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The Acute Effect of Repeated Sprints on Inter-limb 

Asymmetries during Unilateral Jumping 

 

ABSTRACT  

The aim of the present study was to investigate the effects of multiple repeated sprints on 

unilateral jump performance and inter-limb asymmetries. Eighteen recreationally active males 

performed three single leg countermovement jumps (SLCMJ) as baseline data. The repeated 

sprint protocol was 6 x 40 m with 20 seconds of passive rest between each sprint. This protocol 

was conducted four times, each set separated by four minutes of rest. Within that rest period, 

subjects performed one SLCMJ on each limb after two minutes of rest. A one-way ANOVA 

showed significant reductions (p < 0.05; ES = -0.52 to -0.99) in jump height on both limbs after 

each set relative to baseline. Inter-limb asymmetries increased at each time point and ranged 

from 7.62-14.67%, with significant increases in asymmetry seen after sets three (p = 0.046) 

and four (p = 0.002). Significant increases in sprint time were shown between sprints one and 

six in each set (p ≤ 0.01). A fatigue index (%) was also calculated and showed an exponential 

increase from 5.74% (set one) to 13.50% (set four), with significant differences between all 

sets (p < 0.001) with the exception of sets three and four. Results from this study show that a 6 

x 40 m repeated sprint protocol is a sufficient dose for implementing acute fatigue in 

recreationally active subjects. This was manifested by reductions in jump height at all time 

points and jump height asymmetries after the third and fourth sets. These findings indicate that 

jump height from unilateral jump testing may be a useful metric to use during the monitoring 

process in recreationally trained athletes.  
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INTRODUCTION 

Inter-limb asymmetry is defined as the difference in function or performance of two limbs (6). 

Asymmetries have been shown to be present in athletes across a range of sporting activities, 

including soccer (32), swimming (16), basketball (33) and sprinting (17). They have been 

shown to be a product of sporting engagement (23), and even a necessity for safe and effective 

participation for some athletes (21). Further to this, inter-limb asymmetries have been observed 

across a range of physical characteristics such as strength (1,2,22), power (4,19), and leg 

stiffness (29). Recent studies have examined the effects of between-limb asymmetries on 

measures of physical performance. Lockie et al. (27) and Dos Santos et al. (15) showed that 

heightened jump height and hop distance asymmetries respectively, had no effect on speed and 

change of direction (CODS) performance. Conversely, Maloney et al. (29) showed that 

unilateral drop jump height asymmetries were associated with slower CODS times (r = 0.6; p 

= 0.026) in recreational athletes. Furthermore, Bishop et al. (7) showed that single leg 

countermovement jump (SLCMJ) height asymmetries were associated with slower 5 m (r = 

0.49; p < 0.05), 10 m (r = 0.52; p < 0.05) and 20 m (r = 0.59; p < 0.01) sprint performance. 

Considering the potential reductions in physical performance associated with inter-limb 

asymmetries, evaluating potential methods to test for their prevalence is warranted.   

Single leg jump testing is frequently used to quantify asymmetries as unilateral movements are 

commonplace in a range of sports and these assessments are simple and time-efficient  

(8,24,27,29). This method can also be used as a means to detect neuromuscular fatigue (12,34). 

Cormack et al. (14) showed that multiple metrics (including jump height) can be computed 

reliably when athletes perform single and repeated countermovement jumps. More recently, 

Bishop et al. (9) highlighted a distinct lack of literature on how fatigue effects asymmetry with 

the majority of studies in this area examining inter-limb differences during running tasks.  
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Radzak et al. (30) measured kinetic and kinematic asymmetries during a fatigue-inducing 

treadmill protocol and showed significant between-limb differences in 8 out of 32 variables 

during running. Girard et al. (19) examined the effects of 5x5-second treadmill sprints on 

kinetic and kinematic running asymmetries. Kinetic asymmetries ranged from 4.1-12.8% 

whilst kinematic asymmetries ranged from 1.6-9.0%, but none of the changes in asymmetries 

reached statistical significance. However, it is questionable whether the subjects achieved a 

substantial degree of fatigue, given the small sprint decrement value of 3.1% across all sprints, 

compared to values of between 3.53% and 7.72% being defined as a suitable fatigue decrement 

in previous research (20).  

