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Abstract. This study proposes a new model for describing the electrical behavior of 

nanocomposites. Unlike other models in the literature, this model has concentrated on the role of 

an interphase layer within the boundaries of nanoparticles. The experimental part investigates this 

role by filling an epoxy matrix with two types of surface-modified silicon nitride nanofiller: (a) the 

particles were dried at 200 oC, and (b) the particles were calcinated at 1050 oC. Electrical 

characterization showed that the epoxy which was filled with the calcinated particles has 

considerably better dielectric performance. Given that thermal and dielectric spectroscopy results 

demonstrate that the matrix molecular dynamics and polar content are comparable for all the 

investigated samples, the variations in the dielectric performance point to the particle interphase as 

an essential reason. As shown by infrared spectroscopy, the complex surface chemistry of the dried 

particles suggests a particle interphase with a high concentration of localized electronic states, 

which may enhance charge transport through hopping/tunnelling conduction. On the other hand, 

calcinating the particles results in a particle interphase with wider band gap, which may work as 

an energy barrier for charge movement. Consequently, this study highlights the paramount 

importance of particle interphase for designing dielectric properties of nanodielectrics. 

KEYWORDS: Nanodielectrics, surface chemistry, interface, polymer interphase, particle interphase, 

dielectric properties.  

1. Introduction 

The reliable production of electrical energy without causing adverse environmental consequences is of 

major global concern, since energy consumption is generally increasing and areas such as transport, which 

were previously the domain of fossil fuels, become increasingly electrified. This necessitates increased 

electric power generation, transmission and distribution capacities which, consequently, necessitates 

improved insulation materials. The commercial impact of even incremental improvement in dielectric 

properties of the insulation materials is potentially very large since the quantity of electrical insulation in 

use is vast. The potentials of introducing nanoparticles into a dielectric material for electrical insulation 

applications were theoretically highlighted by Lewis in 1994 [1]. However, nanodielectrics did not draw a 

lot of attention until 2002 when Nelson et al. [2] had experimentally demonstrated some advantages for 
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nanofilled materials over microfilled counterparts, such as reducing space charge accumulation. Since then, 

a burgeoning interest in the subject has been shown trying to explore the potentials of nanodielectrics and 

investigate the underlying mechanisms that control the behaviour of these systems. Many of these factors 

have been empirically identified over the last two decades; however, detailed information about the 

underlying physics and chemistry behind these factors needs more research. These factors include the 

following: 

 Particle dispersion: considering their large specific surface area, the friction and surface tension 

forces between nanoparticles are dramatically higher than between microparticles, for example. 

This makes the nanoparticles stick together and complicates their dispersion [3]. Nanoparticle 

agglomeration may result in a large enough particle to disturb and locally enhance the electric field 

due to the differences in the conductivity and permittivity between the filler and matrix materials, 

an analog to what occurs in microcomposite systems [4-6].  

 Local, interfacial interactions and interphase formation: the interactions between the particles and 

the surrounding matrix result in forming such region. The characteristics and influence of the 

interphase regions will be discussed in detail in the following paragraph. 

 Changes in matrix structure: introducing nanoparticles into a polymeric matrix might alter its 

morphological structure, particularly for semicrystalline systems like polyethylene [4, 7-9]. Hosier 

[10] experimentally demonstrated that the breakdown strength can be affected by modifying the 

spherulitic morphology of the unfilled polyethylene. Therefore, the changes in the dielectric 

performance of the nanocomposites based on semicrystalline polymers might be greatly affected by 

perturbations to the crystalline morphology, rather than being associated with the particles 

themselves. 

 Environmental factors, notably, absorption of water: many of the widely utilized nanoparticles, due 

to their surface chemistry, have the tendency to adsorb water molecules on their surface, which 

results in a water layer surrounding the nanoparticles. These water layers have a detrimental impact 

on the dielectric performance of the nanocomposites as reported [11-14].  

All the above factors should be kept in mind when trying to design/analyze the effect of introducing 

nanoparticles into a polymeric matrix, as some of these factors may dominate others under particular 

circumstances. That is, it is unlikely that any single factor is likely to provide a ubiquitous explanation across 

all material systems for all properties. For example, the negative dielectric consequences caused by 

particles’ water absorption might dwarf any dielectric improvement caused by the introduction of the 

nanoparticles [15]. The relevance or the weight of each factor are functions of the matrix material, filler 

characteristics and the interactions between them. 

