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A B S T R A C T   

An interoception model for the acute exercise-cognition interaction is presented. During exercise following the 
norepinephrine threshold, interoceptive feedback induces increased tonic release of extracellular catechol
amines, facilitating phasic release hence better cognitive performance of executive functions. When exercise 
intensity increases to maximum, the nature of task-induced norepinephrine release from the locus coeruleus is 
dependent on interaction between motivation, perceived effort costs and perceived availability of resources. This 
is controlled by interaction between the rostral and dorsolateral prefrontal cortices, orbitofrontal cortex, anterior 
cingulate cortex and anterior insula cortex. If perceived available resources are sufficient to meet predicted effort 
costs and reward value is high, tonic release from the locus coeruleus is attenuated thus facilitating phasic 
release, therefore cognition is not inhibited. However, if perceived available resources are insufficient to meet 
predicted effort costs or reward value is low, tonic release from the locus coeruleus is induced, attenuating phasic 
release. As a result, cognition is inhibited, although long-term memory and tasks that require switching to new 
stimuli-response couplings are probably facilitated.   

1. Introduction 

Although early research into the acute exercise-cognition interaction 
was atheoretical (see McMorris, 2016a, for a review), Davey (1973) 
found that moderate intensity exercise induced better performance than 
that at rest and during vigorous exercise, which did not differ from one 
another. This led Cooper (1973) to hypothesize that exercise affects 
arousal levels in the same way as other stressors and induces an 
inverted-U effect on performance, as had been demonstrated by Yerkes 
and Dodson (1908) in mice. Soon, models of stress and performance, 
such as Kahneman’s (1973) Allocation of Resources Theory and Sanders’ 
(1983) cognitive-energetic theory, gained popularity as rationales for 
acute exercise-cognition interaction research (see Audiffren, 2009, for 
an excellent review). At the same time, the roles of the catecholamines, 
dopamine, norepinephrine and epinephrine, in arousal and stress were 
being examined in animals (Gordon et al., 1966; Reis and Fuxe, 1968, 
1969). Therefore, Cooper (1973) proffered the catecholamines hypoth
esis for an acute exercise-cognition interaction effect. Since then, 
Chmura et al. (1994), and my colleagues and I (McMorris, 2009, 2016b; 
McMorris et al., 2016) have elaborated on this hypothesis. However, 
while empirical support for the hypothesis is sound for the effects of 

moderate intensity exercise, it is very weak with regard to the effects of 
higher intensities of exercise. 

Narrative reviews (Best, 2010; McMorris, 2016b; Tomporowski, 
2003) and meta-analyses (Chang et al., 2012; Lambourne and Tom
porowski, 2010; McMorris and Hale, 2012) have found only limited 
evidence for an inverted-U effect. More recent empirical research into 
the inverted-U effect fails to clarify the picture, with somewhat equiv
ocal results being demonstrated (Chang et al., 2019; Ligeza et al., 2018; 
Smith et al., 2016). Although the inverted-U effect has limited support, 
the reviews provide strong evidence for an improvement in cognitive 
performance from rest to moderate intensity exercise, The findings of 
studies carried out since these reviews have generally provided more 
equivocal results with some showing facilitation during and after 
moderate intensity exercise (Bae and Masaki, 2019; Chang et al., 2019; 
González-Fernández et al., 2017; Hsieh et al., 2018; Kujach et al., 2018; 
Labban and Etnier, 2018; Wu et al., 2019) but not others (Chacko et al., 
2019; Hill et al., 2019; Lefferts et al., 2019; Winneke et al., 2019). 
Overall, however, there remains strong support for the conclusion that 
moderate intensity exercise facilitates performance. This is especially so 
for studies where the catecholamines thresholds or the ventilatory 
threshold were used as the criteria for determining what constitutes 

* 63 Four Winds Court, Hartlepool TS26 0LP, United Kingdom. 
E-mail address: t.mcmorris@chi.ac.uk.  

Contents lists available at ScienceDirect 

International Journal of Psychophysiology 

journal homepage: www.elsevier.com/locate/ijpsycho 

https://doi.org/10.1016/j.ijpsycho.2021.10.005 
Received 25 May 2021; Received in revised form 6 September 2021; Accepted 11 October 2021   

mailto:t.mcmorris@chi.ac.uk
www.sciencedirect.com/science/journal/01678760
https://www.elsevier.com/locate/ijpsycho
https://doi.org/10.1016/j.ijpsycho.2021.10.005
https://doi.org/10.1016/j.ijpsycho.2021.10.005
https://doi.org/10.1016/j.ijpsycho.2021.10.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpsycho.2021.10.005&domain=pdf


International Journal of Psychophysiology 170 (2021) 75–88

76

moderate intensity (McMorris and Hale, 2015). 
Before going any further, it is important to note that the outline of 

the reviews, reported above, ignores a number of issues with the timing 
of the cognitive tasks. Undertaking a cognitive task at rest is not the 
same as doing it while simultaneously exercising, which is a dual task. 
Lambourne and Tomporowski (2010) demonstrated higher effect sizes 
when cognition was measured post-exercise rather than during exercise. 
However, Chang et al. (2012) showed that effect sizes were very similar 
when testing took place during, immediately following and after an 
extended interval. Neither set of authors carried out statistical analyses 
between the moderators. McMorris and Hale (2012) did undertake 
statistical analyses and found no significant differences in effect sizes 
obtained during compared to following exercise. Furthermore, Joyce 
et al. (2009) demonstrated statistically significant effects, even when 
testing took place 50 mins after exercise. This is not surprising as, 
although the half-life of catecholamines in the periphery is <2 min. 
(Peaston and Weinkove, 2004), in the brain it is in the range of 8–12 h 
(Eisenhofer et al., 2004). However, this does not mean that the processes 
are not different, a point which is made in the proposed model. More
over, the model presents a rationale for a lack of differences in the results 
despite the processes differing. 

While we can say with some confidence that there is a positive effect 
of moderate intensity exercise, of short to moderate duration, on 
cognition, the situation is less clear with high intensities of exercise. 
McMorris (2016b) found that results for exercise > 80% maximum 
volume of oxygen uptake (V̇O2MAX) or equivalents (see Arts and Kuipers, 
1994, for determining equivalents), were equivocal except for autono
mous tasks, which demonstrated a positive effect. Bergstrom et al. 
(2013) classified this exercise intensity as being “severe” (p. 233). Long- 
term memory (LTM) tasks also showed unequivocal positive effects 
following severe exercise but there were only two studies (Griffin et al., 
2011; Winter et al., 2007). Research carried out since the McMorris 
(2016b) review fails to clarify the position, with facilitation shown by 
some (Finkenzeller et al., 2018; Hashimoto et al., 2018; Wohlwend et al., 
2017), non-significance by others (Bediz et al., 2016; Finkenzeller et al., 
2018; Hashimoto et al., 2018; Sudo et al., 2017). While Tempest et al. 
(2017) demonstrated facilitation of speed of response but inhibition of 
accuracy. 

The evidence outlined above undoubtedly casts doubt on the efficacy 
of the catecholamines hypothesis, certainly with regard to severe exer
cise. Moreover, theories of central fatigue (Marcora, 2009; McMorris 
et al., 2018a; Noakes et al., 2004) and the effect of mental fatigue on 
subsequent exercise (see Brown et al., 2020; McMorris et al., 2018b; Van 
Cutsem et al., 2017, for reviews) introduce factors which have not been 
applied to acute exercise-catecholamines-cognition interaction research 
but which may help to explain the equivocal data. In particular, the role 
of interoceptive feedback in these effects (Hilty et al., 2011; McMorris 
et al., 2018a; Robertson and Marino, 2016) would appear to apply to the 
the acute exercise-cognition interaction. Modern interpretations of 
interoception (Craig, 2002, 2015; Damasio, 1994) especially lead one to 
consider psychological factors such as motivation and its interaction 
with perception of effort costs (see Aston-Jones and Cohen, 2005). 
Therefore, in this article an interoception model to explain how acute 
exercise affects cognition is presented. In this model, it is suggested that 
the positive effects of moderate intensity exercise depend on exercise- 
induced release of norepinephrine from the locus coeruleus, and sub
sequent release of dopamine from the ventral tegmental area and sub
stantia nigra pars compacta increasing extracellular catecholamines in 
brain regions responsible for cognition. This is consistent with the cat
echolamines hypothesis. However, it is proposed that when exercise 
intensity increases to that inducing central fatigue, tonic locus 
coeruleus-norepinephrine release is increased, which affects the task- 
induced phasic norepinephrine release, thus modulating performance 
of tasks requiring responses to salient stimuli. These effects are depen
dent on interactions between motivation, perceived effort costs and 
perceived availability of resources. This is controlled by 

interconnections between the rostral prefrontal cortex, dorsolateral 
prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex and 
anterior insula cortex (Aston-Jones et al., 2000; Craig, 2002). 

