
 

 Abstract—In order to increase the efficiency of the solar 

photovoltaic (PV) system, accurate electrical modeling of the 

system under different environmental conditions is necessary. The 

double diode electrical model of solar PV is known to be more 

accurate than its single diode model counterpart since it takes into 

account the effect of recombination. However, because of its 

nonlinear characteristics, the parameters of the double diode model 

have to be identified using optimization algorithms. In this paper, 

the Wind Driven Optimization (WDO) algorithm is proposed as a 

potential new method for identifying the parameters of a twelve-

parameter double diode model (12p-DDM) of the solar PV. The 

accuracy and flexibility of the proposed method are verified using 

three different sets of data: (i) experimental data at the controlled 

environmental condition, (ii) data sheet values of different solar PV 

modules and (iii) real-time experimental data at the uncontrolled 

environmental condition. Additionally, the performance of the 

WDO is compared to other well-known existing optimization 

techniques. The obtained results show that the WDO algorithm can 

provide optimized values with reduced Mean Absolute Error in 

Power (MAEP) and reduced Root Mean Square Error (RMSE) for 

different types of solar PV modules at different environmental 

conditions.  We show that the WDO can be confidently 

recommended as a reliable optimization algorithm for 

parameter estimation of solar PV model. 

 Index Terms—Adaptive Electrical Model; Mean Absolute 

Error in Power; Parameter estimation; Root Mean Square Error; 

Wind Driven Optimization. 

 

I. INTRODUCTION 

oday, due the continuous decline of conventional fuel 

sources and their adverse effects of climate change, the use 

of renewable and inexhaustible energy sources is gradually 

increasing. Among them, solar energy has emerged as potential 

alternative to overcome the decline in fossil fuel sources. Large 

scale PV plants are now commonly used for power generation in 

most part of the continents. With regards to its practical 

implementation, the solar photovoltaic system should be 

optimized before its installation. This can be assured by precise 

modeling, identification and simulation of solar PV module. The 

modeling of solar PV is generally done to describe its current-

voltage (I-V) and power-voltage (P-V) relations over a wide 

range of temperatures and solar irradiances. The I-V relations 
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of solar PVs are usually described using two types of diode 

models: single diode model and double diode model [1-4]. 

Generally, the unknown parameters of diode models are 

estimated using curve fitting and optimization techniques.  One 

of the pitfalls of the curve fitting technique is that the parameters 

are identified only at standard condition. In order to that, 

different environmental condition requires different sets of 

parameters to model solar PV. This is because parameters 

obtained are based on mathematical equations, not on physical 

interpretation [5]. The parameters of solar PV vary due to the 

variations in the environmental conditions [5]. Consequently, in 

this work, an adaptive electrical model of solar PV in which all 

the parameters depend on temperature and irradiance has been 

employed. This, however, leads to extra parameters that need to 

be identified. More precisely, twelve parameters for the double 

diode models. In addition, the parameter estimation procedure 

has to be carried out only once for all environmental condition 

due to the adaptive nature of the model. 

The next step after modeling the solar PV is the parameter 

estimation for the model. The popular approaches employed for 

parameter estimation can be broadly categorized into three main 

techniques; namely analytical techniques [6], numerical 

extraction [7] and evolutionary algorithm techniques. 

Evolutionary algorithm techniques are considered to be 

excellent in dealing with nonlinear equations. In the recent years, 

different optimization techniques have been introduced to 

estimate the parameters of solar PV; namely, the Genetic 

Algorithm (GA) [8], Pattern Search (PS) optimization [9], 

Artificial Immune System (AIS) [10], Bacterial Foraging 

Algorithm (BFA) [11], Simulated Annealing (SA) [12], 

Harmony Search (HS) algorithm [13], Artificial Bee Colony 

Optimization (ABSO) [14], Flower Pollination Algorithm 

(FPA) [15] and Cuckoo Search (CS) [16]. However, these 

algorithms still need some modifications to find the most 

optimized parameters of PV modules [15]. There is, therefore, a 

real incentive, in deriving more efficient algorithms for finding 

optimized values of parameters of solar PV. 

In this work, we use a new optimization technique called Wind 

Driven Optimization (WDO) algorithm for solar PV parameter 

estimation. The WDO algorithm is developed by Zikri Bayraktar 

for electromagnetics application [17]. It is a population-based 

heuristic global optimization technique for multidimensional 

problems. The motivation for WDO algorithm was based on the 

motion of microscopic air parcels in a multidimensional space. 

The algorithm contains four constants. The optimized values of 

these constants are generated using Covariance Matrix 

Adaptation Evolution Strategy (CMAES) [18]. 

We employ the WDO algorithm to find optimized values of 

12p-DDM adaptive models of solar PV. The accuracy and 

flexibility of the WDO are verified using three different sets of 
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data: (i) experimental data at the controlled environmental 

condition, (ii) data sheet values of different solar PV modules 

and (iii) real-time experimental data at the uncontrolled 

environmental condition. Additionally, the performance of the 

WDO is compared to other well-known existing optimization 

techniques. The results obtained is compared to results presented 

in recent literature in order to validate the WDO optimization 

technique. The obtained results show that the WDO algorithm 

can provide optimized values with reduced Mean Absolute Error 

in Power (MAEP) and reduced Normalized Root Mean Square 

Error (NRMSE) for different types of solar PV.  We show that 

the WDO can be confidently recommended as a reliable 

optimization algorithm for parameter estimation of solar PV 

model. 