The key feature that differentiates nanocomposites from microcomposites is the vastly greater specific 

interfacial area between the particles and the encapsulating polymer [16, 17]. The layers that are adjacent to 

the interface might be affected by being next to different phase and to the interactions that occur between 

the two phases. These interactions are proposed to result in the formation of an interphase region with 

modified properties [18-20]. Consequently, as the size of the particles becomes smaller, the specific surface 

interfacial area will increase and, consequently, any interphase regions will constitute a commensurately 

larger volume fraction of the whole system which, it has been argued, explains how the macroscopic 

properties of nanocomposite differ from those of either component in isolation. Different models have been 

suggested to highlight the main characteristics of the interphase region and to describe the interactions that 

may occur in this region. However most of these models, i.e. Lewis intensity model [21, 22] and electric 

double layer model [22, 23], do not offer a critical understanding of the interphase region, instead, they just 
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qualitatively describe it without distinct experimental or analytical evidence. The multicore model [24] 

presents a more explicit mechanism for describing the potential influence of the nanoparticles on the 

molecular dynamics of the polymeric matrix, particularly when the particles are bonded to the polymer. 

Many experimental studies have investigated the effect of the nanofiller on the polymeric matrix by 

observing the molecular dynamics over the glass transition process using techniques such as differential 

scanning calorimetry or dielectric spectroscopy. Some of these studies did not detect any evidence for such 

effects, even where attractive interactions between the filler and the polymer, i.e. strong hydrogen bonding, 

are present [25, 26]. Therefore, the multicore model cannot be used to fully describe these nanocomposites. 

Other studies do detect an immobilized layer [27, 28], that does not contribute to the glass transition of the 

rest of the matrix, or a layer with different molecular dynamics around the particles [29, 30]. However these 

effects were marked at a high loading ratio, > 20 wt.% for nanofiller less than 15 nm in diameter, and hence, 

the thickness of the confined layer was estimated to be less than ~2 nm [27, 28], much less than that 

anticipated by the multicore model. More importantly, direct linkage between molecular dynamics effects 

and the dielectric performance is neither clear nor experimentally proven. For example, changing the 

segmental dynamics by changing the crosslinking density in an epoxy matrix did not correlate with the 

dielectric performance [31]. Even for nanocomposites where the filler has an impact on the cooperative 

relaxation at the glass transition process, the β relaxation, which is associated with smaller segmental 

dynamics, was not perturbed [27, 28]. For this relationship, the multicore model proposed that an electric 

double layer is superimposed on the multicore model. Additionally, the authors speculated that the strain on 

the confined polymeric segments around the nanoparticles affects the free volume content. No experimental 

evidence supports these claims. On the contrary, a recent study [32] has demonstrated that the free volume 

is little affected by the addition of nanoparticles, and cannot account for the significant variations seen in 

the dielectric strength for many nanodielectrics. As such, a mature understanding of the interphase region 

characteristics is not yet achieved. A detailed model that can relate the macroscopic behaviour of 

nanodielectrics with the interactions between the particles and the encapsulating polymer is needed in order 

to open the potential of these composites to be tailored and designed, and to meet our future demands on 

dielectrics. For underlying the dielectric behaviour, which is concerned with the dynamics of as small 

species as electrons, the prospective model might need to investigate the effect of the interactions at the 

microscopic level [16]. For example, these interactions might affect the density of states in the interphase 

region [16], which consequently influences the overall electronic mobility in the system.  

Another element that can be emphasized about current nanodielectrics models is that, until now, these 

models have concentrated on the interphase region inside the polymer, the “polymer interphase” in Figure 

1, neglecting any interphase layer inside the boundaries of the particles themselves, “particles interphase” 

in Figure 1. This might be because the molecules of the filler materials, usually ceramic materials, are very 

small compared with the polymer molecules or chains, thus, the particle interphase is expected to be much 

thinner than the polymer interphase. Nevertheless, the higher density of the particle materials implies denser 

electronic energy states and, consequently, any perturbations in the electronic states in the particles 

interphase, such as changing their energy levels or spatial extension, might have a more profound impact 

on the dielectric performance. This paper set out to highlight the effect of the particle interphase on electrical 

behaviour of nanodielectrics. First, the idea of particle interphase was illustrated and some of the already 

published experimental results were analyzed in accordance with this model. Additionally, experimental 

work designed to investigate the influence of the particle interphase was performed. In order to focus on the 

influence of the particle interphase, the other factors, mentioned above, were neutralized as much as possible 

by carefully choosing matrix material, particle material and processing conditions. 