In order to present the rationale for the model, firstly, the cate
cholamines hypothesis is outlined, particularly the mechanisms 
involved. This is followed by discussion of the weaknesses of the hy
pothesis, particularly with respect to effects of severe exercise. In section 
3, an interoception model is introduced, followed, in section 4, by an 
overview of the model and suggestions for methods to test it. 

2. Catecholamines hypothesis for an acute exercise-cognition 
interaction 

The development of the catecholamines hypothesis from Cooper’s 
(1973) original study until recently, has been covered previously 
(McMorris, 2016b; McMorris et al., 2016), therefore in this section, an 
outline of the hypothesis, as it currently stands, will be presented. Cat
echolamines act as neuromodulators in the brain regions responsible for 
cognition, motor control, emotion and perception (Gnegy, 2012). 
Dopamine is synthesized and released from the ventral tegmental area. 
Projections from the ventral tegmental area form the mesocorticolimbic 
pathway, which serves the frontal cortex, insula cortex and the nucleus 
accumbens in the basal ganglia. Dopamine is also synthesized and 
released from the substantia nigra pars compacta and forms the 
nigrostriatal pathway, which projects to the caudate nucleus and puta
men of the corpus striatum, which is also part of the basal ganglia (Hosp 
et al., 2019). Norepinephrine neurons are mainly found in the locus 
coeruleus and lateral tegmental field. Cell bodies in the locus coeruleus 
serve the dorsal bundle of the noradrenergic system and have axons 
ending in the spinal cord, cerebellum, entire cerebral cortex and hip
pocampus. Neurons in the lateral tegmental field are part of the ventral 
bundle and serve the brainstem and hypothalamus (Baker et al., 1989; 
Samuels and Szabadi, 2008). The epinephrine cell bodies, which are 
found in the pons and medulla, also serve the brainstem and hypothal
amus (Halliday et al., 1988). 

During low levels of arousal, as during rest or very light exercise, 
release of dopamine and norepinephrine is slow and tonic. Animal 
studies have shown that when tonic release is slow, phasic release is 
attenuated (Grace and Bunney, 1983). Slow tonic release is indicative of 
low arousal and poor attention/vigilance, while phasic release is 
necessary for activation by salient and novel stimuli (Rajkowski et al., 
1994). Thus, cognitive performance is weak. During moderate intensity 
exercise, feedback from the afferent interoceptive system and somato
sensory cortex project to the ventral medial nucleus of the thalamus, 
which contains concentrations of A1 and A2 noradrenergic cells that 
connect directly and indirectly, via the hypothalamus, to the locus 
coeruleus. This results in elevated tonic release rates, which increases 
extracellular and extrasynaptic norepinephrine concentrations (Hollo
way et al., 2013; Rinaman, 2011). Moderate tonic release facilitates 
phasic release when salient or novel stimuli are presented (Belujon and 
Grace, 2015). Moreover, norepinephrine tonic stimulation of post
synaptic α1-adrenoceptors, released from the locus coeruleus, potenti
ates the firing of dopamine neurons in the ventral tegmental area 
(Grenhoff et al., 1993). 

In the prefrontal cortex, animal studies have shown that during 
moderate stress, such as moderate intensity exercise, working memory 
tasks are facilitated by increased activation of the high affinity α2A- 
adrenoreceptors and dopaminergic D1-receptors. The high affinity 
D1-receptors are coupled to Gs and Golf guanosine triphosphate (GTP)- 
binding proteins and stimulate cyclic adenosine monophosphate (cAMP) 
activation, which amplifies the effects of neuronal activity and dampens 
neural ‘noise’ by increasing γ-aminobutyric acid (GABA) interneuron 
release, which inhibits firing to non-preferred stimuli (Arnsten, 2009, 
2011; Gorelova et al., 2002). Similarly, when norepinephrine concen
trations are moderate, the high affinity α2A-adrenoceptors are activated. 
These are coupled to Gi/Go proteins, activation of which inhibits adenyl 
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cyclase activity and closes hyperpolarization-activated cyclic 
nucleotide-gated channels, which increases the strength of neural 
signaling in the preferred direction, i.e. enhances the strength of the 
signal (Wang et al., 2007). Hence D1-receptors and α2A-adrenoceptors 
working together strengthen the signal to noise ratio. 

As exercise intensity increases towards central fatigue, tonic release 
of locus coeruleus-norepinephrine increases and becomes faster, which 
attenuates phasic firing (Aston-Jones et al., 2000). The extent to which 
phasic firing is attenuated depends on the intensity of the tonic release. 
Observation of the data for the effect of acute exercise on cognition 
suggests that even during severe exercise, salient stimuli still activate 
phasic release but less consistently than during moderate intensity ex
ercise. So, performance is diminished but not totally inhibited. Indeed, 
McMorris et al. (2005b) demonstrated increased variability of responses, 
as measured by the standard deviation of individual participants’ mean 
reaction times, during maximal intensity exercise compared to that 
during low intensity and moderate intensity exercise. However, actual 
mean reaction times did not differ significantly between conditions. This 
supports the notion that high levels of tonic release will induce more 
interference of phasic release but not eliminate it. Moreover, high 
extracellular concentrations of norepinephrine activate the lower af
finity α1- and β-adrenoceptors in the prefrontal cortex. α1-adrenoceptors 
are coupled to Gq/G11 proteins, which activate phospholipase C, causing 
increased Ca+ release. which inhibits intracellular signaling, thus 
dampening neuronal activity. β-adrenoceptors are coupled with GS 
proteins, which increase cAMP activity also resulting in the activation of 
protein kinase A and the dampening of neuronal activity. Similarly, 
increased tonic release of dopamine dampens neuronal activity due to 
further activation of D1-receptors. This would mean that the efficiency of 
the prefrontal cortex is greatly diminished (Arnsten, 2009, 2011). 
However, fast tonic activation is thought to have a positive effect on 
some forms of cognition, especially learning/LTM tasks (Aston-Jones 
and Cohen, 2005). 

2.1. Issues with the catecholamines hypothesis 

2.1.1. Does exercise need to be above the catecholamines thresholds before 
it affects cognition? 

Although research shows strong support for moderate intensity ex
ercise facilitating cognitive performance, which is consistent with the 
catecholamines hypothesis, there is an issue with whether the exercise 
needs to be above the catecholamines thresholds. Chmura et al. (1994) 
presented evidence to show that exercise needed to reach the norepi
nephrine and epinephrine thresholds, the points at which peripheral 
plasma concentrations of norepinephrine and epinephrine begin an 
exponential rise (Green et al., 1983), before cognition demonstrated an 
improvement from rest. McMorris et al. (1999) supported this finding. 
Since then, others have shown improvements in cognition at the venti
latory threshold (Collardeau et al., 2001; Davranche and McMorris, 
2009; Hyodo et al., 2012), the point at which ventilatory carbon dioxide 
shows a greater increase than ventilatory oxygen (Beaver et al., 1985). 
While Kashihara and Nakahara (2005) demonstrated facilitation at the 
lactate threshold, the point at which blood lactate concentrations show 
an exponential rise. The thresholds are highly related to one another 
(Dean et al., 2003; Mazzeo and Marshall, 1989; Schneider et al., 2000; 
Yamamoto et al., 1992). Overall, it would appear that the thresholds are 
valid biomarkers for improved cognition. Sub-threshold, there may be 
small positive effects probably due to interaction between catechol
amines effects and motivation, a process explained in the interoception 
model. 