II. MATHEMATICAL MODELLING 

Twelve Parameter Double Diode Model (12p-DDM) 

The Double Diode Model (DDM), is the accurate diode 

model of solar PV that takes into account the effect of 

recombination by introducing another diode in parallel to the 

photon current source. The equivalent circuit of double diode 

model is shown in the Fig. 1. 

The current–voltage (I-V) relation of the DDM of the PV 

module is represented as: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑜1 (𝑒
𝑉 + 𝐼 𝑅 𝑠
𝑁𝑠   𝑉𝑡1 − 1) −  𝐼𝑜2 (𝑒

𝑉 + 𝐼 𝑅 𝑠
𝑁𝑠   𝑉𝑡2 − 1) −

𝑉+𝐼 𝑅 𝑠

𝑅𝑝
    (1) 

Here I represents the solar PV current,  𝐼𝑝ℎ is the photon 

current generated by the incident light, 𝐼𝑜1  and 𝐼𝑜2   are the 

reverse saturation current, 𝑅𝑝 is the parallel resistance which 

accounts for the voltage drops and internal losses in due to flow 

of current, 𝑅𝑠 is the series resistance which accounts for the 

leakage current to the ground when diode is in reverse biased, 

𝑁𝑠 is number of cells connected in series,  𝑉𝑡1 and  𝑉𝑡2 are 

thermal voltage, which is represented by: 

𝑉𝑡1  =  𝑎1  
 𝐾 𝑇

𝑞
 , 𝑉𝑡2  =  𝑎2  

 𝐾 𝑇

𝑞
         (2) 

The value of 𝐼𝑝ℎ , 𝐼𝑜1 , 𝐼𝑜2, 𝑅𝑠 and 𝑅𝑝 are the important 

parameters in the diode model.  All these parameters depend on 

the solar irradiance (G) and the temperature (T) [19], [20]. The 

photon current and reverse saturation currents can be expressed 

as: 

𝐼𝑝ℎ =
𝐺

𝐺𝑆𝑇𝐶
[𝐼𝑝ℎ𝑟𝑒𝑓 + 𝑘𝑖(𝑇 − 𝑇𝑆𝑇𝐶)] (3) 

𝐼𝑜 = 𝐼𝑜𝑟𝑒𝑓 (
𝑇

𝑇𝑆𝑇𝐶
)
3

. exp (
𝑞. 𝐸𝑔

𝑎. 𝐾
(

1

𝑇𝑆𝑇𝐶
−

1

𝑇
)) (4) 

Here 𝑎1 and 𝑎2 are the ideality factor of diode 𝐷1 and diode 𝐷2 

respectively, 𝑞 and 𝐾 are the electron charge and Boltzmann 

constant,𝐺𝑆𝑇𝐶 and 𝑇𝑆𝑇𝐶  are irradiance and temperature at (STC) 

Standard Test Condition (1000 W/m2, 250C), 𝐸𝑔 is the bandgap 

energy of the material.  

Similarly, the values of 𝑅𝑠 and 𝑅𝑝 depending on the 

environmental condition is given as [5]: 

𝑅𝑠 = 𝑅𝑠𝑟𝑒𝑓2(1 + 𝐾𝑅𝑠(𝑇 − 𝑇𝑆𝑇𝐶) + 𝑅𝑠𝑟𝑒𝑓1 (
𝐺

𝐺𝑆𝑇𝐶

)
𝛾𝑅𝑠

 (5) 

𝑅𝑝 = 𝑅𝑝𝑟𝑒𝑓(1 + 𝐾𝑅𝑝(𝑇 − 𝑇𝑆𝑇𝐶) (
𝐺

𝐺𝑆𝑇𝐶

)
𝛾𝑅𝑝

 (6) 

From (1), it is clear that, the optimum values of twelve 

parameters: 𝛾𝑅𝑠, 𝛾𝑅𝑝, 𝐾𝑅𝑠, 𝐾𝑅𝑝, 𝑅𝑠𝑟𝑒𝑓1, 𝑅𝑠𝑟𝑒𝑓2, 𝑅𝑝𝑟𝑒𝑓, 𝑎1, 𝑎2, 

𝐼𝑝ℎ𝑟𝑒𝑓 , 𝐼𝑜1𝑟𝑒𝑓 and 𝐼𝑜2𝑟𝑒𝑓  will provide a more accurate I-V 

characteristic of the solar PV. Additionally, in order to 

approximate the short circuit current (𝐼𝑠𝑐) and open circuit 

voltage (𝑉𝑜𝑐) at different environmental conditions following 

equations are used [11]: 

𝐼𝑠𝑐 = (𝐼𝑠𝑐𝑆𝑇𝐶
+ 𝑘𝑖(𝑇 − 𝑇𝑆𝑇𝐶))

𝐺

𝐺𝑆𝑇𝐶

 

𝑉𝑜𝑐 = 𝑉𝑜𝑐_𝑆𝑇𝐶 + 𝑉𝑡  𝑙𝑛 (
𝐺

𝐺𝑆𝑇𝐶

) + 𝑘𝑣(𝑇 − 𝑇𝑆𝑇𝐶) 

(7) 