4 

 

2. Particle Interphase Model (PIM) 

A nanoparticle has at least one dimension that falls within the nanoscale. As the dimensions reach the 

nanoscale, they approach the atomic scale where the number of the atoms forming such dimensions comes 

to be relatively countable and hence the bulk properties gradually start to dilute or disappear. For example, 

the electronic band structure, which consists of bands of energy states separated by band gaps, begins to 

convert into discrete energy levels when the particle size is less than 10 nm [21]. This may change the colour 

of materials with band gap in the visible light [22]. Other properties may behave in a similar way and become 

size-dependent [3, 33]. Even for larger dimensions, the outer layer atoms near the surface behave in a similar 

fashion. In fact, the classical macroscopic properties for a point in the bulk of a material are obtained by 

integrating over infinite (in an atomic scale) volumes around this point [22]. For example, point 1 in Figure 

1 would give the macroscopic properties of the bulk of phase A if the dimensions of the particle A are 

considered atomically infinite. On the other hand, point 2 on the surface, in Figure 1, has a non-centro-

symmetry nature and its behaviour may be affected by the existence of phase B. Similarly, atoms located a 

few layers under the surface, i.e. point 3 in Figure 1, will be similarly affected by the presence of phase B. 

The same thing is applicable to points 4 and 5 in phase B. The properties at these points may be different 

from the properties of the bulk of both A and B and this region is what is meant by the terms interphase 

region or interaction zone. The thickness of the interphase depends on the property being considered and at 

what point the “infinite limit” is reached. In its turn, the infinite limit depends on the molecules size or 

molecules mass. If phase A in Figure 1 represents the nanoparticle, which usually has small molecules, and 

phase B represents the polymer matrix, which has long molecules, then it is expected that the interphase 

might extends into the phase A less than into the phase B. Thus, although the interphase is depicted in Figure 

1 to extend in phases A and B to a similar extent, this is purely for illustrative purposes and we accept that 

this is unlikely to be the case in practice. Additionally, in this figure, the boundary surface between the 

particle and the matrix is called “the interface”, which we consider as the abrupt chemical boundary between 

the polymer and the nanoparticle and which, therefore, fails to consider structural, compositional and 

dynamical variations as this boundary is approached. 

 

Figure 1. The interphase between two phases A and B (not to scale). 

Due to their large surface area, nanoparticles contain a high concentration of defects on their surfaces. These 

defects could be due to the presence of foreign atoms on the surface, surface geometrical irregularities or 

the non-centro-symmetry nature (coordinative unsaturation) of the molecules near the surface of the particle 
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[33]. As a result of these defects, new localized energy levels in an otherwise forbidden band are generated. 

The generated energy levels may lie in the band gap between the valence and the conduction bands and 

represent charge traps (localized states in the band gap). Upon the availability of mobile charges, i.e. 

electrons/holes in the conduction/valence band, they prefer to fill these traps rather than staying in the 

conduction/valence band [34]. Once it filled the trap, it is difficult for the electron/hole to return to the 

conduction/valence band, particularly if the trap is deep enough, although it can move to similar traps around 

the particles, if these are close enough [34]. Through this mechanism, charges may move through the particle 

interphase and if the particles are not far from each other, they may move from one particle interphase to 

another, as depicted in Figure 2. This might facilitate charge mobility in nanocomposites and degrade the 

electrical insulation properties. Obviously, such conduction in the band gap relies on the inter-particle 

distance and the trap density in the particle interphase [35]. For example, if these traps are deep and/or far 

from each other, the reverse could occur where the traps can capture the excited charge carriers and limit 

the conduction [16, 36, 37]. 

Alternatively, if the above-mentioned defects generate energy states that are deeper in the 

conduction/valence band, this might widen the band gap in the particle interphase region and constitute an 

energy barrier for the charge movement. As a result, the charge carriers will see the particle interphase, and 

consequently the whole particle, as an obstacle limiting their movement and increasing the length of their 

conduction paths as depicted in Figure 3. This might present a possible mechanism that results in improving 

the dielectric properties of the nanocomposites [36, 38]. 

 

Figure 2. Possible mechanism for charge movement through the charge traps in the particle interphase 

(not to scale). 
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Figure 3. The particle interphase represents an energy barrier for charge movement (not to scale). 