In contrast, there is a paucity of research examining the acute effects of fatigue on asymmetry 

measured during jumping tests. Bromley et al. (10) investigated the use of the SLCMJ as a 

means of monitoring changes in jump performance and inter-limb asymmetries at incremental 

time points after a competitive soccer match. Results showed that jump performance was 

reduced and between-limb differences significantly increased when measured within 60-

minutes post-game, remaining impaired for a further 48 hours. Whilst these data are useful, 

practitioners face difficulties when screening athletes during periods close to competition. 

Fatigue has been indicated as a mechanism to heighten injury risk in a range of sports due to 

changes in neuromuscular control (31). Therefore, practitioners may wish to assess their 

athletes’ movement abilities under conditions of fatigue. Solely screening athletes in a non-

fatigued state may not accurately identify those individuals whose movement mechanics 

deteriorate towards the end of competitions, affecting their relative risk of injury. 

Consequently, further research investigating the impact of fatigue on inter-limb differences is 

warranted using protocols which are practically viable.  

Therefore, the aim of the present study was to examine the effects of a series of repeated sprints 

on unilateral jump performance and inter-limb asymmetries. It was hypothesized that 
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heightened fatigue would result in decrements in jump performance and increased inter-limb 

asymmetries.  

 

METHODS 

Experimental Approach to the Problem 

Subjects were required to attend on two separate occasions inclusive of a familiarization and a 

data collection session. After a standardised warm-up, subjects performed three maximal 

SLCMJ per leg, followed by four rounds of 6 x 40m sprints on a running track, that were 

interspersed with a SLCMJ on each leg to monitor the effects of repeated sprints on jump 

performance and inter-limb asymmetry. Subjects were instructed to refrain from any exercise 

for 48 hours before testing. This protocol provided the ability to evaluate the time-course of 

inter-limb asymmetry responses to the accumulated fatigue caused from repeated sprint 

training.   

 

Subjects 

Eighteen recreationally active males (age: 28.9 ± 5.1 years; height: 178.9 ± 6 cm; body mass: 

83.4 ± 13.7 kg) were recruited and provided informed consent to take part in this study. All 

subjects regularly undertook physical activity including sporting activities and resistance 

training. Subjects were also required to have a minimum of two hours per week of lower body 

resistance training over the previous six months and be ‘injury-free’ for a minimum of three 

months at the time of testing. This study was approved by the London Sport Institute Research 

and Ethics Committee at Middlesex University, UK.  

 

Procedures 
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Prior to testing. subjects performed a 10-minute standardised warm-up, consisting of a 5-

minute gentle jog, followed by five minutes of dynamic stretching (forward lunges, inchworms, 

lateral lunges, world’s greatest stretch, and single leg glute bridge) and then three sub-maximal 

SLCMJ on each leg with increasing intensity of 50, 75 and 100% perceived maximal effort. A 

schematic of the study design is presented in Figure 1. Three maximal SLCMJ were recorded 

at baseline in order for test reliability to be computed in real time via the coefficient of variation 

(CV) with pre-set formulas in Microsoft Excel for each subject. Thirty seconds of rest was 

provided between each jump, beginning on the left leg and alternating legs for every jump. 

Subjects then sprinted 40m six times, with 20 seconds of passive rest between each sprint. 

Subjects were permitted 120 seconds of rest following the final sprint, after which they 

performed one maximal effort SLCMJ on each leg, with 30 seconds of rest between each jump. 

Only one trial was conducted between sprints after noting that jump data was reliable during 

familiarization and at baseline. Following a further 120 seconds of rest, subjects carried out the 

sprint protocol in full again, repeating this until four total sets of repeated sprints were 

completed, recording one maximal effort SLCMJ per leg two minutes after the sixth sprint in 

each set (Figure 1). The distance and volume of sprints per set were chosen to ensure that an 

appropriate level of acute fatigue would be induced for the chosen sample (3).   