It must be noted that the parameters estimated for one set of 

the environmental condition can predict the behavior of solar PV 

for all environmental conditions, that is not the case of 

convention models where the parameters are fixed. This is 

because, in the 12p-DDM, the values of 𝐼𝑝ℎ , 𝐼𝑜1 , 𝐼𝑜2, 𝑅𝑠 and 𝑅𝑝 

are adapted according to the variations of temperature and solar 

irradiance. Once the precise model of solar PV is developed, it 

can be used to predict the characteristic curves of solar PV at 

different weather conditions of a particular area. This is 

necessary for designing a high efficiency inverter that is suitable 

for the given location [21], [22]. In addition, it can be beneficial 

to identify mismatch in PV array or evaluate the influence of 

dust in the solar PV module, by calculating the difference in real 

power generated by the module and predicted power by the 

model. This will allow performing maintenance at the right time. 
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Fig. 1.  Double – diode solar PV equivalent circuit. 

III. PROBLEM FORMULATION 

The diode models, discussed in the previous section, can help 

predict the I-V and P-V characteristics of the PV modules. For 

this one need to obtain optimized parameters of the solar PV 

model with negligible error. This can be done by using various 

optimization algorithms. In this work, the Wind Driven 

Optimization (WDO) algorithm is employed and it is explained 

in the next section. However, as in any optimization algorithm, 

one has first to define the objective function that has to be 

minimized. 

For this, the Individual Absolute Error (IAE), which is 

absolute value of the difference between measured current Im 

and estimated output current Iestimated is defined first and it is 

given by: 

f
i
(V𝑚,I𝑚,X)=IAE=abs(Im-Iestimated) (8) 

where X represents the model parameters. Next, the Sum of 

Squared Error (SSE) function is given 



𝑆𝑆𝐸 =  ∑𝐼𝐴𝐸𝑖
2

𝑁

𝑖=1

 (9) 

where 𝑁 is the number of experimental data.  

Finally, the objective function is defined as the Root Mean 

Square Error (RMSE) value of the SSE and is given by: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
 𝑆𝑆𝐸 (10) 

The objective function will aggregate the absolute error and 

gives the measure of predictive power. For comparison purpose, 

RMSE value will be normalized as: 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝐼𝑆𝐶_𝑆

 100 % (11) 

where 𝐼𝑆𝐶_𝑆 is the short circuit current at STC. 

In most of the practical applications, the solar PV model has 

been used to predict the maximum power that can be extracted 

from the solar PV at a particular weather condition. Thus, to 

validate the accuracy of P-V curve of solar PV, the Mean 

Absolute Error in Power (MAEP) is calculated as: 

𝑀𝐴𝐸𝑃 =
∑ 𝑒𝑟𝑟𝑜𝑟𝑃

𝑁
𝑖=1

𝑁
 (12) 

with 

𝑒𝑟𝑟𝑜𝑟𝑝 = |𝑃𝑚 − 𝑃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑| (13) 

Here 𝑃𝑚 is the experimentally measured power curve data and  

𝑃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  is the power estimated using solar PV model. 

IV. WIND DRIVEN OPTIMIZATION AND ITS IMPLEMENTATION  

A. Wind Driven Optimization Algorithm (WDO) 

Wind driven optimization is a new nature-inspired 

optimization technique based on atmospheric motion [23], [17]. 

The WDO technique is a population based iterative and heuristic 

global optimization algorithm for multidimensional problems 

such as the solar PV parameter optimization.  

Essentially, a population of infinitesimally small air parcels 

navigates over an N-dimensional search space following 

Newton's second law of motion. The idea is based on the actual 

equations that describe the movement of air parcels from a high-

pressure area to low pressure area in an attempt to equalize 

horizontal imbalances in the air pressure. The change in pressure 

(𝑃) is referred as the pressure gradient. Newton’s second law 

states that total force (𝐹𝑡) applied on air parcel causes the air 

parcel to accelerate with an acceleration 𝑎 in the same direction 

of the force: 

𝜌 . 𝑎 ⃗⃗⃗  =  ∑  𝐹𝑡
⃗⃗  ⃗ (14) 

The four forces that affect the movement of air parcel are 

pressure gradient force (𝐹𝑃𝐺), frictional force (𝐹𝐹), gravitational 

force (𝐹𝐺) and Coriolis force (FC). By assuming air has finite 

volume (𝛿V), the force due to pressure gradient can be expressed 

as: 

𝐹𝑃𝐺
⃗⃗ ⃗⃗ ⃗⃗  =  − 𝛻𝑃⃗⃗⃗⃗⃗⃗  . 𝛿𝑉 (15) 

The frictional force opposes the air parcel motion started by  

𝐹𝑃𝐺 , and can be expressed in a simplified form as [17]: 

𝐹𝐹
⃗⃗⃗⃗   =  − 𝜌 𝛼 𝑢⃗  (16) 

Here 𝜌 is the air density of a small air parcel, 𝛼 is frictional 

coefficient, 𝑢⃗  is wind velocity vector, 

The gravitational force pulls the air parcel to the center of the 

earth that causes a vertical motion defined as: 

𝐹𝐺
⃗⃗⃗⃗   =  𝜌. 𝛿𝑉. 𝑔  (17) 

with 𝑔  being the gravitation vector.  