The crucial impact of the particle interphase on the dielectric behaviour could be pronounced in many 

experimental studies reported in the literature. The studies in [39, 40] investigate the effect of the addition 

of silica and hexagonal boron nitride (hBN) to an epoxy resin on the space charge dynamics and AC 

breakdown behaviour. The AC breakdown results correlate well with the space charge results, where the 

higher space charge accumulated in the silica epoxy nanocomposites leads to a lower AC breakdown 

strength. The reverse was observed in the boron nitride filled composites. It is expected that the surface of 

the hBN, due to its uniform structure, does not contain as many defects as exist on the surface of the silica, 

which means that the silica might contain more charge traps, which leads to the development of more space 

charge. Lau et al. [41] have shown that treating nano-silica particles with a silane coupling agent before 

introducing them into a polyethylene matrix reduces the formation of space charge and consequently 

increases the DC breakdown strength, compared with the untreated silica filled polyethylene. 

Complementary studies [9, 15] investigating the influence of varying the molecular length of the coupling 

agent, in an attempt to modify the polymer interphase, show that increasing the chain length of the silane 

functionalizer has no appreciable impact on the electrical properties. This suggests that the mechanism by 

which the particle treatment affects the electrical behaviour is not merely related to the interactions that 

occur in the polymer interphase. Interestingly, heat treatment of nano-silica which leads to the removal of 

surface hydroxyl groups, and thereby covering the surface with stable siloxane bridges, improves the 

dielectric performance of silica polyethylene nanocomposite [42]. These findings reveal that treating the 

nanoparticles in a way that modifies their surface chemistry (i.e. by replacing hydroxyl groups with silane 

molecules or removing hydroxyl groups thermally) may affect the localized states in the particle interphase 

region and that could be the reason behind the reduction in the space charge formulation, and subsequently, 

higher breakdown strength. A recent simulation study [43] considering the electronic density of states of 

magnesium oxide nanoparticles supports the above inference. The simulation has predicted that electronic 

traps are generated near the surface of the particle with a depth of 1.3 eV when the particles are terminated 

with magnesium-oxygen bridges, 2.4 eV when the particles are terminated with hydroxyl groups and 0 eV 

(no traps) when the particles are terminated with a silane coupling agent. Although the simulation study is 

based on magnesium oxide, not silica, it is in line with the conclusion drawn from experimental observations 

that the electronic states near the surface of the particles are different from the states in the bulk and that 

they are very sensitive to the surface chemistry of the particles. Indeed, the importance of interfacial 

electronic states and their control is a well understood issue in many areas of semiconductor industry [68]. 

Therefore, although the thickness of the particle interphase could be of few atoms, it might have a decisive 

impact on the electrical properties of the nanodielectrics.  
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3. Experimental 

3.1. Materials 

An epoxy network was chosen to serve as a matrix. Epoxy is considered to be an amorphous material, 

therefore, the addition of the nanoparticles is not supposed to alter the morphology of the amorphous phase 

and, as a result, the effect of changing the morphology is neutralized. Specifically, the epoxy resin used here 

was DER 332; this is a diglycidyl ether of bisphenol-A (DGEBA) based system with an epoxide equivalent 

molar mass of 178 g mol-1, which was obtained from Sigma Aldrich. The hardener was Jeffamine D-230, 

which is an aliphatic diamine hardener with an amine hydrogen molar mass of 60 g mol-1, obtained from 

Huntsman. Based upon the above data, a theoretically ideal reaction stoichiometry of 1000 parts by mass of 

resin to 344 parts by mass of hardener can be defined. Both of these compounds were used as supplied. 

Silicon nitride (Si3N4) amorphous nanopowder was utilized as the filler material. The manufacturer, Sigma 

Aldrich, states a spherical shape and a particle size < 50 nm. The surface chemistry of the silicon nitride is 

characterized by the existence of amine and hydroxyl groups (oxynitride surface chemistry) [44, 45]. 

Previous work has shown that the amine hydrogens can chemically react with the epoxy groups in the resin 

[46, 47]. On one hand, this has the advantage of making silicon nitride inherently compatible with the matrix 

polymer, which should result in good particle dispersion and, thus, minimize the effect of particle 

agglomeration. On the other hand, this reaction will affect the effective resin/hardener stoichiometry. The 

latter effect was taken into account by adjusting the resin/hardener stoichiometry to compensate for the 

epoxy groups reacted with the amine groups on the silicon nitride nanofiller [47]. 