 

*** INSERT FIGURE 1 ABOUT HERE *** 

 

Single Leg Countermovement Jump (SLCMJ). Jump height was measured using a Just Jump 

mat (Probotics Inc., Huntsville, AL, USA) to the nearest 0.1 cm. Subjects stood on one leg, 

looking straight ahead with hands placed on hips throughout the duration of the test. Subjects 

were instructed to jump as high as possible, beginning with a countermovement to a self-

selected depth before accelerating vertically as fast as possible. The non-jumping leg was 
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required to remain still beside the jumping leg throughout the jump. The jumping leg was 

required to remain extended during the flight phase of the jump. Take-off and landing occurred 

on the same leg, with the non-jumping leg remaining off the ground until the subjects had 

regained balance on the jumping leg.  In such cases where these criteria were not met, the trial 

was considered void and was subsequently retaken after a 30-second rest.  

 

6 x 40m Repeated Sprint Protocol. Single-beam electronic timing gates (Brower Timing 

Systems, Draper, UT, USA) were positioned on a running track 40 m apart. Sprints were 

initiated from a start line 0.3 m behind a timing gate, and subjects were instructed to sprint 

following a five-second countdown. Subjects sprinted to the opposite gate and were given 

verbal encouragement to sprint as fast as they could by researchers to ensure they produced 

their maximum effort. Subjects were instructed to be ready to perform the next sprint after 15 

seconds of rest to ensure there were no delays and were given a five-second countdown to the 

start of each sprint. Rest periods were timed using a Gymboss Minimax stopwatch (Gymboss, 

St. Clair, MI, USA). The length of time taken to complete each sprint, as measured by the 

timing gates, was recorded to quantify the onset of fatigue. 

 

Calculating Asymmetry and Fatigue Index 

For calculations of SLCMJ asymmetry, the highest jump on each leg was used. The dominant 

limb was defined as the limb with the greatest jump height (7). Asymmetry values were 

calculated using the percentage difference method as suggested by Bishop et al. (6): 

100/(maximum value)*(minimum value)*-1+100. The percentage decrement score equation 

by Glaister et al. (20) was used to establish each subjects’ level of fatigue using the formula: 
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(100*(total sprint time/ideal sprint time))-100), where total sprint time = sum of sprint times 

from all sprints and ideal sprint time = number of sprints multiplied by fastest sprint time.  

 

Statistical Analyses 

All sprint time and jump height data were recorded and inputted into Microsoft Excel™ to 

compute descriptive statistics (means and standard deviations (SD)). Subsequent statistical 

analysis was performed using SPSS (version 24.0, IBM Corporation, Armonk, NY, USA). 

Normality was assessed via the Shapiro-Wilk test. Within-session reliability was calculated at 

baseline using the coefficient of variation (CV): (SD/mean)*100, a two-way random intraclass 

correlation coefficient (ICC) with absolute agreement and standard error of measurement 

(SEM): SD*√(1-ICC). CV values of <10% were considered acceptable in accordance with 

Cormack et al. (14), and ICC values were interpreted in line with Koo and Li (25) where > 0.9 

= excellent, 0.75-0.9 = good, 0.5-0.75 = moderate, and < 0.5 = poor.  

A one-way repeated measures analysis of variance (ANOVA) with a Bonferroni confidence 

interval adjustment was used to examine within-set differences in sprint times, between-set 

differences in fatigue % and changes in mean jump height, to ensure that subjects fatigued from 

sprint one to sprint six in individual sets, and from the first sprint in set 1 to every subsequent 

set (See Equation 2). A one-way repeated measures ANOVA was also used to measure 

differences in jump height from the first SLCMJ to the last SLCMJ for each leg as a measure 

of fatigue, and to assess any changes in asymmetry from the first SLCMJ to each subsequent 

SLCMJ with statistical significance was set at p < 0.05. Effect sizes (Cohen’s d) were 

calculated as (MeanD – MeanND / SDpooled) to examine the magnitude of these differences and 

were interpreted where: 0.2 – 0.49 = small, 0.5 – 0.79 = medium and > 0.8 = large (13). 
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RESULTS 

All data were normally distributed (p > 0.05), and baseline SLCMJ tests had acceptable 

between-trial consistency with mean CV values of 4.1 and 3.9% for left and right limbs, 

respectively.  ICC scores were excellent (left = 0.98; right = 0.97) and SEM was < 0.01 cm on 

both limbs. Table 1 shows mean sprint performance and mean jump height for dominant (D) 

and non-dominant (ND) limbs across all five jump tests. Significant reductions in jump height 

(p < 0.05) were noted at all time points relative to baseline on both limbs. In addition, the ND 

limb also showed significant reductions in jump height after four sets of repeated sprints 

relative to sets one and two.  

