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ABSTRACT 

 

Wearable physical activity (PA) monitors have improved the ability to estimate free-living 

total energy expenditure (TEE) but their application during arduous military training 

alongside more well-established research methods has not been widely documented. This 

study aimed to assess the validity of two wrist-worn activity monitors and a PA log against 

doubly-labelled water (DLW) during British Army Officer Cadet (OC) training. For 10 days 

of training, twenty (10 male and 10 female) OCs (mean ± SD: age 23 ± 2 years, height 1.74 ± 

0.09 m, body mass 77.0 ± 9.3 kg) wore one research-grade accelerometer (GENEActiv, 

Cambridge, UK) on the dominant wrist, wore one commercially-available monitor (Fitbit 

SURGE, USA) on the non-dominant wrist and completed a self-report PA log. Immediately 

prior to this 10-day period, participants consumed a bolus of DLW and provided daily urine 

samples, which were analysed by mass spectrometry to determine TEE. Bivariate correlations 

and limits of agreement (LoA) were employed to compare TEE from each estimation method 

to DLW. Average daily TEE from DLW was 4112 ± 652 kcal·day
-1

 against which the 

GENEActiv showed near identical average TEE (mean bias ± LoA: -15 ± 851 kcal
.
day

-1
) 

while Fitbit tended to underestimate (-656 ± 683 kcal·day
-1

) and the PA log substantially 

overestimate (+1946 ± 1637 kcal·day
-1

). Wearable physical activity monitors provide a 

cheaper and more practical method for estimating free-living TEE than DLW in military 

settings. The GENEActiv accelerometer demonstrated good validity for assessing daily TEE 

and would appear suitable for use in large-scale, longitudinal military studies.  

 

KEY WORDS: Doubly-labelled water; Wearable technology; Physical activity, Army; 

Accelerometry   
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INTRODUCTION 

In military populations, measurement of the physical activity (PA) profile of personnel is 

important for monitoring health and training outcomes. Quantifying energy expenditure (EE) 

can inform evidenced-based interventions to optimise training volume, recovery, 

management of energy availability and injury risk mitigation strategies. Military training 

involves highly arduous physical exercise, unusual field-based activities such as heavy load 

carriage, digging and casualty extraction in addition to types of technical drill and weapons 

handling. The scope of unique activities performed in a range of environments, sometimes 

during periods of energy deficit and sleep disruption, mean it is challenging for investigators 

to employ experimental techniques required to accurately determine EE.  

The doubly-labelled water (DLW) method is well-established as a ‘gold-standard’ 

process for determining free-living total EE (TEE) in humans 
1
. The DLW technique has 

previously been used to quantify TEE in military cohorts (of approximately 19.6-19.8 

MJ.day
-1

 per individual (4380-4550 kcal.day
-1

) 
2
. However, the DLW method imposes 

significant challenges to investigators such as high financial cost, requirement for specialist 

materials, staff and analysis and participant burden which means that it can only be feasibly 

administered in small group samples over a short time period. Recent advances in wearable 

technologies have improved the ability to estimate free-living TEE in humans while limiting 

financial cost and user burden, and may be a solution to objectively assessing TEE in larger 

military cohorts 
2
.   

Research-grade activity monitors that use movement data alone (i.e. accelerometers) 

have demonstrated varied success when compared to the DLW method, with TEE prediction 

models ranging from weak to strong (R=0.13-0.86) 
3
. Accelerometers have shown efficacy 

when distributed to large military cohorts for physical demands monitoring 
2,4,5

. However, 

research in military settings has led some researchers to caution that activities such as loaded 
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marching or weapons handling could be misclassified as other movements or misinterpreted 

by TEE estimation algorithms as these are derived from typical human movements in the 

general population 
6
. Multi-sensor activity monitors, which attempt to improve TEE 

estimation by combining accelerometry with physiological monitoring (e.g. heart rate), are 

available as relatively inexpensive consumer-grade monitors ranging to sophisticated 

research tools. Research-grade multi-sensor tools have been shown to improve TEE 

estimation over accelerometry alone 
7,8

 and demonstrate good agreement with criterion 

measures of TEE 
9
. However, more-affordable consumer-grade monitors have shown varied 

validity based on the output variables analysed (e.g. steps, active minutes) and activity 

intensity (e.g. sedentary, moderate, vigorous) 
10,11

. 

