processing is used 4 Meta-factor Data SOU rce Mode|||ng

to model key trends and factors at a high-level from the data set.
Observations data-mined from the data source offers rich

details to facilitate multiple-linear regression to identify trends,
Deep learning is applied to the full content of each qualitative while maintaining power of the experiment as the sample size
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Figure 6 — The corpus-based semantic model is cross-referenced against meta-data

Figure 5 — A corpus-based semantic model is trained to recognise aggregated trends. from the source to find deeper trends from the aggregate data.
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