The rotation of the earth causes deflection in the motion of air 

parcel and named as Coriolis force. This force will work in such 

a way that, velocity in one direction is influenced by velocity of 

another direction. It can be expressed as: 

𝐹𝐶
⃗⃗⃗⃗   =  − 2𝜃 × 𝑢⃗  (18) 

where 𝜃 represents the rotation of earth.  

So, by including 𝐹𝑃𝐺, 𝐹𝐹, FG, FC in total force described in 

equation (14) can be rewritten as: 

𝜌 .
∆𝑢

∆𝑡

⃗⃗⃗⃗  ⃗
=  𝜌. 𝛿𝑉. 𝑔 − 𝛻𝑃⃗⃗⃗⃗  ⃗ . 𝛿𝑉 −  𝜌 𝛼 𝑢⃗ −  2𝜃 × 𝑢⃗  

 

(19) 

Since air parcels are infinitesimal and dimensionless 𝛿𝑉 can 

be neglected from (19). In order to make the equation simpler, 

∆𝑡 is assumed to be equal to 1. Substituting the ideal gas 

equation in (19) and rewriting  in terms of the current pressure 

𝑃𝑐, temperature 𝑇 and universal gas constant R, we get: 

∆𝑢⃗⃗⃗⃗  ⃗ = 𝑔 + (− 𝛻𝑃⃗⃗⃗⃗  ⃗.
𝑅 𝑇

𝑃𝑐
 ) +  ( − 𝛼 𝑢 ⃗⃗  ⃗) −  (  

2 𝜃 𝑢 ⃗⃗  ⃗𝑅𝑇

𝑃𝑐
)  

 
(20) 

In (20) the first and the second vectors do not depend on 

position (𝑦) or velocity (𝑢), so both the vectors are broken down 

into their magnitude and direction.  

Since gravitational force always try to move towards the 0th 

position it can be rewritten as |𝑔|(0- 𝑦𝑐)  where   𝑦𝑐 is current 

position of the the air parcel. Similarly, since the pressure 

gradient move toward the optimal solution so it can be rewritten 

as |∇𝑃|(𝑦𝑜𝑝𝑡 − 𝑦𝑐). Moreover, the velocity equation depends on 

its pressure value. So, if the pressure increases the velocity gets 

updated incorrectly. In order to cater for that, equation (20) is 

modified based on the rank of the pressure. After every iteration, 

the air parcels are ranked in descending order based on their 

pressure values. If 𝑟 is the rank of the air parcel, the new velocity 

and position, in 𝑗𝑡ℎ dimension of  𝑘𝑡ℎ air parcel will be updated 

according to:  

𝑢𝑛𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑗

𝑘
 =  ( 1 −  𝛼 ) 𝑢⃗ 𝑐𝑗

𝑘
−  𝑔 𝑦𝑐𝑗

𝑘 + ( | 1 −

 
1 

𝑟𝑘 |  . ( 𝑦𝑜𝑝𝑡𝑗
𝑘 − 𝑦𝑐𝑗

𝑘)  𝑅𝑇 )  + ( 
 𝑐  .𝑢⃗⃗⃗ 0

𝑟𝑘  )  

 

 

(21) 

𝑦𝑛𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑗
𝑘

=  𝑦𝑐  ⃗⃗ ⃗⃗  ⃗𝑗
𝑘
+ ( 𝑢𝑛𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑗

𝑘
×∆𝑡) (22) 

Here 𝑢𝑛𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ stands for the velocity of the next iteration, 𝑢𝑐⃗⃗⃗⃗  is 

the velocity of the current iteration, 𝑦𝑜𝑝𝑡 is optimal position so 

far, 𝑐 =  −2𝑅𝑇, and  𝑢⃗ 𝑜 = 𝜃× 𝑢⃗  . For each dimension, the WDO 

allows air parcel to travel in a boundary of [-1, 1]. To obtain the 

optimized objective function value, the coefficients 𝛼, 𝑔,  𝑅𝑇, 𝑐 

in (21) play an important role.  In order to find the optimized 

values of these constants Covariance Matrix Adaptation 

Evolution Strategy (CMAES) technique is used. It does not 



require any inputs other than population size [17]. Since WDO 

uses simple steps to reach the optimized values, it is a desirable 

technique for optimizing the nonlinear problems. This technique 

is proper for parameter estimation because it explores and 

continuously exploits the parameters. The main feature of the 

technique is that, compared to other nature-inspired algorithms 

WDO introduces gravitational and Coriolis forces in the velocity 

updating equation. In other algorithms candidates of the 

population may fly out or stuck at the boundaries of each 

dimension, so this holds back the algorithm for productively 

explore the entire search space. In WDO the gravitational force 

pulls the air-parcels back to the search space if they remain 

stuck. Thus, it prevents local convergence of the parameters by 

always jumping to a new position in search of the low-pressure 

area. Additionally, in other algorithms the dimensions of a 

candidate are influenced by the same dimension of other 

population (global best). But, in WDO by Coriolis force, each 

dimension is randomly affected by the other dimensions. This 

improves the robustness in the motion of air parcels and allows 

an extra degree of freedom for fine tuning. Both these properties 

are not introduced in any other algorithms.  