Figure 2 shows inter-limb asymmetry values at each stage of testing. Significant changes in 

asymmetry (p < 0.05) were noted after set three and four of the repeated sprint protocol relative 

to baseline testing; no other significant changes in asymmetry were noted. Figure 3 shows the 

sprint speed for the first and last sprints in each set. Significant differences (p < 0.05) in sprint 

speed were seen between the first and last sprint in each set; however, no significant differences 

between sets were noted. Figure 4 shows the mean fatigue index after each set of repeated 

sprints. Significant increases in fatigue (p < 0.01) were noted between sets one and two, three 

and four, sets two and three, and sets two and four.  

 

*** INSERT TABLE 1 ABOUT HERE *** 

*** INSERT FIGURES 2-4 ABOUT HERE *** 
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DISCUSSION 

The aim of the present study was to examine the effects of a series of repeated sprints on 

unilateral jump performance and inter-limb asymmetries. Significant reductions in SLCMJ 

jump height were noted after each set of repeated sprints on both limbs. Inter-limb asymmetries 

increased after every set of sprints, with significant increases noted after three and four sets of 

sprints relative to baseline, indicating that asymmetry was heightened due to an accumulated 

fatigue effect.  

Table 1 shows changes in SLCMJ jump height on both limbs and sprint speed at baseline and 

after each set of repeated sprints. For the SLCMJ, significant reductions in jump height were 

noted on the D limb after all sets, but only relative to the baseline set of jumps (ES = -0.52 to -

0.74). The ND limb also showed the same trend; however, the final time point showed a 

significant reduction relative to sets one and two post-baseline jumps as well (ES = -0.54 to -

0.99). These results contrast to previous research, which has shown that jump height was not 

sensitive enough to detect true changes in a fatigued state (10,18). Whilst challenging to explain 

conclusively, it must be acknowledged that the subjects in the present study were recreational 

athletes, where previous research has used college athletes (18) and elite academy soccer 

players (10). Thus, it is plausible that more experienced athletes have a greater ability to 

manipulate their jump strategy in order to achieve the same outcome. For mean sprint time, 

there was a significant increase in time taken to perform each set when compared to baseline. 

In addition, the second set of sprints (post-baseline) were significantly different from the first 

set and sets three and four showed significant increases in mean sprint time compared to all 

sets before them. Given the nature of the repeated task in question, it is no surprise that subjects 

performed subsequent sets significantly slower. This is in agreement with previous research, 

which has also showed significant reductions in repeated sprint performance (20).  
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Figure 2 shows the inter-limb asymmetry values for jump height during the SLCMJ test at all 

time points. Inter-limb differences increased at each time point (baseline = 7.62%, set 1 = 

9.82%, set 2 = 9.95%, set 3 = 13.25% and set 4 = 14.67%), with significant differences seen 

between baseline and the third and fourth sets. Whilst the reduction in jump height was 

significant, there was no guarantee that asymmetry would also increase; thus, these data 

represent interesting findings. Furthermore, given the larger ES on the ND limb, it can be 

assumed that the increase in asymmetry was due to a greater reduction in jump performance 

on the ND limb. This concept has recently been acknowledged by Maloney (28) who suggested 

that asymmetries can be viewed as ‘windows of opportunity’ in respect to the ND limb, which 

is likely weaker and less capable of producing force rapidly. For example, given the scenario 

presented in the present study (i.e., with larger reductions in jump height on the ND limb), 

practitioners can use this data as a means to consider additional training for the ND limb. This 

concept was recently investigated by Brown et al. (11) who used supplementary strength and 

ballistic exercises for the weaker limb three times a week (for six weeks) in addition to the 

regular bilateral strength training programme for a sprint athlete. Inter-limb asymmetry reduced 

from 16 to 13% and improvements in maximal velocity (5.86 to 6.01 m∙s-1) and power (18 to 