It should also be noted that intensity is not the only factor with re
gard to exercise effects on locus coeruleus-norepinephrine release. 
Hodgetts et al. (1991) found that even an exercise intensity as low as 
30% V̇O2MAX would demonstrate an exponential increase in plasma 
norepinephrine and epinephrine if the duration was >30 mins. So, it is 
essential to note that in this article, moderate intensity exercise means 

moderate intensity of short to moderate duration (10-20 mins). 

2.1.2. Moderate intensity exercise, and tonic and phasic norepinephrine 
release effects on cognition 

There is limited direct evidence to show the effects of the interaction 
between tonic and phasic release of catecholamines during and 
following moderate intensity exercise. McGowan et al. (2019), found 
that cognition was facilitated following moderate intensity, aerobic 
exercise but did not induce increased tonic or phasic release of locus 
coeruleus-norepinephrine, as measured by pupillometry. Mather et al. 
(2020), using functional magnetic resonance imaging (fMRI) and 
pupillometry, demonstrated stronger locus coeruleus connectivity with 
a frontoparietal attentional network that activates selective attention 
and increased phasic locus coeruleus-norepinephrine release following 
moderate intensity exercise. However, it is very difficult to determine 
the intensity of the exercise task used by these authors. Non-exercise 
studies, using pupillometry, have shown increased tonic and phasic 
firing of norepinephrine in humans during cognitive tasks and that 
phasic activity is related to attention to salient stimuli (Gilzenrat et al., 
2010; Murphy et al., 2011, 2014; Reimer et al., 2016; Tharp et al., 
2015). Overall, however, the evidence that acute exercise induces 
improved cognition via increased phasic and tonic release of locus 
coeruleus-norepinephrine is far from proven. Much more research is 
required. 

Interestingly, McGowan et al. (2019) found a statistically significant 
effect of exercise on P3 amplitude, which has been shown to be to be 
indicative of locus coeruleus-norepinephrine phasic release in non- 
exercise studies (Murphy et al., 2014; Sutton et al., 1965). Further
more, in a review of studies that used electroencephalographic (EEG) 
measures, Kao et al. (2019), in a meta-analysis, provided evidence for 
facilitation of cognition following moderate intensity exercise compared 
to performance at rest and that this was accompanied by increases in P3 
amplitude. However, findings were not unequivocal. Moreover, no 
measures of norepinephrine were taken. Results when measuring P3 
amplitude during exercise were less clear, which the authors put down 
to “heterogeneity in study methodology” (p. 32). Only two similar 
studies have been undertaken since Kao et al.’s (2019) review. Both 
failed to provide support for increased phasic release during moderate 
intensity exercise (Du Rietz et al., 2019; Vonk et al., 2019). 

Although the evidence presented above is not very strong for arguing 
that P3 amplitude is indicative of phasic locus coeruleus-norepinephrine 
release, Mochizuki et al. (1998) demonstrated a relationship between P3 
amplitude during an oddball task and cerebral spinal fluid concentra
tions of the norepinephrine metabolite methoxyhydroxyphenylglycol 
(MHPG) in humans. Moreover, during cognitive tasks in non-exercise 
studies, administration of the norepinephrine antagonist clonidine 
reduced P3 amplitude (Duncan and Kaye, 1987; Halliday et al., 1994). 
Nevertheless, much more research is required before P3 amplitude can 
be confidently used as a biomarker for acute exercise-induced locus 
coeruleus release of norepinephrine. 

2.1.3. Severe exercise 
The empirical data for an acute exercise effect on cognition during or 

following severe exercise fails to support the catecholamines hypothesis. 
One reason may be that there is an element of arbitrariness in choosing 
80% V̇O2MAX as the lower intensity for classifying exercise as being se
vere. It was chosen because at this intensity, most individuals will have 
exceeded the respiratory compensation point (Bergstrom et al., 2013), 
the point at which partial pressure of arterial carbon dioxide begins to 
decline (Meyer et al., 2004). Moreover, Bergstrom et al. found no sta
tistically significant difference between the percentage of peak volume 
of oxygen uptake that elicited the respiratory compensation point and 
critical power, the point at which the individual cannot maintain ho
meostasis between the required power output, and the biochemical and 
physiological responses necessary to maintain exercise performance. At 
this point, the biochemical and physiological factors change 
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continuously with time until fatigue (Jones and Vanhatalo, 2017). 
Maintaining homeostasis is a key factor in interoception theory and the 
failure to maintain it is seen as being disruptive to cognition, motivation 
and emotion, which interact with one another (Craig, 2002). The only 
study to have measured the effect of exercise on cognition at the respi
ratory compensation point (Ligeza et al., 2018) showed a deterioration 
in performance on a modified flanker task following exercise above the 
respiratory compensation point compared to performance following 
exercise between the ventilatory threshold and the respiratory 
compensation point. Logically then, one would expect exercise above 
the respiratory compensation point to inhibit cognition. 

Unfortunately, the lack of studies measuring the respiratory 
compensation point make even the use of exercise > 80% V̇O2MAX as a 
measure of severe exercise somewhat dubious. Without actually testing 
for the respiratory compensation point, we cannot be sure that in
dividuals are exercising at a severe level. However, when exercising to 
central fatigue, as in V̇O2MAX tests and equivalents, we can be sure that 
the individual has passed the respiratory compensation point (Jones and 
Vanhatalo, 2017). However, when we examine cognition during or 
following exercise at 100% V̇O2MAX, 100% maximum power output or 
voluntary exhaustion, which by definition are indicative of central fa
tigue (Davis and Bailey, 1996), we see that results are still somewhat 
equivocal (see Table 1). Given that inverted-U effect theory would 
predict no difference between at rest and during or following maximal 
intensity exercise, we need to compare differences between cognition 
during or following moderate intensity exercise compared to maximal 
intensity. Inverted-U theory would suggest a deterioration at the higher 
intensity. When, however, we do thjs (see Table 2), we also demonstrate 
equivocality. Therefore, we need to re-assess what is happening at these 
high levels of exercise. 

One of the factors that has been put forward to attempt to explain the 
equivocal effect of severe exercise on cognition has been task type 
(McMorris, 2016b; McMorris et al., 2016). Tasks such as perceptual, e.g. 
simple and choice reaction time, coincidence anticipation timing; short- 
term memory or recall tasks; and autonomic tasks have been seen as 
being simple and thus, consistent with Yerkes and Dodson’s (1908) 
theory, able to be performed optimally during or after severe exercise 
(Dietrich, 2009; McMorris et al., 2016). Observation of Tables 1 and 2 
does not unequivocally support this. The soccer decision-making tasks 
shown in Tables 1 and 2 do demonstrate unequivocal support for speed 
of response being facilitated linearly from rest to maximal intensity 
exercise but not for accuracy. McMorris et al. (2009) claimed that these 
tests exact autonomic responses from soccer players, who were the 
participants in all of the tests except one (McMorris and Graydon, 
1996a). In that test, soccer players demonstrated a linear improvement 
from rest to maximum intensity exercise but non-soccer players did not. 
However, care should be taken with this claim, as no neuroscientific 
proof of automaticity has been undertaken and all of the tests are from 
our laboratory, although Fontana et al. (2009) found similar results. 
Such findings would be consistent with the results of authors examining 
non-exercise stressors and implicitly-learned tasks (Masters et al., 2008). 
Furthermore, they are as hypothesized by Drive Theory (Hull, 1943). On 
the other hand, executive functions, which are seen as being complex, 
requiring activation of large areas of the prefrontal cortex and phasic 
release of dopamine and norepinephrine, are expected to demonstrate a 
negative effect of severe exercise (Audiffren, 2016; McMorris, 2016b). 
However, some authors have argued that high levels of tonic release of 
norepinephrine will aid executive functions that require searching for 
alternative goals (Aston-Jones and Cohen, 2005; Bondi et al., 2010; 
Robbins and Roberts, 2007; Usher et al., 1999). 

2.1.4. Catecholamines, central fatigue, and learning and long-term memory 
According to the catecholamines hypothesis, learning and LTM will 

be affected in a totally different way to other tasks, in that they will 
benefit from exercise to central fatigue (McMorris, 2016b; McMorris 
et al., 2016). Consolidation of declarative or explicit memory appears to 

Table 1 
Studies that have examined performance of cognitive tasks during or following 
maximal intensity exercise and voluntary exhaustion compared to performance 
at rest.  