The large cohort sizes often studied in the military setting have resulted in researchers 

adopting relatively low-cost alternatives to DLW and activity monitors such as self-report 

logging of PA 
5,12

. The use of self-report PA can introduce potential error via subjectivity and 

recall bias 
5,13,14

. While objective measurement of activity using wearable activity monitors 

may seem a viable solution to these barriers, many have been designed specifically for the 

general population and for use by an individual user. Therefore, the comparative efficacy of 

using different methods of PA monitoring in a military environment remains unclear. In 

addition to data validity, a monitor’s physical robustness and ability to handle and give easy 

access to data from large cohorts are vital considerations for suitability in this setting. The 

aim of this study was to examine the validity of three PA monitoring tools by a direct 

comparison of daily EE estimation against the DLW method in military personnel. This was 

with a secondary aim of assessing practical suitability of the tools for the military training 

environment. It was hypothesised that the agreement between daily TEE estimated from 

DLW during a 10-day military training period and estimates from a research-grade wrist-
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worn accelerometer would be superior to estimates from a wrist-worn multi-sensor 

consumer-grade activity monitor and a self-report PA log.  

 

METHODS 

Study design 

During 10 days of military training the DLW technique was used to measure TEE in 20 

British Army Officer Cadets (OCs; 10 male and 10 female; mean ± SD: age 23 ± 2 years, 

height 1.74 ± 0.09 m, body mass 77.0 ± 9.3 kg) at the Royal Military Academy Sandhurst 

(RMAS), UK. During the same 10 days, participants also wore two wrist-mounted physical 

activity monitors – a research-grade accelerometer (GENEActiv (Original), Activinsights 

Ltd., Cambridge, UK) and a multi-sensor consumer-grade monitor (Fitbit Surge HR, Fitbit, 

USA) and completed a daily PA log. The specific devices were chosen for reasons not limited 

to their design appeared to be able to withstand the military training environment and had not 

previously been examined in this context. After a written and verbal brief participants 

provided written consent to take part in the study. The investigation was approved by the 

Ministry of Defence Research Ethics Committee (MoDREC; 780/MoDREC/16).  

 The observed training period encompassed a selection of typical military activities, 

including classroom-based lessons and military-specific exercise. The study data collection 

did not interfere with normal Army-led training schedule and duties. While the examination 

and comparison of separate activities and bouts of exercise were beyond the scope of this 

paper, the varied range of activities encompassed by the activity monitoring tools are 

summarised here. The physical training sessions conducted during the data collection period 

comprised a) circuit training, b) running and hill sprints, c) resistance training and, for one 

morning, individual OCs participated in their own sports (including horse riding, field 

hockey, basketball and athletics). In addition, military technical drill sessions were performed 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

and field-based exercise which included a day of combat training involving intermittent 

movement on undulating terrain wearing a tactical ensemble (total mass approximately 25 

kg).   

 

Preliminary measures 

Body mass (Aria® scales, Fitbit, USA) and stature (Leicester Stadiometer, Seca, Hamburg, 

Germany) were measured at the beginning of the data collection period. Participants were 

each given the Fitbit to wear on their non-dominant wrist (as it could also act as a watch) and 

a GENEActiv to be worn on the dominant wrist. These wrist allocations were performed to 

reduce participant burden of wearing two devices.    