Start

Initialize parameters of WDO algorithm (α, g, RT, c)

Randomize velocity and position of each 

dimension

Set population size, maximum iterations, dimensions (number of 

parameters), lower and upper boundaries of dimensions, maximum allowed 

velocity and define the objective function

Initialization

For iteration = n

Call objective function RMSE. Rank the air parcels, Store the 

best objective function value and its dimensions

Update velocity of air parcel according to the rank using Eq. 21, 

modify position using Eq.22, check the velocity and position 

limits

Call CMAES, update WDO 

parameters

WDO 

Evaluation

Max no. of iteration

Yes

No
n = n+1

Display optimal parameters

End

Stopping 

Criterion

 

Fig. 2. Flowchart of WDO algorithm 

B. WDO implemented for parameter estimation of solar PV 

The implementation of WDO for parameter estimation is shown 

as a flowchart in Fig. 2. As seen from flowchart it involves 

different steps and are explained as follows: 

Step 1: Initialization of parameters: Population size (number of 

air parcels) = 𝑁𝑘, maximum number of iterations = 𝑁𝑖, 

dimensions of air parcel (number of parameters) = 𝑁𝑗, dimension 

limits (𝑀𝑎𝑥𝑗  and 𝑀𝑖𝑛𝑗) and maximum velocity 𝑢𝑚𝑎𝑥 are 

initialized. Define the objective function (10). Randomly 

generate the velocity (𝑢1
𝑘, 𝑢2

𝑘 … , 𝑢𝑖𝑁𝑗
𝑘) and position 

(𝑦1
𝑘 , 𝑦2

𝑘, … 𝑦𝑁𝑗
𝑘) for each air parcels. CMAES generates the 

predetermined coefficients. 

Step 2: Pressure Evaluation: In this step, the pressure of each air 

parcel is evaluated by the objective function (10). The parameter 

limits are mapped from [-1,1] to the actual values as: 

𝑥𝑗
𝑘 = (𝑀𝑎𝑥𝑗 − 𝑀𝑖𝑛𝑗) ×((

𝑦𝑗
𝑘 + 1

2
) + 𝑀𝑖𝑛𝑗) 

 

(23) 

Step 3: Ranking of air parcel: According to the descending order 

of pressure value air parcels are ranked. 

Step 4: Updating: CMAES will generate a new set of 

coefficients. On the basis of the rank of the air parcel, velocity 

and position of each air parcel are updated using (21) and (22). 

In order to preclude air parcel in taking large steps, air parcels 

are limited to maximum velocity. If 𝑢𝑛𝑒𝑤𝑗
𝑝 is above or below 

the 𝑢𝑚𝑎𝑥, velocity will be updated in such a way that 

𝑢𝑛𝑒𝑤𝑗
𝑝 = {

𝑢𝑚𝑎𝑥        𝑖𝑓 𝑢𝑛𝑒𝑤𝑗  
𝑘 > 𝑢𝑚𝑎𝑥

−𝑢𝑚𝑎𝑥        𝑖𝑓  𝑢𝑛𝑒𝑤𝑗
𝑘  <  −𝑢𝑚𝑎𝑥

} 

Here the magnitude of the velocity is limited while the direction 

is maintained the same.  

Step 5: Termination criterion: Until the maximum number of 

iteration reached steps 2 to 4 is repeated. Finally, the best 

pressure position is recorded as the optimized result. 

V. RESULTS AND DISCUSSION 

A. Comparison with Experimental curves at the controlled 

environmental condition. 

i) Experimental data of Kyocera – KC200GT 215 

The twelve parameters of solar PV model described 

previously is first coded in MATLAB/Simulink and is used to 

test the proposed optimization algorithm. The 25 set 

experimental data of multi-crystal PV module Kyocera – 

KC200GT 215 provided in [24] is used to find the objective 

function. The dimensions  𝛾𝑅𝑠, 𝛾𝑅𝑝, 𝐾𝑅𝑠, 𝐾𝑅𝑝, 𝑅𝑠𝑟𝑒𝑓1, 𝑅𝑠𝑟𝑒𝑓2, 

𝑅𝑝𝑟𝑒𝑓, 𝑎1, 𝑎2, 𝐼𝑝ℎ𝑟𝑒𝑓 , 𝐼𝑜1𝑟𝑒𝑓  and 𝐼𝑜2𝑟𝑒𝑓 have been assigned a 

boundary limit between (-5 to -0.05), (-5 to -0.05), (0.001 to 

0.01), (-0.01 to -0.001), (0.01Ω to 3Ω ), (0.01Ω to 3Ω ), (500Ω 

to 2000Ω), (1 to 3), (1 to 3), (0 to 10A), (0 to 1A) and (0 to 1A) 

respectively. 

Table I presents the comparison of the proposed technique 

with the techniques already available in the literature. The 

comparison was done based on two performance indexes such 

as 𝑀𝐴𝐸𝑃 and 𝑁𝑅𝑀𝑆𝐸. All the parameters were estimated at the 

STC. Table I clearly exhibits that, the 12p-DDM using WDO 

shows better results for both performance indexes MAEP and 

𝑁𝑅𝑀𝑆𝐸. This clearly reveals that WDO algorithm performs 

well in terms of accuracy. 