Authors N Exercise 
measure 

During 
or post- 
exercise 

Test(s) Results 

Bard and 
Fleury 
(1978)  

16 Voluntary 
exhaustion 

Post VS 
CA 

RT NS 
Accuracy 
NS 

Bermejo et al. 
(2019)  

34 Voluntary 
exhaustion 

Post DSF 
DSB 
PVT 

Accuracy 
facilitation 
Accracy NS 
RT 
inhibition 

Chmura and 
Nazar 
(2010)  

13 100% 
V̇O2MAX 

Post CRT RT 
inhibitiona 

Chmura et al. 
(1994)  

22 100% 
V̇O2MAX 

During CRTb RT NS 

Coco et al. 
(2009)  

17 Voluntary 
exhaustion 

Post ACT RT 
inhibition 

Di Bernardi 
Luft et al. 
(2009)  

30 100% 
V̇O2MAX 

Post SRT 
CRT 
1-back  

STM  

CONT MON 

RT NS 
RT NS 
RT 
facilitation 
Accuracy 
NS 
RT NS 
Accuracy 
NS 
RT NS 
Accuracy 
NS 

Féry et al. 
(1997)  

13 Voluntary 
exhaustion 

During Recognition 
task 

RT 
inhibition 

Finkenzeller 
et al. (2018)  

12 Voluntary 
exhaustion 

Post Flanker RT 
facilitation 
Accuracy 
NS 

Griffin et al. 
(2011)  

30 100% 
V̇O2MAX 

Post SWCT 
Learning/ 
memory 

Accuracy 
NS 
RT NS 
Accuracy 
facilitation 

Isaacs and 
Pohlman 
(1991)  

12 100% 
V̇O2MAX 

During CA Accuracy 
inhibition 

Kamijo et al. 
(2004a)  

12 Voluntary 
exhaustion 

Post Go/NoGo EMG-RT NS 

Kamijo et al. 
(2004b)  

12 Voluntary 
exhaustion 

Post Go/NoGo EMG-RT NS 

McMorris and 
Graydon 
(1996a)  

20 100% 
ẆMAX 

During SDM Accuracy 
NS 
RT 
facilitation 

McMorris and 
Graydon 
(1996b)  

10 100% 
ẆMAX 

During SDM Accuracy 
NS 
RT 
facilitationa 

McMorris and 
Graydon 
(1996b)  

20 100% 
ẆMAX 

During SDM Accuracy 
NS 
RT 
facilitation 

McMorris and 
Graydon 
(1997)  

12 100% 
ẆMAX 

During VS RT 
facilitation 

McMorris and 
Graydon 
(1997)  

12 100% 
ẆMAX 

During SDM Accuracy 
facilitation 
RT 
facilitation 

McMorris and 
Keen (1994)  

12 100% 
ẆMAX 

During SRT RT 
inhibition 

McMorris 
et al. (1999)  

9 100% 
ẆMAX 

During SDM Accuracy 
NS 
RT 
facilitation 

(continued on next page) 
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be primarily undertaken by the hippocampus and requires the process of 
long-term potentiation (LTP), the strengthening of synaptic connections 
between neurons (Bliss and Lømo, 1973). Processes of consolidation in 
implicit memory are less well understood. Although there are some 
common brain activations during explicit and implicit learning, distinct 
neural mechanisms serve explicit versus implicit learning/memory 

(Yang and Li, 2012). 
The early stages of learning and LTP consolidation, known as early- 

LTP, which lasts for about 4–6 h (Straube et al., 2003), do not involve 
catecholamines. During heavy exercise, nitric oxide is released from the 
endothelium (Tanaka et al., 2015). Nitric oxide signaling is mostly 
mediated by soluble guanylyl cyclase (Arnold et al., 1977) and this leads 
to the activation of cyclic guanosine monophosphate-dependent protein 
kinase (PKG). PKG, in turn, enhances neurotransmitter release (Hawkins 
et al., 1993, 1998) and this forms the basis of early-LTP. However, 
norepinephrine is vital for late LTP, which has a duration of > 4–6 h (Hu 
et al., 2007; Yang and Li, 2012). Exercise to central fatigue induces high 
concentrations of norepinephrine in the hippocampus, where it activates 
β-adrenoceptors, but it also results in increases in serum and plasma 
concentrations of the protein, brain derived neurotrophic factor (BDNF), 
in humans (Ferris et al., 2007; Rasmussen et al., 2009). In explicit 
memory, norepinephrine stimulates cAMP activation, which modulates 
the signaling and trafficking of the BDNF receptor tropomyosin-related 
kinase B (Trk B: Ji et al., 2005; Yamada and Nabeshima, 2003). The 
binding of BDNF to Trk B initiates a number of intracellular signaling 
cascades, resulting in the phosphorylation of cAMP-response element 
binding protein (CREB: Binder and Scharfman, 2004). The whole pro
cess modulates synaptic transmission in a lasting manner by modifying 
synaptic protein composition via local protein synthesis (Waterhouse 
and Xu, 2009). 

LTP also occurs during implicit learning (Bailey et al., 2015; Horvitz, 
2009), but there are some differences in the mechanisms. The hippo
campus is thought to play a part in the learning of some but, not all, 
implicit tasks (Albouy et al., 2008), but the basal ganglia, in particular 
the striatum, are heavily involved in implicit learning (Poldrack et al., 
2005; Reber and Squire, 1994). While β-adrenoceptors are present in the 
basal ganglia (Reznikoff et al., 1986) and may regulate BDNF/Trk B 
activity, the dopaminergic system is dominant and high concentrations 
of dopamine have been shown to aid learning in this region in animals 
(Wickens et al., 2007). Like β-adrenoceptors, dopaminergic D1-receptors 
are GTP-binding proteins, with cAMP as the second messenger. Cyclic 
AMP activates protein kinase A, which, in turn, activates CREB resulting 
in LTP (Tritsch and Sabatini, 2012). 

Whether for explicit or implicit tasks, the relationship between LTP 
and LTM is controversial. There are some definite similarities but also 

Table 1 (continued ) 

Authors N Exercise 
measure 

During 
or post- 
exercise 

Test(s) Results 

McMorris 
et al. 
(2005a)  

12 100% 
ẆMAX 

During CRT RT 
inhibition 

McMorris 
et al. 
(2005b)  

9 100% 
ẆMAX 

During NC-CRT RT NS 

McMorris 
et al. (2009)  

24 100% MAP During Flanker task Accuracy 
inhibition 
RT 
inhibition 

Sjöberg 
(1980)  

48 100% 
ẆMAX 

During 
and 
Post 

STM Accuracy 
NS during 
and post 

Sudo et al. 
(2017)  

18 Voluntary 
exhaustion 

Post Spatial DR 
Go/No Go 

Accuracy 
NS 
RT NS 
Accuracy 
NS 

Thomson et al. 
(2009)  

163 100% 
V̇O2MAX 

Post Speed 
discrimination 

RT NS 
Accuracy 
inhibition 

Tomporowski 
et al. (1987)  

24 Voluntary 
exhaustion 

Post STM Accuracy 
NS 

ACT; attention and concentration task; CA coincidence anticipation; CONT MON 
continuous monitoring; CRT choice reaction time; DR delayed response; DSB 
digit span backwards; DSF digit span forward; EMG electromyography; MAP 
maximum aerobic power; NC-CRT non-compatible reaction time; NS non- 
significant; PVT perceptual vigilance task; RT reaction time; SDM soccer 
decision-making test; STM short-term memory; SRT simple reaction time; SWCT 
Stroop worid color test; TEpi epinephrine threshold; TNE norepinephrine 
threshold; V̇O2MAX maximum volume of oxygen uptake; VS visual search; ẆMAX 
maximum power output. 

Table 2 
Studies that have examined performance of cognitive tasks during or immediately following maximal intensity exercise and voluntary exhaustion compared to 
performance during or immediately following moderate intensity exercise.  