 

Doubly-labelled water 

The DLW method used in the present study has been described previously 
15

. Briefly, on the 

evening prior to the 10-day collection period, participants provided baseline urine samples 

before consuming a measured bolus of hydrogen (deuterium 
2
H) and oxygen (

18
O) stable 

isotopes as water (
2
H2

18
O). The dose was calculated to provide 150-180 mg of 

18
O per kg of 

body mass and 50-80 mg of 
2
H per kg of body mass. Post-dose urine samples were obtained 

for the subsequent 10 days, avoiding the first void of each day. Urine samples were frozen at 

-20°C to be stored for later analysis by an independent laboratory (Medical Research Centre 

Elsie Widdowson Laboratory (MRC EWL), Cambridge, UK). Isotope disappearance rates 

were determined through mass spectrometric analysis and used to calculate TEE using the 

multi-point method described previously 
15

 and where respiratory quotient was assumed to be 

0.85 for all participants.    
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Research-grade accelerometer 

The GENEActiv (Original) is a wrist-worn tri-axial seismic acceleration sensor, with a 

sensitivity level of ± 8 g. Accelerometers were configured for each user using GENEActiv 

software version 3.1 (Activinsights, Cambridge, UK) by inputting age, body mass, height and 

whether the monitor is worn on the dominant or non-dominant hand. Raw acceleration data 

were collected at 100 Hz and converted to summarise data over 60-s data epochs. The 

gravity-subtracted sum of vector magnitudes (SVM) for each minute were analysed using a 

macro-spreadsheet available from Activinsights to estimate metabolic equivalents (METs) 

using thresholds (Table 1) previously validated for GENEActiv accelerometers 
16

. These 

were summed for each training day to produce MET minutes (MET·mins). In addition, sum 

of minutes spent in ‘sleep’ according to GENEActiv monitors were summed for each day. 

Minutes per day with zero values were replaced with 0.9 METs to establish a low baseline of 

estimated metabolism. The summed MET
.
mins were converted to estimated kilocalories 

using equation 1:  

                         (Equation 1)  

Where BM is body mass in kg 
17

.  

 

Consumer-grade monitor 

The Fitbit Surge HR is a multi-sensor monitor which has a digital clock user-interface and 

houses a tri-axial accelerometer, gyroscope, compass, ambient light sensor, global positioning 

system and photoplethysmographic heart rate monitor. In order to extract daily TEE data, 

Fitbit monitors were synchronised to individual accounts where participant characteristics 

(age, sex, body mass, height) were inputted to individualise EE and basal metabolic rate 

(BMR) estimation to each participant. Data were extracted using an online data management 
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platform (Fitabase, San Diego, USA) in order to batch-download daily TEE for all monitors 

in kcal
.
day

-1
. 

 

Physical activity log 

Each day, participants completed a PA log which asked for amount of time spent per day 

asleep, sedentary and in light, moderate or vigorous activity.  The instructions for how to 

define these activity thresholds and examples of activities that could fall into these categories 

were given to participants within the activity log (Table 2). The activity intensity levels were 

given a MET value at the central point of previously defined ranges 
18

 (Table 1) and 

multiplied by the reported duration of activity to produce MET
.
mins from the PA log. As 

with the GENEActiv, equation 1 was used to convert MET
.
mins to kilocalories.  

 

Exclusion criteria 

Wear-time criteria were used to exclude specific days (per individual) if a monitor did not 

appear to be worn for sufficient duration on that day. A wear-time criterion of 75% of the 24-

day was set for both activity monitors concurrent with previous research 
19,20

. In addition, 

from any tool, if any 10-day mean extended beyond three standard deviations from the 

population mean, these were treated at outliers and removed from the analysis for that tool. 