Moreover, the 12p-DDM with WDO technique require only 

one set of parameters for all environmental conditions. This can 

be substantiated by analyzing the average MEAP and NRMSE 



for seven set of environmental conditions. The values of  

𝑀𝐸𝐴𝑃𝑎𝑣𝑔and 𝑁𝑅𝑀𝑆𝐸𝑎𝑣𝑔 are obtained as: 

𝑀𝐸𝐴𝑃𝑎𝑣𝑔 = 0.55 𝑊, 𝑁𝑅𝑀𝑆𝐸𝑎𝑣𝑔 = 0.436 % 

The Fig. 3 (a) and (b) shows the comparison of I-V and P-V 

graph obtained experimentally and using the proposed method 

at different irradiance. This visualize that 12p-DDM with WDO 

technique exactly replicate the experimental curves at different 

environmental conditions. Moreover, from Fig. 3 estimated data 

without experimental data curves ensure that the 12p-DDM 

could estimate the PV characteristics for all environmental 

conditions. It must be noted that the same set of estimated 

parameters are used for all environmental conditions. It proves 

that Kyocera – KC200GT 215 can be exactly modeled using 

12p-DDM using the parameters as mentioned in Table I. 

 

 
Fig. 3 KC200GT 215 (a) I-V characteristics at different irradiance (b) P-V 

characteristic curve of KC200GT 215 at different irradiance 
 

TABLE I 

ESTIMATED PARAMETERS OF 12p-DD MODEL OF KC200GT 215 
MODULE  

Parameters Values B [4] C [21] D [30] E [31] F [32] 

𝑎1  1.2506 1 1 1.2844 1 1.28 

𝑎2  2.751 2 1.2 

𝑅𝑆 (mΩ) 9.3 271 379.5 236 303 230 

𝑅𝑃  (Ω) 250 171.2 278.91 524.2 343.1 405.2 

𝐼𝑝ℎ (A) 8.1192 8.193 8.219 8.213 8.21 8.214 

𝐼𝑜1(nA) 72.73 0.3 0.3795 78.4 11.1 75.01 

𝐼𝑜2(nA) 1151.2 4433.4 11.1 

𝛾𝑅𝑠  −0.063  NA NA NA NA NA 

𝛾𝑅𝑝  −0.862  NA NA NA NA NA 

𝐾𝑅𝑠  0.0033 NA NA NA NA NA 

𝐾𝑅𝑝  −0.002   NA NA NA NA NA 

𝑅𝑠𝑟𝑒𝑓1(Ω)  0.0047 NA NA NA NA NA 

𝑅𝑠𝑟𝑒𝑓2(Ω)  0.0047 NA NA NA NA NA 

𝑅𝑝𝑟𝑒𝑓(Ω)  250  NA NA NA NA NA 

𝐼𝑝ℎ𝑟𝑒𝑓 (A) 8.1192 NA NA NA NA NA 

𝐼𝑜1𝑟𝑒𝑓 (nA) 72.73 NA NA NA NA NA 

𝐼𝑜2𝑟𝑒𝑓 (nA) 1151.2 NA NA NA NA NA 

𝑀𝐴𝐸𝑃 (W) 0.3594 0.499 1.1328 1.337 0.92 1.258 

𝑁𝑅𝑀𝑆𝐸 (%) 0.3846 0.515 1.1675 1.3733 1.007 1.298 

ii) Experimental data of RTC France solar cell 

 In order to verify 12p-DDM with WDO technique as a reliable 

alternative in modeling the solar PV, the results obtained are 

compared to the results presented in recent literature. The  

 

 

 
 

Fig. 4 (a) RTC France solar cell (a) I-V Characteristics, (b) P-V characteristics 
(c) Absolute error of three optimization techniques. 

experimental data of 57 mm dia RTC France silicon solar cell at 

1000W/m2 irradiance and 330C temperature presented in [25] is 

used for the comparison. This particular solar cell was chosen 

because, in much recent literature, this experimental data had 

been used as comparative platform of the obtained results. The 

comparison of results estimated by WDO and other techniques 

such as Bee Pollinator Flower Pollination Algorithm (BPFPA) 

[26], Self-Adaptive Teaching Learning Based Optimization 

(SATLBO) [27], Cat Swarm Optimization (CWO) [28], Chaotic 

Whale Optimization Algorithm (CWOA) [29], Flower 

Pollination Algorithm (FPA) [15] has been shown in Table II.  

From Table II, it is significant that the MAEP and NRMSE 

values of the proposed method outperform (0.357mW and 

0.127%) among the methods considered for comparison. Fig. 4 

(a) and (b) shows the I-V and P-V curve of the solar cell. This 

clearly supports the results shown in Table II, the estimated 

curve exactly matches the experimental curve with negligible 

error. Fig. 4 (c) shows the comparison of absolute error curve of 

WDO, BPFPA and CWOA. WDO shows better result compared 

to the other two techniques because of the following reasons: In 

CWOA technique, position updating is based on the chaotic 

sequence, which is very sensitive to the primary solution [29]. 

So, this makes the control variable jumps to the global solution. 

Even though this exploration in parameters creates scattering, 

but due to the absence of exploitation in parameters, CWOA 
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becomes less diverse and produce an error. BPFPA shows both 

exploration and exploitation of parameters but, it stops searching 

for diverse solution once it converges to an optimal region [26]. 

Because of that, all the parameters may not converge to the 

global optimum. So, the diversity in solution is less in BPFPA, 

that create error values.  By utilizing the gravitational and 

Coriolis forces in the updating velocity both exploration and 

exploitation of parameters are available in WDO, in addition to 

that it always establishes randomness that converges all 

parameters to the optimum value. 