3.2. Particle heat treatment  

To remove water molecules, which might be physically adsorbed on the surface, the nanopowder was dried 

at 200 oC for 10 h in a nitrogen environment. At 200 oC, the surface hydroxyl or amine groups would not be 

affected [48]. This step was done to eliminate the possibility of forming water shells around the particles 

and, hence, offset the effect of water absorption. 

In order to change the particle interphase, part of the silicon nitride nanopowder was heated at 1050 oC for 

10 h in a nitrogen environment. This is expected to remove the active amine and hydroxyl groups, release 

any foreign atom on the surface and generate a system where the surface chemistry is dominated by stable 

siloxane bridges [44, 49]. According to the discussion in section 2, this will affect the charge traps and the 

electron energy states within the particle interphase. While many other chemical processes have been used 

to modify the surface chemistry of nanoparticles [6, 50, 51], calcination has the advantage of producing a 

relatively well-defined surface chemistry. For example, in silane surface treatment, it is impossible to ensure 

that the silane molecules replace all the surface hydroxyl groups [52]. Additionally, the silane molecules 

can condense with each other resulting in a complicated surface chemistry [53]. To discriminate between 

the two heat treatments, the powder which was heated at 200 oC is termed SiN200, whereas the powder 

heated at 1050 oC is termed SiN1050.  

3.3. Fourier Transform Infrared Analysis (FTIR) 

The surface chemistry of the nanoparticles was examined using a Perkin Elmer Spectrum GX Fourier 

transform infrared spectrometer operating in transmission mode. Suitable samples were prepared by mixing 

1 mg of the nanopowder with 150 mg of ground potassium bromide (KBr) and pressing the resultant to form 

a KBr disc. The spectrum of each nanopowder was then collected in the range from 580 cm-1 to 7800 cm-1 

with a resolution of 4 cm-1. 
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3.4. Nanocomposite preparation 

Three sets of samples were prepared during the course of this study:  

1- Unfilled epoxy: the resin and the hardener were mixed following the theoretical resin : hardener 

stoichiometric ratio of 1000 : 344 by mass, to give reference data for comparative purposes. 

2- Nanocomposite containing 5 wt.% of SiN200: as stated above, the silicon nitride surfaces contain 

amine groups, which may influence the effective resin/hardener ratio. From previous work [47], it 

can be estimated that the introduction of 5 wt.% of this nano-powder should contribute the 

equivalent of 18 wt.% of hardener to the system, such that the resin/hardener stoichiometric ratio 

should be offset by this amount. Consequently, the chosen resin/hardener ratio for this system was 

adjusted to 1000: 282 (288 = 344 × 0.82). 

3- Nanocomposite containing 5 wt.% of SiN1050: since heat treatment at 1050 oC would be expected 

to remove the active amine groups on the nanoparticle surfaces, the resin/hardener ratio used for 

this sample was set at the theoretical optimum of 1000 : 344. 

Table 1 summarizes the prepared samples along with relevant details; the procedures used to prepare these 

samples are detailed elsewhere [46, 47] and, consequently, are not repeated here, for the sake of brevity. All 

samples were stored under vacuum for at least two weeks prior to examination[54], in order to ensure that 

they were dry before any data were acquired. 

Table 1. A summary of the investigated materials and their details. 

Material code Resin : Hardener 

mass ratio 

Filler  Comments 

E/100H/0 1000:344 0 Neat epoxy  

E/82H/5SiN200 1000:282 5 wt.% of SiN200 Filled with dried Si3N4 

E/100H/5SiN1050 1000:344 5 wt.% of SiN1050 Filled with calcinated Si3N4 

 

3.5. Material characterization 

To examine the nanoparticle dispersion within the epoxy, a cryo-fracture method was used, in conjunction 

with the scanning electron microscopy (SEM –JEOL JSM-6500F). Plaque samples 2 mm in thickness were 

cooled in a liquid nitrogen for 15 min, then fractured before finally being sputter coated with gold to prevent 

charge accumulation during examination. 

The thermal behaviour and the segmental dynamics of all the systems considered here were investigated 

using a Perkin Elmer DSC 7 differential scanning calorimeter (DSC). Two successive DSC scans from 

30 oC to 150 oC at a heating rate of 10 oC min-1 were conducted on each specimen, of around 10 mg in mass. 