Exclusion criteria meant that one participant was removed from the GENEActiv analysis 

(insufficient wear-time), and eight participants were removed from the PA log (outliers, n=2; 

insufficient completion of log, n=6). Average daily wear-time was 88 ± 6% for the Fitbit and 

87 ± 17 % for the GENEActiv.  
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Statistical analysis 

Calculations of energy expenditure from each tool and measures of central tendency and 

variance (i.e. means, standard deviations) were completed in Excel (Office 2016, Microsoft, 

USA) and statistical analyses were performed using SPSS version 23.0 (IBM, USA). The 

initial sample size of 20 participants was limited by the number of doses of DLW that could 

be obtained for the project. An a priori sample size estimation was performed (G*Power, 

Germany) for a repeated-measures analysis of variance (ANOVA). This indicated that to 

achieve power of 0.8 when identifying differences of effect size ≥0.3, a sample size of 

between 8 and 17 people would be sufficient depending on correlations (r) between measures 

ranging from 0.5 to 0.8. Bland and Altman plots were constructed to assess the agreement 

between DLW and each other TEE estimation method, comprising mean bias and 95% limits 

of agreement (LoA) 
21

. For agreement analyses, since limits of agreement and confidence 

intervals contain sample size and measurement variation, is it more important to determine if 

the (dis)agreement between methods is meaningful, irrespective of sample size. Therefore, to 

further analyse the comparative agreement of the evaluated estimation tools, 95% 

equivalence testing was also performed 
9,22

. In this analysis, if the 90% confidence intervals 

(CI) of the tool-measured mean are contained entirely within a given error zone of the 

criterion mean (in this case, ±10%) those measures are typically considered “significantly” 

equivalent. In the context of activity monitoring, 10% of daily TEE is typically deemed 

“meaningful” by being substantial enough to potentially influence health behaviours and/or 

outcomes (such as weight management, nutrition, optimising recovery and training).  Paired 

t-tests were used to compare mean TEE estimation from each method individually against 

measurement from DLW. To compare all methods, a repeated-measures ANOVA with post-

hoc Bonferroni correction was conducted on participants with data across all methods. To 

inform the association between PA tools and DLW across the range of expenditures, bivariate 
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correlations (Pearson’s) were performed between average daily TEE from the DLW method 

and each PA monitoring tool. It should be noted that correlational analysis does not 

necessarily demonstrate agreement between tools, since, unlike agreement testing, these 

analyses are designed to identify strength of association between two different 

variables/constructs that may be measured in different units and on different scales. Once a 

tool has been shown to have good agreement, a correlational analysis may support the extent 

of this agreement across a range of values. Statistical significance was set at an alpha value of 

p<0.05.     

 

RESULTS 

Agreement against the doubly-labelled water method 

Bland and Altman plots (Figure 1) show the agreement between estimated daily TEE from 

each estimation method against the criterion standard (DLW). The agreement between tools 

is illustrated using mean bias and 95% LoA. The research-grade accelerometer showed best 

agreement but moderate LoA with a mean bias ± 95% LoA of -15 ± 851 kcal
.
day

-1
. 

Agreement with DLW was poorer for the Fitbit (-656 ± 683) but with the narrowest LoA. 

The PA log performed least well, substantially overestimating TEE in comparison to DLW 

with large LoA (1946 ± 1637 kcal·day
-1

). Consistent with this, only the GENEActiv could be 

deemed statistically equivalent to the criterion measure (DLW), demonstrated by the 90% CI 

of the measured mean being contained within the recommended equivalence zone of ±10% of 

the criterion-measured mean (Figure 2).  
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Energy expenditure 

The daily energy demand (mean ± SD) of the 10-day period from the DLW method was 4112 

± 652 kcal·day
-1

. Figure 3 illustrates the average 24-hour EE from each estimation method 

and individual participant estimated 10-day means. Estimated TEE from both the Fitbit and 

the PA log differed significantly from DLW on individual comparison (p<0.05) and these 

results were corroborated by repeated-measures comparison between all methods via 

ANOVA using all participants with full data for each tool (n=11). Linear correlations 

between TEE from DLW demonstrated that the association between criterion measurement 

(Figure 4) and both the Fitbit (r=0.90, r
2
=0.82, p<0.01) and GENEActiv (r=0.79, r

2
=0.62, 

p<0.01) were stronger than with that of the PA log (r=0.57, r
2
=0.33, p>0.05). 