21 W∙kg-1) were also noted. However, it should be acknowledged that this was a case study on 

a single athlete; thus, cannot be attributed to wider athlete populations. It is equally likely that 

unilateral training with the same absolute volume load could also correct asymmetries, given 

that the relative intensity, including the demands placed on stabilization will be greater on the 

ND leg. Thus, the ND leg is likely to experience a greater stimulus for adaptation (28).  

Previous literature has suggested a wide range of thresholds lower than the 14.67% seen in the 

present study to be associated with reduced athletic performance. For example, Hart et al. (22) 

showed that strength asymmetries in peak force of 8% during the unilateral isometric squat 

were associated with reduced kicking accuracy when aiming at a target 20 m away. Maloney 
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et al. (29) showed that jump height asymmetries from the unilateral drop jump (2.4-7.2%) were 

strongly associated with slower change of direction speed performance during a task requiring 

multiple 90° cuts. Recently, Bishop et al. (7) showed that jump height asymmetries (12.5%) 

during the SLCMJ were associated with slower 5 m (r = 0.49; p < 0.05), 10 m (r = 0.52; p < 

0.05), 20 m sprints (r = 0.59; p < 0.01) and unilateral jump performance (r = -0.47 to -0.53; p 

< 0.05). In addition, previous research has also suggested that 10% may be a threshold for 

practitioners to consider during return to play when considering minimizing the risk of a second 

ACL injury (26). Therefore, in the present study, with asymmetries so close to that 10% 

threshold even after the first set of repeated sprints, practitioners may wish to monitor inter-

limb asymmetries as part of the recovery process. This has also been recently suggested by 

Bromley et al. (10) who showed how sensitive asymmetries were after academy soccer players 

had played a competitive match.  

Figure 3 shows the mean sprint time for the first and last sprints during each set of repeated 

sprints. Significant increases in mean sprint time were seen between the first and last sprints in 

each set, suggesting that the dosage of 6 x 40m was sufficient to induce acute set to set changes 

in repeated sprint performance and between-limb jump height asymmetry from the SLCMJ. 

These findings are in contrast to Girard et al. (19) who undertook 5x5-second repeated sprints 

on a treadmill with 13 male recreational and racket-sport athletes where no meaningful changes 

in asymmetry were noted during the execution of the task. Thus, practitioners may confidently 

adopt this protocol to examine changes in jump performance and asymmetry under conditions 

of fatigue. In doing so, practitioners could consider that athletes who display marked increases 

in asymmetry could be targeted to increase their tolerance to fatigue as part of their 

conditioning strategy.  

Figure 4 shows the fatigue index that accumulated as a result of more sets of repeated sprints 

conducted. Statistically significant levels of fatigue were observed between all sets with the 
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exception of sets three and four. This further supports the notion that four sets of 6 x 40m 

sprints were an appropriate protocol to induce fatigue. This level of fatigue is in line with 

previous research by Glaister et al. (20), who demonstrated a fatigue of 5.13% after one set of 

six 30m sprints. As observed in the current study, fatigue did not significantly affect inter-limb 

asymmetries until the third set was completed, which corresponded to a fatigue index of 

12.31%. However, a significant reduction in jump height was observed after just the first set 

of sprints, which corresponded to a fatigue index of 5.74%. Thus, it appears that jump height 

may be a more responsive metric than asymmetry when detecting true change in the present 

population. This is also likely due to the variable nature of asymmetry, noting that the SD of 

asymmetry was sometimes just as high as the mean (Figure 2). In contrast, the SD for jump 

height was approximately 30% at each time point. With that in mind, it is likely that responses 

to a training protocol such as repeated sprints will produce ‘responders’ and ‘non-responders’ 

in the context of asymmetry, suggesting that an individual approach to monitoring inter-limb 

differences may be required (5).  