The first DSC scan was used to erase the thermal history of each specimen, whereas data pertaining to the 

glass transition of the system were drawn from the second scan. Derived parameters include: the glass 

transition temperature Tg, defined as the point at which the change in the heat capacity is maximum; the 

change in the heat capacity over the glass transition (∆Cp); the temperature range over which the glass 

transition occurred (∆Tg), which provides an indication of the homogeneity of the material. These 

measurements were repeated on three separate specimens from each system, in order to determine 

measurement uncertainties.  
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In addition to examining the DSC glass transition, dielectric spectroscopy was used to probe changes in the 

segmental dynamics and the polar content brought about by inclusion of the nanofiller. For this, specimens 

200 ± 10 μm in thickness were placed between two circular electrodes 30 mm in diameter and the dielectric 

response was measured at room temperature using a Solatron 1296 dielectric interface along with a 

Schlumberger SI 1260 impedance/phase gain analyzer. All samples were routinely sputter coated with gold 

on both sides to reduce any uncertainties associated with the contact between the sample and the dielectric 

spectrometer’s electrodes.  

Charge transport was evaluated by measuring the time dependence of the DC conductivity. For this, an 

electric field of 42 kV mm-1 was applied to specimens 200 ± 10 μm thickness and the resulting current was 

measured using a Keithley 6487 picoammeter. For each sample, one measurement was taken per one minute 

for two hours and, since the observed current was not found to vary significantly throughout the experiment, 

the quoted DC conductivity values simply correspond to the average of these 120 measurements. As for 

dielectric spectroscopy, these samples were again sputtered coated with gold electrodes prior to data being 

acquired, to minimize sample contact issues. In this case, 20 mm diameter circular sputtered electrodes were 

applied, to match the electrodes in the test cell. The sample temperature was controlled by conducting all 

measurements in a fan oven. 

DC breakdown measurements were conducted by placing specimens 70 ± 5 μm in thickness between 

opposing 6.3 mm diameter steel ball bearing electrodes and increasing the applied voltage at a ramp rate of 

100 V s-1 until breakdown occurred. The electrodes were replaced every 5 measurements, to avoid surface 

pitting from affecting the data. All breakdown data were acquired at room temperature (23 oC) and a two-

parameter Weibull function was employed statistically to analyze the results. 

4. Experimental results and discussion 

4.1. Heat treatment and filler surface chemistry 

Comparing the mass of the nanopowder before and after heating at 200 oC showed that the nanopowder lost 

~1.6 % of its initial mass during the process. Comparison of this result with comparable data obtained from 

a silica nanopowder, which when treated under the same conditions lost more than 16 % of its weight [55], 

indicates that silicon nitride does not absorb much water when stored under ambient conditions. This is 

primarily ascribed to the surface of silicon nitride being partially covered by amine groups, which are less 

polar than the hydroxyl groups that dominate in silica. Furthermore, Fubini et al. [48] reported that the 

hydroxyl groups on silicon nitride have slightly less acidity than the corresponding ones on silica. Figure 4 

shows FTIR data obtained from samples of nano-silicon nitride after thermal treatment at 200 oC and 

1050 oC, from which it is evident that, in both samples, the intensity of the small absorption peak at peak at 

1633 cm-1
 is comparable. Since this peak is associated with the presence of molecular water [56], its 

invariance between the two differently processed systems suggests that the two thermal treatments are 

equally effective at removing the physically adsorbed water. 

Consider, first, the FTIR spectrum of SiN200. This contains a pronounced peak at 3140 cm-1, which can be 

assigned to NH vibrations [45, 57, 58], together with another absorption centred at 3422 cm-1, which is 

related to the presence of OH. The notable breadth of both of these peaks is an indicator of hydrogen bonded 

amine and hydroxyl groups, while the cumulative intensity implies a high concentration of both moieties 

[45, 58]. The sharp peak at 1400 cm-1 corresponds to the Si2-NH deformation mode [57], while the 

absorption between 750 cm-1 and 1150 cm-1 is due to two overlapping peaks, one at 965 cm-1, which is 

attributed to the backbone vibration of Si-N-Si bonds, and the other at 1075 cm-1, which is associated with 
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the stretching vibration of Si-O-Si bonds (siloxane bridges) [57, 59]. The presence of this latter feature is 

indicative of a fraction of the particle surface having, effectively, been oxidized to silica [44, 57]. The weak 

absorption between 2800 cm-1 and 2900 cm-1 can be assigned to C-H stretching; a similar C-H absorption 

was previously reported by Li et al. [44], who suggested that this bond arises as a consequence of SiN2H 

reacting with atmospheric CO2. In conclusion, the FTIR spectra of SiN200 indicate a complex surface 

chemistry characterized mainly by the presence of NH and OH groups, together with some additional 

impurities. 