Author(s) N Moderate intensity Heavy intensity Task During or Post-exercise Results 

Chmura et al. (1994)  22 TEpi 

TNE 

100% V̇O2MAX CRT During RT inhibition 

Isaacs and Pohlman (1991)  12 75% V̇O2MAX 100% V̇O2MAX CA During Accuracy inhibition 
Kamijo et al. (2004a)  12 RPE 12-14 Voluntary exhaustion Go/NoGo Post NS 
Kamijo et al. (2004b)  12 RPE 12-14 Voluntary exhaustion Go/NoGo Post NS 
McMorris and Graydon (1996a)  20 70% ẆMAX 100% ẆMAX SDM During Accuracy NS 

RT facilitation 
McMorris and Graydon (1996b)  10 70% ẆMAX 100% ẆMAX SDM During Accuracy NS 

RT facilitation 
McMorris and Graydon (1996b)  20 70% ẆMAX 100% ẆMAX SDM During Accuracy NS 

RT facilitation 
McMorris and Graydon (1997)  12 70% ẆMAX 100% ẆMAX VS During RT facilitation 
McMorris and Graydon (1997)  12 70% ẆMAX 100% ẆMAX SDM During Accuracy facilitation 

RT facilitation 
McMorris and Keen (1994)  12 70% ẆMAX 100% ẆMAX SRTb During RT inhibition 
McMorris et al. (1999)  9 TEpi 100% ẆMAX SDM During RT NS 

Accuracy NS 
McMorris et al. (2005a)  12 70% ẆMAX 100% ẆMAX CRT During RT inhibition 
McMorris et al. (2005b)  9 70% ẆMAX 100% ẆMAX NC-CRT During RT NS 
McMorris et al. (2009)  24 50% MAP 100% MAP Flanker task During RT inhibition 

Accuracy inhibition 

CA coincidence anticipation; CRT choice reaction time; MAP maximum aerobic power; NC-CRT non-compatible reaction time; Exp experiment; NS non-significant; RT 
reaction time; SDM soccer decision-making test; SRT simple reaction time; TEpi epinephrine threshold; TNE norepinephrine threshold; V̇O2MAX maximum volume of 
oxygen uptake; VS visual search; ẆMAX maximum power output. 
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differences (Tonegawa et al., 2015). It is not within the scope of this 
article to discuss these issues but it is important to point out that there 
are differences between LTP and LTM. We have seen the role of 
norepinephrine and dopamine in LTP formation and several authors 
claim that catecholamines, in particular norepinephrine, also play roles 
as modulators in the formation of memory engrams, which constitute 
LTM (Alberini et al., 2017; Suzuki and Bozdagi, 2011). 

Two studies (Griffin et al., 2011; Winter et al., 2007) have examined 
the effects of severe exercise on LTM/learning. In both studies facilita
tion was demonstrated. Winter et al., 2007 demonstrated high plasma 
concentrations of norepinephrine and epinephrine, and high serum 
concentrations of BDNF during consolidation. Although Griffin et al. did 
not measure catecholamines concentrations, they showed high serum 
concentrations of BDNF following severe exercise. Both studies utilized 
explicit memory and undertook the exercise in the LTM consolidation 
phase. This appears to be the best time to undertake the exercise as it is 
the period that requires LTP, which is dependent on increased concen
trations of BDNF and norepinephrine. Exercising during the acquisition 
phase would probably also be beneficial in that increased arousal would 
facilitate attention and hence the quality of understanding what is to be 
learned, which is thought to aid learning (Craik and Lockhart, 1972). Far 
more research is needed to examine the timing of acute exercise as an aid 
to learning/LTM. 

2.1.5. Catecholamines, cognition and long duration, moderate intensity 
exercise 

None of the studies examined above utilized long duration, moderate 
intensity exercise, although according to the catecholamines hypothesis, 
this intensity x duration should have similar negative effects to those 
hypothesized for severe exercise. Grego et al. (2004) demonstrated an 
inverted-U effect on an auditory oddball task and P3 amplitude during 3 
hours of low to moderate intensity exercise. Only one other study has 
been undertaken (Peyrin et al., 1987). These authors compared urinary 
concentrations of norepinephrine, epinephrine, dopamine, an adrena
line metabolite, metanephrine; and the metabolites of norepinephrine 
normetanephrine, and sulfate, glucuronide and total MHPG following 
cognitive performance at rest and after cycling for 1 hour at ~75% 
V̇O2MAX. Participants showed improved performance during exercise on 
one dependent variable for a word discrimination test but not on another 
nor on an arithmetic calculation task. There were increased urinary 
concentrations of epinephrine, norepinephrine and MHPG sulfate. 
Moreover, linear regression analyses found significant correlations be
tween performance on the word discrimination test, on which partici
pants showed improved performance during exercise, and Δ 
epinephrine plus Δ metanephrine (r = 0.61), and Δ MHPG sulfate (r =
0.63) concentrations. That performance improved following one hour of 
exercise is consistent with the findings of Grego et al. (2004, 2005). 

3. Toward an interoception model for the acute exercise- 
cognition interaction 

In the previous section, we saw how the catecholamines hypothesis 
can provide a rationale for the results of research into the effects of 
moderate intensity exercise on cognition, but not for the results of 
studies in which participants exercised maximally. The mechanisms that 
result in increased extracellular concentrations of catecholamines dur
ing exercise are part of the interoception system and their activation has 
been claimed to be involved in the phenomenon of central fatigue (Hilty 
et al., 2011; McMorris et al., 2018a; Robertson and Marino, 2016). 
Modern interpretations of interoception, however, are not merely 
mechanistic but involve interpretation and integration of cognitive, 
perceptive, motor and emotional information (Craig, 2002; Critchley 
and Garfinkel, 2017; Damasio, 1994). In this section, therefore, a 
rationale for an interoception model for the acute exercise-cognition 
interaction effect is presented. The factors that need to be taken into 
consideration when attempting to account for the acute exercise- 

cognition interaction are complex and multi-faceted. Critchley and 
Garfinkel pointed this out for the psychological stress-behavior effects. 
This should not be surprising, given the current knowledge concerning 
behavioral and cognitive neuroscience, and neural connectivity during 
complex cognitive, emotional and physical activities (Pessoa et al., 
2019). While the underlying interoceptive processes described below 
are common to all types of stressor and behavior, the psychological 
factors are more specific to acute exercise, although even here there is 
overlap with other stressors. 

3.1. Mechanisms of the interoceptive system during exercise 

The decision to undertake physical exercise may be stimulated by 
internal or external input. Human studies (Asahara et al., 2016; Ishii 
et al., 2018; Matsukawa et al., 2015) have demonstrated activation of 
the dorsolateral and ventrolateral prefrontal cortices prior to 
commencement of exercise. Human research in non-exercise situations 
shows that decisions to undertake actions that are externally stimulated, 
require activation of the dorsolateral prefrontal cortex. However, when 
the decision is internally driven, the rostral prefrontal cortex, also 
known as the frontopolar cortex and anterior prefrontal cortex, is also 
activated (see Christoff and Gabrieli, 2000, for a review). It is thought 
that the rostral prefrontal cortex feeds forward to the lateral prefrontal 
cortex, which triggers activation of the cerebral-basal ganglia-thalamo- 
cerebellar pathway, which controls motor activity (Doya, 2000; Shad
mehr, 2008). The dorsolateral prefrontal cortex also feeds forwards, in 
the form of corollary discharge, to the anterior insula cortex, concerning 
the predicted feedback from lamina 1 lateral spinothalamocortical, and 
vagal and glossopharyngeal afferents, concerning the interoceptive state 
of the individual (Christensen et al., 2007; Craig, 2002; Gu et al., 2013; 
Lovero et al., 2009). 

3.1.1. Afferent interoceptive mechanisms 
Human studies have shown that during exercise, small-diameter Aδ- 

and C-type primary afferent fibers, which sense the physiological con
dition of all tissues of the body and terminate in lamina 1 of the spinal 
and trigeminal dorsal horns, relay afferent information from the lateral 
spinothalamic tract to the main homeostatic integration sites in the 
brainstem, which also receive vagal and glossopharyngeal afferent 
feedback via the nucleus of the solitary tract (Kitahama et al., 1985; 
Saper et al., 1991; Sharma et al., 2010). The lamina 1 lateral spinotha
lamic and nucleus of the solitary tract medullothalamic axons terminate 
in the posterior and basal parts of the ventral medial nucleus of the 
thalamus (Halliday et al., 1988; Saper et al., 1991), which project to the 
insula cortex (Critchley and Harrison, 2013; Hilty et al., 2011). The 
anterior insula cortex also receives proprioceptive afferent input from 
large diameter sensory fibers in skin, muscles and joints via the so
matosensory cortex (Martin et al., 2008). 