B. Comparison with datasheet curve  

In this section, the flexibility of the 12p-DDM of the solar PV 

with WDO is validated. In order to verify that, the characteristic 

curves estimated by WDO is compared with the data sheet 

characteristic curves of different solar PV modules such as Shell 

SP140-PC (Monocrystalline) [33], KYOCERA KS20T 

(Multicrystal) [34], Sunmodule SW245 poly (Polycrystalline) 

[35], and Solo panel SP190 (Thin film) [36]. The data in 

datasheet curve obtained using a curve extractor algorithm 

developed in MATLAB. The boundaries assigned to all the PV 

modules parameters are 𝛾𝑅𝑠 ∈ [−5 , −2], 𝛾𝑅𝑝 ∈ [−5,−0.05 ], 

𝐾𝑅𝑠 ∈ [0.001, 0.01], 𝐾𝑅𝑝 ∈ [−0.01, −0.001], 𝑅𝑠𝑟𝑒𝑓1 ∈

[0.001, 1]Ω, 𝑅𝑠𝑟𝑒𝑓2 ∈ [0.001, 1] Ω, 𝑅𝑝𝑟𝑒𝑓 ∈ [50, 2000] Ω, 

𝑎1, 𝑎2 ∈ [1, 5], 𝐼𝑝ℎ𝑟𝑒𝑓 ∈ [0.1, 10] 𝐴 and 𝐼𝑜1𝑟𝑒𝑓 , 𝐼𝑜2𝑟𝑒𝑓  ∈

[0.1, 5]𝜇𝐴 

Table III shows the parameter values of all the modules under 

standard test condition. The MAEP and NRMSE of each module 

given in Table III substantiate that the proposed model can be 

used to predict the I-V and P-V characteristics of different solar 

PV technologies very precisely.  

C. Comparison with an Experimental curve at uncontrolled 

environmental conditions. 

The proposed method can also be effectively used for 

uncontrolled environmental conditions varying irradiation and 

temperature. In order to authenticate the 12p-DDM of the solar 

PV, the obtained results are compared with the experimental 

curve. The real-time data are obtained from National Renewable 

Energy Laboratory (NREL) which includes the I-V curve data 

of a day for the location Golden, Colorado. NREL used 

amorphous silicon (a-Si) tandem junction (aSiTandem 90-31) 

solar PV module for the experiment. The Plane of Array (POA) 

irradiance was measured using Kipp & Zonen CMP22 

Pyranometer and PV modules back surface temperature was 

measured using Omega Model Col-T style 1 Thermocouple. The 

PV module tilt angle is 400 and the horizontal angle is 1800. The 

data was measured at every 15 minutes interval from 06:00 am 

to 06:00 pm. The irradiance and temperature variations are 

shown in Fig. 5. The solar PV operates at the Maximum Power 

Point (MPP) region. To find the parameters of 12p-DD solar PV 

module a set of data was measured at the reference irradiance 

(1012 W/m2) and temperature (57.70C). The optimized values of 

the parameters are shown in Table IV. Fig. 6 shows that the 

estimated curve exactly agrees with the measured curve. Hence, 

it validates that the 12p-DDM with these parameters can show 

similar characteristics as aSiTnadem 90-31 solar PV module. 

Once the validation has been completed this model can be used 

to predict the output of the solar PV. In order to authenticate that, 

the varying irradiance and temperature as shown in the Fig. 5  

TABLE II 

COMPARISON OF WDO PERFORMANCE WITH OTHER ALGORITHMS  

Parameter WDO B [26] C [27] D [28] E [29] F [15] 

𝑎1  2.3776 1.479 1.4598 1.4515 1.4565 1.4747 

𝑎2  1.4604 2.00 1.999 1.997 1.9899 2 

𝑅𝑆 (mΩ) 36.7 36.4 36.63 36.73 36.66 36.3 

𝑅𝑃  (Ω) 53.245 59.62 55.117 55.381 55.201 52.347 

𝐼𝑝ℎ (A) 0.7609 0.76 0.7607 0.7607 0.7607 0.7607 

𝐼𝑜1(µA) 1.4661 0.321 0.2509 0.2273 0.2415 0.3 

𝐼𝑜2(µA) 0.0257 0.045 0.5454 0.7279 0.600 0.1661 

𝛾𝑅𝑠   −3.066  NA NA NA NA NA 

𝛾𝑅𝑝  −4.998  NA NA NA NA NA 

𝐾𝑅𝑠  0.0081 NA NA NA NA NA 

𝐾𝑅𝑝  −0.001 NA NA NA NA NA 

𝑅𝑠𝑟𝑒𝑓1(Ω)    0.0178 NA NA NA NA NA 

𝑅𝑠𝑟𝑒𝑓2(Ω)  0.0178 NA NA NA NA NA 

𝑅𝑝𝑟𝑒𝑓(Ω)  53.762 NA NA NA NA NA 

𝐼𝑝ℎ𝑟𝑒𝑓 (A) 0.7248 NA NA NA NA NA 

𝐼𝑂1𝑟𝑒𝑓 (µA) 0.8599 NA NA NA NA NA 

𝐼𝑂2𝑟𝑒𝑓 (µA) 0.0113 NA NA NA NA NA 

𝑀𝐴𝐸𝑃 
(mW) 

0.357 2.2 0.361 0.359 0.3872 0.45 

𝑁𝑅𝑀𝑆𝐸 
(%) 