 

DISCUSSION  

This study examined the validity of three different methods to estimate TEE during military 

training by comparison with the ‘gold-standard’ DLW technique. The research-grade 

accelerometer was the most valid tool examined, exhibiting near identical group average TEE 

to DLW and with good absolute agreement. In comparison to DLW, the consumer-grade 

activity monitor exhibited the narrowest LoA but significantly underestimated TEE while the 

self-report PA activity log substantially overestimated TEE. These findings suggest that, in 

the context of daily TEE measurement, the research-grade activity monitor may be 

sufficiently accurate for use during military training and a suitable alternative to DLW in this 

setting.     
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 Accurately measuring the physical activity profile of military personnel in training or 

on operations is valuable for informing evidenced-based interventions to optimise training, 

quantify energy availability, and strategies to enhance recovery and mitigate injury risk. The 

present study is the first published use of the GENEActiv in a military population and 

supports previous findings of good validity of accelerometry-based TEE prediction 

algorithms in laboratory-controlled settings 
23,24

, free-living conditions in civilian populations 

25–27
 and opposite DLW in some military populations 

2,6
 . Results from this wrist-worn 

monitor are also consistent with previous physical activity monitoring studies in the military 

using hip-mounted accelerometers, demonstrating practical suitability and sufficient accuracy 

in large military cohorts 
2,4,28

. Our data suggest that the GENEActiv could be used to provide 

objective measurement of daily TEE in military settings, but it would be valuable to see if 

these results could be replicated in a larger cohort and in wider-ranging activities. 

Within research-grade monitors, a multi-sensor approach typically improves TEE 

estimation over accelerometry alone but is less clear in consumer-level devices. In laboratory 

trials, several models of the Fitbit have underperformed when compared to research tools, 

either by underestimation of EE and HR 
29–32

 or high inter-individual variation among similar 

tasks 
9
. In free-living trials, Fitbits have demonstrated strong correlations with accelerometers 

but typically when analysing steps alone, and less accurately with absolute EE 
10,33

. Similarly, 

the Fitbit was highly correlated with the criterion measurement in this study but 

underestimated TEE. This is an example of how correlation itself is not designed to signify 

agreement, but association between two (potentially unrelated) parameters that can be on 

different scales of measurement. Since the Fitbit exhibited the narrowest limits of agreement 

of the three tools, however, these data suggest that a simple linear correction could be 

effective at making reparations to EE estimation. Justifiably, the algorithms used by Fitbit or 

other large-scale device manufacturers are not freely available and so not only is it not 
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possible to determine what may have caused average EE underestimation here, but a 

successful correction would be challenging without availability of data in higher detail.  

Consistent with several previous studies in free-living environments, the self-report 

methods for TEE estimation demonstrated low user-compliance, high inter-individual 

variability and overestimation of activity which has been observed in both civilian 
34

 and 

military populations 
5
. Unfortunately, self-report methods inherently introduce subjectivity 

and can have a tendency to overestimate activity and underestimate sedentary time 
34,35

. 

Previously, this has been explained by recall bias 
14

 and floor and ceiling effects, where 

responses cluster near the top or bottom of a particular variable (such as many hours of 

sedentary behaviour and only few minutes of vigorous activity)
13

, which contributed to inter- 

and intra- individual variation within our data. Participants also cited, in comparison to 

wearing devices, lack of time and difficulty remembering to complete paperwork during 

field-based operations as reasons for lack of completion. While every effort was made for 

participants in the current study to complete the log daily and honestly, each of the above 

limitations to subjective profiling of physical activity may occur in these free-living settings. 

If PA logging is required in future military studies, housing questions on an electronic device 

with a notification service for questionnaire completion at specific, suitable times may 

improve compliance, but might not necessarily improve the overestimation of TEE. 