According to Craig’s (2002, 2015) interoception theory, in order to 
generate a current awareness state, the anterior insula cortex constantly 
compares bottom-up interoceptive feedback with the top-down pre
dictions of interoceptive state, which it received from the dorsolateral 
prefrontal cortex pre-task, in this case pre-exercise. Blakemore et al. 
(1998), using positron emission tomography (PET), demonstrated this in 
humans. Based on animal research, Craig (2002) argued that this in
formation is forwarded to the anterior cingulate cortex. In humans, high 
angular resolution diffusion imaging has shown that the anterior insula 
cortex and anterior cingulate cortex are structurally connected and 
demonstrate coactivation (Ghaziri et al., 2017). With specific regard to 
human exercise, Weng et al. (2017), in a fMRI study, demonstrated 
exercise-induced increased functional connectivity between the 
ventromedial prefrontal cortex (including the orbitofrontal cortex) and 
the right anterior insula cortex. This has been further supported by 
Williamson and colleagues (Williamson et al., 1997; Williamson et al., 
1999, 2001, 2002), and Critchley et al. (2000). Human studies also show 
that the anterior insula cortex and anterior cingulate cortex have 
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bidirectional projections with the ventromedial prefrontal cortex, which 
also has connections with the lateral prefrontal cortex, amygdala, 
striatum, and thalamus (Alexander et al., 1986; Ghaziri et al., 2017; 
Holroyd, 2002; Weng et al., 2017). In the following sub-sections, the 
ways in which this information affects cognition are discussed. 

3.2. How interoception influences the acute exercise-catecholamines- 
cognition interaction 

3.2.1. Moderate intensity exercise 
During moderate intensity exercise, interoceptive feedback from the 

lamina 1 afferents, and vagal and glossopharyngeal nerves activate A1, 
A2 and locus coeruleus (A6) noradrenergic neurons in the brainstem, 
thus stimulating increased tonic release of norepinephrine from the 
locus coeruleus. This increases arousal and facilitates phasic release of 
norepinephrine from the locus coeruleus, and dopamine from the 
ventral tegmental area and substantia nigra pars compacta (Floresco 
et al., 2003; Grace, 1991). Activation of D1 dopaminergic receptors and 
α2A-adrenoceptors is also stimulated, which strengthen the signal to 
noise ratio. Hence cognitive performance is facilitated. This is consistent 
with the catecholamines hypothesis. However, although the empirical 
results demonstrate a positive effect of moderate intensity exercise on 
cognition, this is not unequivocal. In some studies, where the at rest 
cognitive test immediately precedes the undertaking of the exercise 
protocol, feedforward from the lateral prefrontal cortex to the hypo
thalamus can trigger tonic release of dopamine from the ventral 
tegmental area and substantia nigra pars compacta, and norepinephrine 
from the locus coeruleus in anticipation of undertaking the exercise 
(Mason et al., 1973; McMorris et al., 2008; McMorris et al., 2009). This 
increase in tonic release may be sufficient to facilitate activation of 
phasic release in the presence of salient stimuli. This could result in 
performance at rest being as good as that during moderate intensity 
exercise, as demonstrated by McMorris et al. (2009) for a random 
number generation task. 

While the situation described above is not contrary to the catechol
amines hypothesis, there is another situation in which there may be no 
difference between performance at rest and during moderate intensity 
exercise. If the individual is highly motivated, this can trigger increased 
tonic release of dopamine from the ventral tegmental area (Bromberg- 
Martin et al., 2010), which can, in turn, induce release of norepineph
rine from the locus coeruleus (Ranjbar-Slamloo and Fazlali, 2020). The 
increase in tonic release of catecholamines may reach a level which 
facilitates phasic release in response to the presentation of salient 
stimuli. Hence cognitive performance would be as good as during 
moderate intensity exercise. This is consistent with Kahneman’s (1973) 
claim that under low levels of stress, motivated individuals can perform 
as well as they do during moderate levels, if they allocate resources to 
the task. Unfortunately, while studies that measure catecholamines 
concentrations can explain the effects of increased concentrations due to 
anticipation of the exercise, I was not able to find any studies that have 
measured motivation levels. Therefore, when there is no difference be
tween cognition at rest and during moderate exercise, we do not know 
the cause. It could simply be statistical, i.e. low power, but it could also 
be explained by the process outlined above, which is consistent with 
Craig’s (2002) interoception theory. 

3.2.2. Severe exercise 
In this sub-section, I present the case for the effects of severe exercise, 

i.e., exercise above the respiratory compensation point (Bergstrom et al., 
2013), on cognition. I do, however, acknowledge that the supporting 
empirical data are from maximal intensity exercise studies apart from 
that of Ligeza et al. (2018), but interoception theory (Craig, 2002, 2006) 
would strongly suggest that during severe exercise, including exercise to 
central fatigue, the interaction between interoceptive feedback, cate
cholamines, homeostasis, motivation and emotions will all contribute to 
the effects of exercise on cognition. 

The catecholamines hypothesis provides a strong rationale for posi
tive effects of severe, acute exercise on learning and LTM. Although the 
empirical evidence is limited, what there is supports a facilitative effect 
(Griffin et al., 2011; Winter et al., 2007). However, the main concern for 
this article is to account for the failure of the catecholamines hypothesis 
to predict the empirical results for perceptual, short-term memory and 
executive function tasks, and to provide an alternative model. Therefore, 
in this sub-section, the case for interoception providing a viable expla
nation for the empirical data is presented. 

Exercising at 100% V̇O2MAX, 100% maximum power output or until 
voluntary exhaustion means that the person has reached central fatigue. 
Research into central fatigue shows that humans actually stop exercising 
before their physical limits are reached (Gandevia, 2001; Newsholme 
et al., 1987). Based on Craig’s (2002) interoception theory, proponents 
of theories of central fatigue (Hilty et al., 2011; McMorris et al., 2018a; 
Robertson and Marino, 2016). have pointed to research showing that 
comparison of interoceptive feedback held in the orbitofrontal cortex 
and anterior cingulate cortex is thought to evaluate choice options and 
encode outcome expectations (Schoenbaum et al., 2009). We (McMorris, 
2020; McMorris et al., 2018a) argued that this information is projected 
to the lateral prefrontal cortex, which integrates the information 
received from these regions, as well as information received from the 
anterior insula cortex and somatosensory cortex, and a decision con
cerning what action to take is made (Cole et al., 2013; Nee and 
D’Esposito, 2016), although a role for the rostral prefrontal cortex is also 
claimed by some authors (Koechlin and Hyafil, 2007). It may be that this 
brain region sets the parameters to be used by the lateral prefrontal, 
orbitofrontal and anterior cingulate cortices in the evaluation of choice 
options. This is consistent with Burgess and Wu’s (2013) conclusion that 
the overall function of the rostral prefrontal cortex is as a “hub for 
metacognition” (their italics: p. 524). In this article, I propose that 
something similar happens with regard to the effect of severe exercise on 
cognition. 

When the cognitive task is being administered following the end of 
exercise, the individual will have reached the point of central fatigue 
and induced increased tonic locus coeruleus-norepinephrine release. 
Human studies, examining cognition following severe exercise, using 
EEG measurements of P3 amplitude, demonstrated less phasic release 
and greater tonic release at cessation of the exercise and a deterioration 
in performance in the subsequent cognitive task (Kamijo et al., 2004a, 
2004b; Kao et al., 2017). This is consistent with Aston-Jones and 
Cohen’s (2005) Adaptive Gain Theory and Craig’s (2002) interoception 
theory, as fast tonic release would attenuate phasic release and hence 
inhibit responses to salient bottom-up and top-down stimuli. Moreover, 
the increased extracellular catecholamines concentrations would result 
in greater activation of D1-receptors, α1-and β-adrenoceptors, which 
would dampen all cognitive activity (Arnsten, 2009). This will occur if 
the person perceives the effort required as being beyond the resources 
available and/or not worth the effort as the reward is poor (Craig, 2002, 
2015). However, tonic release favors performance of tasks which call for 
a switch to dealing with different stimuli-response requirements or 
alternative courses of action (Aston-Jones and Cohen, 2005). Thus, such 
tasks may show facilitation of performance during severe exercise. 