The present study was not without some limitations. Firstly, previous research has highlighted 

the importance of monitoring jump performance on a force platform where possible to report 

alterations in jump strategy, with jump height not always being sensitive enough to detect true 

change (10,18). However, this is often not practically viable for testing in the field and the 

results of the present study have practical implications for a wider range of practitioners. 

Secondly, recent research has highlighted the individual nature of asymmetries (5); thus, these 

findings can only be attributed to this recreational athlete sample. Future research should aim 

to replicate this study with elite athletes using a more detailed analysis of mechanistic changes 

in jump strategy utilizing more sophisticated measurement tools. This will help provide a 

deeper understanding of the link between fatigue and inter-limb asymmetries within elite 

athletes.  
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PRACTICAL APPLICATIONS 

The findings of the present study show that if practitioners want to use a repeated sprint training 

session with the aim of acutely inducing fatigue, four sets of 6 x 40m sprints is an effective 

protocol. Given the frequent requirement for repeated sprinting for team sport athletes, this 

represents useful information for practitioners. In addition, given the variable nature of 

asymmetry (as represented by the high SD), practitioners should be mindful about concluding 

that this is a less sensitive metric than jump height alone. Instead, if practitioners use unilateral 

jump testing as part of the monitoring process, they are encouraged to assess inter-limb 

differences on an individual basis. This may help provide more accurate information about 

whether training loads should be manipulated or if targeted training interventions are required 

for individual athletes.  
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Figure 1: Schematic of study design (SLCMJ = single leg countermovement jump).  

Set 4: 6 x 40m sprints

120s rest 1 SLCMJ per leg

Set 3: 6 x 40m sprints

120s rest 1 SLCMJ per leg 120s rest

Set 2: 6 x 40m sprints

120s rest 1 SLCMJ per leg 120s rest

Set 1: 6 x 40m sprints

120s rest 1 SLCMJ per leg 120s rest

Baseline (SLCMJ - 3 trials per leg)
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Table 1: Mean jump height (in cm) and sprint time (in seconds) ± standard deviations (SD). Cohen’s d effect sizes are reported relative to baseline.  

Metric Baseline Set 1 Set 2 Set 3 Set 4 

JH-D 

Effect size 

15.73 ± 4.47 13.48 ± 4.16a 

-0.52 

13.15 ± 4.41a 

-0.58 

12.87 ± 4.23a 

-0.66 

12.58 ± 4.02a 

-0.74 

JH-ND 

Effect size 

14.48 ± 4.08 12.23 ± 4.25a 

-0.54 

11.72 ± 3.72a 

-0.71 

11.11 ± 3.55a 

-0.88 

10.71 ± 3.53abc 

-0.99 

Sprint time 

Effect size 

5.76 ± 0.48 6.08 ± 0.46a 

0.69 

6.26 ± 0.48ab 

1.05 

6.46 ± 0.46abc 

1.48 

6.52 ± 0.49abc 

1.58 

JH = jump height; D = dominant; ND = non-dominant; a significantly different to baseline (p < 0.05); b significantly different to set 1 (p < 

0.05); c significantly different to set 2 (p < 0.05).  

 



Effects of Repeated Sprints on Asymmetries 
 

19 
 

 

Figure 2: Inter-limb asymmetry values from the single leg countermovement jump test pre-sprints and after one, two, three and four sets of repeated 

sprints (ES = effect size). 
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Figure 3: Sprint times for sprint 1 and sprint 6 in Sets 1-4. Significant (p < 0.05) difference between sprint 1 and all subsequent sprints in every 

set (ES = effect size). .  

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Sprint 1 Sprint 6 Sprint 1 Sprint 6 Sprint 1 Sprint 6 Sprint 1 Sprint 6

Set 1 Set 2 Set 3 Set 4

S
P

R
IN

T
 S

P
E

E
D

 (
s)

* p < 0.001; ES = 1.07 * p = 0.01; ES = 0.53 * p < 0.001; ES = 0.85 * p < 0.001; ES = 1.06 



Effects of Repeated Sprints on Asymmetries 
 

21 
 

 

Figure 4: Fatigue index (expressed as a percentage) and standard deviations (error bars) after each set of repeated sprints (ES = effect size).  
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