Calcining at 1050 oC (SiN1050) results in a significantly different spectrum (see Figure 4). First, the 

disappearance of the peaks at 3140 cm-1 and 1400 cm-1 indicates the removal of the NH groups. Furthermore, 

the peak at 1075 cm-1 (siloxane bridges) becomes stronger, whereas the peak at 965 cm-1 becomes very 

weak. This implies an increase in the Si-O-Si concentration accompanied by depletion of some of the 

Si-N-Si bonds [44]. The weakness of Si-N-Si absorption (965 cm-1) and the absence of absorption peaks 

associated with amine groups implies that this absorption originates from the Si-N-Si in the bulk of the 

particles, rather than on the surface, particularly since the spectra were collected in transmission mode [44]. 

Therefore, the spectra of SiN1050 suggest that the surface of the particles is predominantly covered by a 

silica layer. Additionally the presence of a peak at 813 cm-1, assigned to siloxane bridges, and the absence 

of any peak at ~951 cm-1, which is normally observed for silica and assigned to Si-OH groups [56], suggest 

that the silica layer on the particle surface is terminated with siloxane bridges rather than silanol groups. 

Comparable conclusions concerning the surface chemistry of silicon nitride powder heated above 1000 oC 

have been reported elsewhere [44].  

To provide further supporting evidence concerning the presence of siloxane bridges on the surface of our 

calcined nano-silicon nitride, complementary FTIR data were also obtained from a silica nano-powder, 

which was subjected to the same heat treatment at 1050 oC (SiO1050). The resulting data are compared with 

the FTIR spectrum of SiN1050 in Figure 5, which reveals considerable similarities. However, as would be 

expected, the Si-N-Si absorption at 965 cm-1 is absent in the spectra of SiO1050, which is due to the absence 

of this bond in the bulk of the silica powder. In summary, we interpret the FTIR data discussed above as 

demonstrating the following. First, both imposed thermal treatments are effective in removing physically 

adsorbed water from the as-received nanosilica. Second, while treatment of 200 oC retains the initial 

oxynitride surface layer, treatment at the higher temperature converts this to one that is predominantly silica 

(terminating with siloxane bridges), such that these nanoparticles can be considered to have a silicon 

nitride/silica core/shell structure. Third, these findings are consistent with published literature. 
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Figure 4. FTIR spectra for SiN200 and SiN1050. 

 

Figure 5. FTIR spectra for SiN1050 and SiO1050. 

4.2. Particle Dispersion 

Representative SEM images of all the systems considered here are shown in Figure 6. The micrograph of 

the unfilled epoxy (Figure 6a) shows a typical amorphous structure that is largely devoid of any surface 

features, which is consistent with results reported elsewhere [60, 61]. The image of the SiN200 filled epoxy, 

Figure 6b, reveals a surface that is rather rougher than that shown in Figure 6a, as is often reported for 

systems containing nanoparticles, a fact that results from interactions between the distribution of 

nanoparticles in the system leading to crack pinning and the consequent formation of conventional 

fractography features [60, 61]. A higher magnification image of the same system is shown in Figure 6c; in 

this, details of the fractography features and the granularity of the gold coating can both be seen, together 

with circular entities. These are of commensurate dimensions to the specified size of the nanoparticles and, 

as such, we interpret that arrowed structures in terms of the included nanoparticles. No large particle 

agglomerations can be seen, albeit that there are occasional small agglomerations, where a few nanoparticles 

are clustered together. For the SiN1050 filled epoxy, Figure 6d shows a somewhat rougher surface texture, 

which may be related both to interfacial effects and/or the degree of particle dispersion. A higher 

magnification image of this system, Figure 6e, reveals no evidence of gross changes in individual 

nanoparticle morphology, but does suggest the existence of particle clusters are formed from loose particle 

agglomerations. The difference in the agglomeration state of the SiN200 and SiN1050 nanoparticles may 

be a consequence of differences in surface chemistry leading to differences in nanoparticle/matrix 



12 

 

interactions [62-64]. As the FTIR spectra showed, SiN200 has a high concentration of surface amine groups, 

which can form strong interactions with the epoxy matrix, whereas the SiN1050 is covered with siloxane 

bridges, which cannot form such strong interactions with the polar epoxy matrix. 