However, if the person decides that by stopping exercising and 
focusing on cognition only, they will have sufficient resources for the 
task, the situation will be different. This judgment will depend on 
comparison of sensory predictions received by the anterior insula cortex 
from the lateral prefrontal cortex pre-exercise and the actual feedback. 
The accuracy of the prediction is dependent on psychological factors, 
which affect interoception. Adaptive Gain Theory (Aston-Jones and 
Cohen, 2005) postulates that in such cases, the orbitofrontal and ante
rior cingulate cortices project to the locus coeruleus by electrical 
coupling, which lowers tonic release rate thus enhancing phasic release 
(Usher et al., 1999). Moreover, Aston-Jones et al. (2004) found that 
GABAergic neurons in the peri-locus coeruleus innervate locus 
coeruleus-norepinephrine neurons which would attenuate tonic 
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norepinephrine release. Thus, performance may be maintained at the 
same level as that during moderate intensity exercise. If, however, the 
perception of effort costs and/or available resources is incorrect, in other 
words they think that they can meet the demands but actually can not, 
performance will decrease as they will be unable to induce phasic re
sponses consistently. 

The situation, when the cognitive task is being undertaken during the 
exercise rather than following the exercise, is slightly different. When 
the cognitive task is undertaken during exercise, one would expect the 
participant to determine the effort costs and resources required to 
energize the behavior, based on the accumulative costs of undertaking 
the exercise plus the cognitive task and not on the demands of the ex
ercise per se. This would include taking into account the dual task nature 
of the activity. Therefore, one would expect to see phasic locus 
coeruleus-norepinephrine release and cognitive performance main
tained until cessation of the exercise, when increased tonic release will 
be triggered. This will, however, only be the case when the judgement 
concerning resources and task requirements is correct. If not, it may 
result in deterioration of performance due to increased tonic release 
occurring earlier than expected. 

3.3. Psychological factors 

The psychological factors affecting the ways in which interoception 
influences the acute exercise-catecholamines-cognition interaction, fall 
primarily into two areas, motivation and perception of effort. They are 
similar to those which McMorris et al. (2018a) claimed to be important 
in perception of central fatigue. However, unlike the central fatigue 
factors, which are concerned only with the physical effort, these also 
involve issues relating to cognitive effort. Moreover, they are similar to 
those of early cognitive psychology theories concerning the effects of 
stress on performance of a variety of tasks (Kahneman, 1973; Hull, 1943; 
Humphreys and Revelle, 1984). It is not the purpose of this study to 
examine these factors in any detail but simply to outline the major in
fluences on interactions between the the brain regions involved in 
determining the motivational/reward evaluation, the perception of 
effort required to perform the task and the perception of the available 
resources. The motivational/reward pathway consists of the dorsolateral 
prefrontal cortex, orbitofrontal cortex, cingulate cortex, amygdala and 
basal ganglia (Spielberg et al., 2012; Weng et al., 2017), although the 
rostral prefrontal cortex has also been implicated (Christoff and Gabri
eli, 2000; Soutschek et al., 2018). In 3.2.2, we saw that comparison of 
interoceptive feedback held in the orbitofrontal cortex and anterior 
cingulate cortex is responsible for decisions concerning perception of 
effort. However, this is in fact just the final product of almost all of the 
interoceptive system, particularly the anterior insula cortex, lateral 
prefrontal cortex and basal ganglia. Moreover, dopaminergic neurons 
are thought to be responsible for encoding the expected reward and 
anticipating the effort cost, while noradrenergic neurons mobilize re
sources in order to energize the behavior necessary for successful 
completion of the task (Bouret et al., 2012; Varazzani et al., 2015). 

Fig. 1 outlines the major influences that I propose, affect perception 
of effort costs. Observation of these factors shows that there will obvi
ously be inter-individual differences in responses to the situation, 
particularly during severe exercise. Moreover, the importance of past 
experience of similar situations, changes to short- and long-term goals 
and changing fitness levels means that there will also be intra-individual 
differences as people gain experience. 

4. Overview and testing of the model 

4.1. Overview of the interoception model for an acute exercise-cognition 
interaction 

In this sub-section, I present a brief outline of the proposed model 
(see Fig. 2). At rest and during low intensity exercise (<40% V̇O2MAX or 

equivalent), slow tonic release of catecholamines inhibits arousal and 
attention, which negatively affects all types of cognitive task. It also 
attenuates phasic release of catecholamines, which negatively affects 
responses to salient top-down and bottom-up stimuli. However, highly 
motivated individuals can trigger release of dopamine from the ventral 
tegmental area, which also induces locus coeruleus-norepinephrine 
release (Ranjbar-Slamloo and Fazlali, 2020). As a result, cognitive per
formance may be as good as during moderate intensity exercise. This can 
also occur if the individual is expected to undertake exercise immedi
ately following the cognitive task, which can induce increased tonic 
release of catecholamines due to the hypothalamus initiating locus 
coeruleus-norepinephrine release in anticipation of the upcoming ex
ercise. However, it remains to be seen if even highly motivated in
dividuals can perform equally as well at rest as during moderate 
intensity exercise. In other words, can motivation trigger a sufficient 
increase in tonic release of catecholamines to induce increases in 
extracellular concentrations of catecholamines that are on a par with 
those released during moderate intensity exercise? 

During moderate intensity exercise, especially that following the 
norepinephrine threshold or equivalents, greater tonic release of 
norepinephrine from the locus coeruleus results in increased extracel
lular norepinephrine and, via the ventral tegmental area and substantia 
nigra pars compacta, larger dopamine concentrations. This results in 
optimal phasic release of the catecholamines, and activation α2A-adre
noceptors and D1 dopaminergic receptors, which work together to in
crease the signal to noise ratio. As a result, cognitive performance is 
optimal. During severe exercise, higher extracellular catecholamines 
concentrations induce increased tonic release of dopamine and norepi
nephrine, which attenuates phasic release. Moreover, increased activa
tion of D1 receptors. and α1- and β-adrenoceptors reduces the signal to 
noise ratio. However, the extent to which this results in inhibition of 
cognition depends on the motivation level of the individual, their 
perception of their ability to meet the task demands and whether they 
think the rewards for performing well are worthwhile achieving. This is 
determined by interoceptive information held in the orbitofrontal cor
tex, anterior cingulate cortex and anterior insula cortex being projected 
to the lateral prefrontal cortex for a decision as to what action to take 

Fig. 1. Psychological factors affecting perception of effort costs.  
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(Craig, 2002). Aston-Jones and Cohen (2005) claim that if the decision is 
to continue working on the task, the orbitofrontal cortex and anterior 
cingulate cortex project to the locus coeruleus to induce attenuation of 
tonic release of norepinephrine to a level that facilitates stimulus-driven 
phasic release. However, if the decision is that the task is not worthwhile 
or performance can not be maintained, increased tonic release is trig
gered, which inhibits phasic release. This favors task disengagement and 
facilitates tasks which require a switch to dealing with different stimuli- 
response requirements or alternative courses of action but inhibits ex
ecutive functions. 

4.2. Testing the model: implications for future research 

The model incorporates the assertion in the catecholamines hy
pothesis that moderate intensity exercise induces increased extracellular 
concentrations of dopamine and norepinephrine, which results in 
improved cognition compared to that at rest and during low intensity 
exercise. Our present knowledge level suggests that exercise above the 
norepinephrine threshold and equivalents induces optimal performance. 
However, more research is required comparing exercise intensities just 
below the thresholds with those supra-thresholds. Moreover, the 
assumption that the thresholds induce changes in tonic and phasic locus 
coeruleus-norepinephrine release can be examined using pupillometry, 
EEG to measure P3 amplitude, fMRI and functional near infra-red 
spectroscopy (fNIRS). Also, the effects of motivation on performance 
at rest should be compared to cognition during supra-threshold exercise. 
This could answer the question of whether motivation can result in 
performance at rest being equal to that during supra-threshold exercise. 
More testing of the effects of severe exercise on learning/LTM is 
required, as are studies examining moderate intensity exercise of long- 
duration. However, the model contains areas of research, which have 
so far been rarely, or never, examined in acute exercise-cognition 
research, namely motivation, perception of effort costs, and the effects 
of tonic versus phasic locus coeruleus-norepinephrine release during 
severe exercise. Suggestions of how this might be done are outlined in 
the following sub-sections. 