Where DLW provides TEE over several days or weeks, activity monitors can provide 

more detailed profiles of individual activity bouts or individual days. While not the focus of 

this study, this information could be examined in future to improve algorithms or corrections 

to EE estimation for military populations. Physical activity profiles from activity monitors are 

typically modelled from raw data via a combination of a) anthropometric data of the user at 

the outset, b) multiple, ranked thresholds where the summed magnitude of accelerations 

(and/or heart rate) in a specific time-frame denote different intensities of movement and c) 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

movement classification algorithms, which identify types of movement or action to either 

filter or retain for TEE estimation. Researchers have raised concerns that wrist-worn 

accelerometers may not accurately estimate TEE in military populations because unique hand 

movements such as weapons handling or drill and the action of carrying a rifle while running 

may be misinterpreted 
6
. In this study, specific movements and actions were not examined 

and while this possible inaccuracy was not discernible in resultant daily TEE from the 

GENEActiv, it could partly explain why the LoA were not narrower. Both the GENEActiv 

and Fitbit software do use user data to personalise TEE estimation. While unknown for the 

Fitbit, for the GENEActiv, activity thresholds are derived from a civilian population with a 

range of habitual activity levels 
16

 and application of pre-defined metabolic cost to those 

activity thresholds does not account for differences in physical fitness. Similarly, and lastly, 

BMR and the thermal effect of feeding (dietary-induced thermogenesis) are non-activity-

related proportions of TEE and were not directly measurable in the present study, except 

encompassed within the DLW method. This individualisation of EE estimation to this array 

of factors would require further precision, garnered from more in-depth, activity-specific data 

collection in military cohorts.  

The military training environment has the advantage of being a free-living setting 

with some elements that are fixed (to some extent) across the population sample such as 

training routines, diet and working hours. Without retrospective correction of EE estimation, 

the participants involved in this study are a realistic and representative sample of military 

personnel who would, notionally, wear and use the monitoring methods in the manner 

examined. This ecological validity means that any loss of estimation accuracy and data 

fidelity that did occur would likely be carried over into a larger-scale cohort.  From a 

practical perspective, research-specific tools are typically not designed to withstand heavy 

use in harsh, uncontrolled environments but more physically robust, affordable consumer-
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grade monitors may not achieve comparative accuracy 
9
. Inspection by study researchers and 

participant feedback revealed that both wrist-worn monitors were generally robust in the 

military training environment but are not small enough or possess a low-enough profile from 

the wrist to avoid damage. In the current study, wear-comfort was not a concern for the 

majority of participants, but each monitor had distinct advantages, where the GENEActiv 

allows an individual to wear their own watch on the alternate wrist, and the Fitbit has an 

interactive interface giving feedback to participants. For researchers, the GENEActiv allows 

open access to raw data and facilitates advanced interrogation of data and customised 

analyses. However, without sufficient programming capability, data processing would 

represent a significant undertaking in a larger, longer-term study. Despite the Fitbit housing a 

‘black box’, commercially-sensitive algorithm, access to the data management platform 

Fitabase does allow efficient on-mass download from multiple devices but only of computed 

daily summary data rather than raw data at the device’s sampling frequency.  

The present study used the criterion measurement of TEE via DLW to assess the 

validity of three measurement tools to estimate daily TEE during 10 days of military training. 

The research-grade activity monitor demonstrated equivalence to DLW and practical 

suitability for use in the military setting, and outperformed the consumer-grade activity 

monitor and PA log assessed. It would be valuable for future work to look to replicate these 

findings using the GENEActiv in other military populations and assess validity of more 

discrete military-specific activities, with a view to allow person-, activity- or population-

specific adjustment of EE estimation. 
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PERSPECTIVE 

 