0.127 0.8438 0.1335 0.1328 0.1627 0.182 

TABLE III 
12p-DD MODEL PARAMETERS FOR DIFFERENT SOLAR PV MODULES 

Parameters Shell, 
SP140-PC 

KYOCERA 
KS20T 

Sunmodule 
SW245 

poly 

SoloPanel 
SP190 

𝑎1  1.9618 2.1264 4.1710 1.5441 

𝑎2   1.3609 1.2656 1.518 1.5373 

𝑅𝑆 (mΩ) 440 90 5.8 19.5 

𝑅𝑃  (Ω) 1148.6 1329.1 799.7526 40.0909 

𝐼𝑝ℎ (A) 4.6994 1.263 8.4901 4.3021 

𝐼𝑜1(µA) 1.3858 4.226 0.03737 1.4714 

𝐼𝑜2(µA) 1.3334 0.01 0.92614 1.0279 

𝛾𝑅𝑠  -3.1913 -0.9137 -0.0504 -1.7493 

𝛾𝑅𝑝  -4.6804 -0.4239 -0.1763 -2.9702 

𝐾𝑅𝑠  0.0069 0.01 0.0073 0.0068 

𝐾𝑅𝑝  -0.001 -0.0038 -0.0051 -0.0066 

𝑅𝑠𝑟𝑒𝑓1(Ω)  0.0022 0.0045 0.023 0.0098 

𝑅𝑠𝑟𝑒𝑓2(Ω)  0.0022 0.0045 0.023 0.0098 

𝑅𝑝𝑟𝑒𝑓(Ω)  1500 1329.1 799.7526 40.0909 

𝐼𝑝ℎ𝑟𝑒𝑓 (A) 4.6967 1.263 8.4901 4.3021 

𝐼𝑂1𝑟𝑒𝑓 (µA) 0.013393 4.2226 0.03737 1.4714 

𝐼𝑂2𝑟𝑒𝑓 (µA) 1.2609 0.01 0.92614 1.0279 

𝑀𝐴𝐸𝑃 (W) 0.0063 0.009 0.0054 0.0016 

𝑁𝑅𝑀𝑆𝐸 (%) 0.1264 0.442 0.08165 0.088 

 

Fig. 5 The environmental factors in Golden, Colorado provided by NREL 

has been used for the prediction of power from the module. Fig. 

7 shows that the proposed method exactly predicts the 

characteristics of solar PV module at different varying 

environmental conditions. Meanwhile, the Table IV shows the 

two performance indexes MAEP and NRMSE of 12p-DDM are 

low. This validates that the proposed method can be exactly used 
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to model the solar PV for computer simulation to predict the 

characteristics of the module for any environmental conditions. 

 

Fig. 6 I-V characteristics of a-Si Tandem module at 1012W/m2 and 57.70C 

 

Fig. 7 Comparison of actual and predicted power at different environmental 

conditions 

TABLE IV 
12p-DD MODEL PARAMETERS OF a-Si TANDEM MODULE  

Parameters Values 

𝑎1  2.1737 

𝑎2  2.6358 

𝑅𝑆 (Ω) 1.2858 

𝑅𝑃  (Ω) 558.3285 

𝐼𝑝ℎ (A) 1.1717 

𝐼𝑜1(mA) 0.22439 

𝐼𝑜2(µA) 6.1244 

𝛾𝑅𝑠  −3.7619  

𝛾𝑅𝑝  −5.7491  

𝐾𝑅𝑠   0.0072  

𝐾𝑅𝑝  −0.0031  

𝑅𝑠𝑟𝑒𝑓1(Ω)  0.5884  

𝑅𝑠𝑟𝑒𝑓2(Ω)  0.5884  

𝑅𝑝𝑟𝑒𝑓(Ω)  615.9002  

𝐼𝑝ℎ𝑟𝑒𝑓 (A)  1.1271 

𝐼𝑜1𝑟𝑒𝑓 (µA) 52.659 

𝐼𝑜1𝑟𝑒𝑓 (µA) 2.0135 

𝑀𝐴𝐸𝑃 (W) 0.168 

𝑁𝑅𝑀𝑆𝐸 (%) 0.7855 

 

VI. CONCLUSION 

In this paper, the effectiveness of the wind driven optimization 

algorithm for parameter estimation of a 12p-DDM of solar PV 

is shown. The validation of the proposed algorithm was 

performed by comparing the results obtained to three different 

sets of data, namely: (i) experimental data at the controlled 

environmental condition (ii) data sheet curves provided by the 

manufacturers and (iii) real-time experimental data at the 

uncontrolled environmental condition. Additionally, in order to 

claim the results obtained by the WDO algorithm shows better 

accuracy it is compared with several parameter estimation 

techniques available literature. It was noticed that the WDO 

algorithm attains very low MAEP and NRMSE values for all 

types of solar PV (KC200GT 215, RTC France, SP140PC, 

KS20T, SP190, SW245poly and a-si Tandem 90-31). 

Meanwhile, all the I-V and P-V characteristic curves 

demonstrate that the estimated curve exactly matches the 

measured curve with negligible errors. In addition to that, the 

algorithm is very simple and easy to use.    

As a general conclusion, the WDO algorithm can be 

recommended as the accurate and flexible optimization 

algorithm for parameter estimation of solar PV model. 
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