4.2.1. Testing motivation effects 
Motivation should be examined at rest, during moderate and severe 

exercise. It could be done using subjective report but should also involve 
some form of objective assessment. Pupillometry can be used to assess 
dopamine activation in brain regions involved in reward/motivation 
(Muhammed et al., 2016; Wang, 2015) pre- and/or post-cognitive test. 
Dopamine is the main neuromodulator in the motivation/reward 
pathway, although norepinephrine also plays a role (Elliott et al., 2000a, 
2000b), therefore this could give us information about motivation 
especially if it is correlated with subjective assessment. Activation of the 
motivation/reward pathway could also be examined using PET, fMRI or 
fNIRS. This would allow for the effect of motivation on the cognitive 
performance in the at rest condition to be evaluated. It would also be 
important during severe exercise to determine any effects on phasic and 
tonic locus coeruleus-norepinephrine release. To determine whether 
motivation during the at rest cognitive test can induce performance as 
good as that during moderate intensity exercise, pharmacological 
administration of dopamine D1-receptor and α2A-adrenoceptor agonists 
could be administrated. A cross-over design could be used whereby 
participants are given the agonists or a placebo and tested cognitively 
pre- and post-exercise. If moderate exercise in the placebo condition 
induces better performance than in the pre-test agonists condition, it 
would suggest that even when highly motivated, one can not perform at 
rest as well as during or immediately following moderate intensity 
exercise. 

Manipulation of motivation using monetary rewards or competition 
with others by use of avatars could be useful. The former has been shown 
to work in cognitive fatigue studies (Carter et al., 2015; Inzlicht et al., 
2014). While Corbett et al. (2018) successfully used the latter method in 
a central fatigue study but, unknown to the participant, the avatar 
represented their own performance in a previous test. Barwood et al. 
(2015) successfully utilized pre-exercise motivational self-talk. These 
and similar strategies could be used to test the effects of motivation. 

4.2.2. Effects of tonic and phasic release of catecholamines during severe 
exercise 

No studies have directly set out to test the hypothesis that severe 
exercise induces changes in cognition due to increased tonic release of 
norepinephrine attenuating phasic release but some inadvertently pro
vide interesting data. Three studies which examined the effect of severe 

Fig. 2. Overview of the interoception model. 
A Psychological factors affecting prediction of effort costs, perception of 
available resources and reward value. 
B Information from small diameter primary afferents, large diameter sensory 
fibers in skin, muscles and joints, and chemoreceptors and mechanoreceptors in 
vagal and glossopharyngeal nerves. 
C Information from A is evaluated by DLPFC and predicted effort cost is for
warded to the AIC and ACC. Information from B, held in the AIC, ACC and OFC, 
is compared to the predictions from A, and fed back to the DLPFC for a decision 
on what action to take. 
D The decision depends on comparison of perceived effort costs and expected 
value of the reward. If available resources are perceived to be sufficient to meet 
predicted effort costs and the reward is high, the OFC and ACC initiate mod
erate tonic and phasic release of LC-NE. This is optimal for tasks requiring 
activation of top-down and/or bottom-up salient stimuli. If the perceived re
sources are thought to be insufficient to meet the costs or the reward is poor, 
high tonic release is initiated, which attenuates phasic release. This has an 
inhibitory effect on tasks requiring activation by salient stimuli but aids tasks 
requiring switching to alternative S-R pairings or alternative courses of action. 
E At rest or during low intensity exercise, in motivated individuals, the DLPFC 
may trigger increased tonic release of dopamine from the VTA, which can result 
in optimal cognitive performance by inducing moderate tonic and phasic LC-NE 
release. 
F It should be noted that cognition involves interactions with perception, 
motivation and emotions 
ACC anterior cingulate cortex; AIC anterior insula cortex; DLPFC dorsolateral 
prefrontal cortex; LC-NE locus coeruleus-norepinephrine; OFC orbitofrontal 
cortex; S-R stimulus-response; VTA ventral tegmental area. 
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exercise on a subsequent flanker task (Kao et al., 2017) or a Go/NoGo 
task (Kamijo et al., 2004a; Kamijo et al., 2004b), also measured P3 
amplitude. The authors demonstrated inhibition of cognitive perfor
mance and that P3 amplitude at cessation of the exercise, indicated an 
increase in tonic locus coeruleus-norepinephrine release and attenuation 
of phasic release. However, no studies have examined the efficacy of 
increased tonic release of norepinephrine facilitating switching perfor
mance following severe exercise. Although, animal research has shown 
the benefit of increased tonic locus coeruleus-norepinephrine release on 
switching tasks (Bondi et al., 2010; Robbins and Roberts, 2007). The use 
of EEG measures of P3 amplitude or indeed pupillometry measurements 
could both be very useful in testing the roles of phasic versus tonic locus 
coeruleus-norepinephrine release following severe exercise and the ef
fects of task type. Similarly, PET, fMRI and fNIRS could provide valuable 
information. It should be noted, however, that the relationship between 
P3 amplitude and locus coeruleus-norepinephrine relsase has been 
questioned (McGowan et al., 2019). 

4.2.3. Testing perception of effort costs and resources available 
Questionnaires could be used to assess perception of effort costs and 

perception of resource availability. The National Aeronautics and Space 
Administration-Task Load Index (NASA-TLX) has been used to measure 
perception of effort cost and has been validated and tested for reliability 
(Hart and Staveland, 1988). It may be particularly useful when dealing 
with exercise and cognition as it is multidimensional and measures effort 
cost using a combination of cognitive and physical effort. 

5. Conclusion 

The catecholamines hypothesis provides a plausible explanation of 
the processes involved in facilitating cognition during and following 
moderate intensity exercise, although some clarification concerning the 
need to reach the norepinephrine threshold or equivalents is required. 
However, the hypothesis can not explain empirical data regarding the 
effects of severe exercise on cognition. Modern interpretations of 
interoception (Craig, 2002; Damasio, 1994) provide a rationale for the 
acute exercise-cognition interaction and can be presented as a model. 
During moderate intensity exercise, the afferent interoceptive system 
and the proprioceptive somatosensory system, through interactions 
between the anterior insula, anterior cingulate, orbitofrontal and lateral 
prefrontal cortices, instigate increased tonic release of catecholamines, 
resulting in increased extracellular concentrations. This results in phasic 
release of dopamine and norepinephrine, and facilitation of cognitive 
tasks. 

During severe exercise, the interoceptive system initiates further 
tonic release of catecholamines, which attenuates phasic release and 
dampens neural activity. However, whether this leads to inhibition of 
cognition depends on how the individual perceives the interoceptive 
information concerning perceptions of effort costs and their own moti
vation level. Interactions between the lateral prefrontal. anterior insula, 
anterior cingulate, orbitofrontal cortices and the locus coeruleus can 
maintain tonic release at high levels or lower tonic release (Aston-Jones 
and Cohen, 2005). Lowering tonic release facilitates phasic release and 
so maintains cognitive functioning at a level equal to that during mod
erate intensity exercise. Maintaining high tonic release can aid learning/ 
LTM and tasks that require switching to new stimuli-response couplings 
or alternative courses of action. However, performance of tasks 
requiring phasic catecholamines release will be weakened. 
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Grenhoff, J., Nisell, M., Ferré, S., Aston-Jones, G., Svensson, T.H., 1993. Noradrenergic 
modulation of dopamine cell firing elicited by stimulation of the locus coeruleus in 
the rat. J. Neural Transm.-Gen. 93, 11–25. 

Griffin, É.W., Mullally, S., Foley, C., Warmington, S.A., O’Mara, S.M., Kelly, Á.M., 2011. 
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