While there has been substantial improvement in wearable physical activity monitors in 

recent years, their validity for estimating energy expenditure in unique and arduous training is 

under-researched, particularly in comparison to more well-established research techniques 

and in military populations. Previous activity monitoring in military settings have cautioned 

that movement patterns unique to the military may render data from accelerometry, and 

particularly wrist-worn devices, challenging to interpret 
6
, not comparable to direct 

observation 
5
 or in need of correction 

2
. The current study directly compares multiple 

methods of EE estimation that could be applied in a field-setting to a criterion gold-standard 

and is also the first study to use the GENEActiv in a military context. The findings suggest 

this research-grade wrist-worn accelerometer is a valid and practical monitoring tool for gross 

daily EE estimation in this nature of training. However, more advanced analysis would be 

recommended, both in larger military cohorts and in more finite detail, assessing military-

specific activities and shorter exercise bouts. This would be with a view to assess military-

specific activity classification and thresholds for exercise intensity, previously derived from 

the general (non-military) population
16

, to improve limits of agreement against criterion 

measures.  
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FIGURE LEGENDS 

 

Figure 1. Bland-Altman plots for total energy expenditure estimation. Agreement (mean 

(black dashed line) ± 95% Limits of Agreement (LoA; grey dotted line)) between 10-day 

mean daily total energy expenditure (TEE) estimated from doubly-labelled water (DLW) and 

(A) Fitbit (n=20), (B) GENEActiv (n=19) and (C) PA Log (n=12) 

 

Figure 2. 95% equivalence testing of total energy expenditure. Equivalence test of each 

TEE estimation with 90% CI from Fitbit (Square), GENEActiv (Triangle) and PA Log 

(circle) against ±10% of DLW-estimated mean (grey shaded area).  

 

Figure 3. Average daily energy expenditure for each estimation method. Bars are means 

across the 10-day period computed from all participants for each tool, with error bars 

representing SD, and data points for each individual. Horizontal parentheses denote 

significant difference from criterion measurement (DLW; p<0.05).    

 

Figure 4. Correlational analysis between estimation methods. Average daily energy 

expenditure (kcal
.
day

-1
) assessed by DLW against estimations by Fitbit (Black, squares; 

r=0.90, p<0.01), GENEActiv (Grey, upward triangles; r=0.79, p<0.01) and PA log (Black, 

circles; r=0.57, p>0.05) with lines of best fit. 
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Table 1. Activity intensity level thresholds utilised in energy expenditure estimation 

methods  

  TEE estimation tool 

 PA log  GENEActiv 

Activity intensity level MET guidelines  (METs)  (SVM) 

 

Sedentary 0.9 - 3.1  2.05  <386 

Light 3.2 - 5.3  4.25  386 – 542 

Moderate 5.4 - 7.5  6.45  542 – 1811 

Vigorous 7.6 - 12.0  9.80  ≥1811 

 

Note: Activity levels and MET guidelines described previously 
18

. TEE is total energy 

expenditure, SVM is gravity-subtracted Sum of Vector Magnitudes at 100 Hz sampling 

frequency; METs are Metabolic Equivalents. 

 

Table 2. Descriptions of activity intensity levels given in the physical activity log 

Activity intensity 

level 
 Descriptions  Examples 

Vigorous  Activities that require hard 

physical effort and cause 

rapid breathing and large 

increases in HR; too high or 

too intense to chat/converse. 

 Running, jogging, 

hiking/marching/patrolling 

(heavy load-webbing, weapon, 

Bergan), obstacle/assault 

courses, circuit training, cycling 

uphill, competitive team sports 

(football, rugby, hockey). 

Moderate  Activities that require 

moderate physical effort and 

cause a noticeable increase in 

breathing or HR. 

 Hiking/marching/patrolling 

(light load e.g. webbing & 

weapon), walking 

briskly/marching/drill, lifting & 

carrying stores, digging, cycling 

(level), boxing (punch bag), 

reactive sports (cricket, tennis). 

Light  Activities that involve effort 

but that do not cause an 

increase in breathing or HR. 

 Standing with kit, walking at a 

slow pace, getting washed – 

showering, ironing kit. 

Sedentary   Activities that involve sitting 

or reclining on or off duty, 

getting to and from places via 

transportation, but does not 

include time spent sleeping.  

These activities do not 

require physical effort. 

 Sitting, lectures, relaxing, 

completing paperwork, 

studying, eating. 
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