 (a) 

 
(b)      (c) 

  

(d)      (e) 

  

Figure 6. SEM images for (a) sample E/100H/0, (b) sample E/82H/5SiN200, (c) sample E/82H/5SiN200 -

high magnification image, (d) sample E/100H/5SiN1050, and (e) sample E/100H/5SiN1050-high 

magnification image. 
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4.3. Glass Transition and Molecular Dynamics 

The FTIR data presented above demonstrate that the imposed thermal treatments result in changes in nano-

silicon nitride surface chemistry and, specifically, that calcination at 1050 oC results in removal of the 

surface amine character that can affect the epoxy curing reaction. Figure 7 contains representative DSC 

traces for all samples, which reveal the influence of changing the material composition on the DSC glass 

transition. Derived parameters are summarized in Table 2. 

 

Figure 7. DSC traces for the three samples; the circles superimposed on the curves indicate Tg. 

Table 2. Glass transition parameters for the three samples, the confidence interval is based on 95 % 

probability. 

sample code Tg (oC) ∆Cp (J g-1 oC-1) ∆Tg (oC) 

E/100H/0 88.2 ±2.3 0.31 ±0.026 7.66 ±1.8 

E/82H/5SiN200 87.5 ±2.3 0.316 ±0.026 7.1 ±1.8 

E/100H/5SiN1050 88.5 ±2.3 0.309 ±0.026 6.79 ±1.8 

From the above data, it is evident that the DSC glass transition in all three systems is comparable, despite 

the modified epoxy/hardener ratio used in E/82H/5SiN200. Recently, we have shown for the same 

epoxy/hardener system that, in the absence of any compensating effect, modifying the stoichiometry to this 

degree would result in a depression in Tg of ~22 oC [31, 47]. The fact that no comparable reduction in Tg is 

seen here provides qualitative validation of the active role played by the surface amines groups in 

E/82H/5SiN200 in the epoxy cure reaction and quantitative verification of the assumed stoichiometric 

perturbation provided by adding 5 wt.% of SiN200. A necessary corollary of this is that calcining the nano-

silicon nitride in E/100H/5SiN1050 has indeed removed the amine surface functionality, such that it exhibits 

the same Tg value as E/82H/5SiN200, despite the different matrix resin stoichiometry. 

The fact that all three systems exhibit equivalent glass transitions indicates that, within experimental 

uncertainties, all three systems undergo identical glass transition processes. That is, the main chain dynamics 

that are associated with the glass transition of the polymeric matrix in all of these samples are equivalent, 

such that no variations can be detected by this characterization method. This observation further suggests 

that in both nanocomposite systems, whether the nanoparticles strongly interact (as would be expected in 

E/82H/5SiN200) or do not interact (as would be expected in E/100H/5SiN1050) with the epoxy matrix, the 

nanofiller does not induce an observable confined or loose layer around themselves. This, in turn, implies 
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either the absence of such layers, as was reported by [25], or that the thickness of such layers are too thin (< 

~1 nm) to be detected out of the experimental uncertainties at the filler loading level considered here (5 

wt.% or 1.65 vol.%) [27]. 

Dielectric spectra obtained from the three samples are presented in Figure 8, which show that the real part 

of the permittivity (𝜖𝑟
′ ) is comparable in all three systems. The evident, slight differences in the absolute 

magnitude of 𝜖𝑟
′  (see Figure 8a) are within the experimental uncertainties; such variations often result from 

errors related to determining the true samples thickness or in producing electrode layers that are exactly 30 

mm in diameter and precisely aligned with one another on both sides of the samples. That is, such variations 

in 𝜖𝑟
′  stem from uncertainties in the input parameters used to transform measured sample capacitances into 

permittivity values. The imaginary permittivity data shown in Figure 8b contain a typical β relaxation which, 

in all three systems, is of comparable strength. It has been shown [65, 66] that this relaxation is associated 

with the hydroxyether groups that result from the reaction of the resin and the hardener and, consequently, 

its strength should be proportional to the crosslinking density present in the system. Previously, we have 

shown that reducing the hardener content in the absence of any compensating effects results in a sharp 

reduction in its β relaxation [31]. Consequently, the data shown in Figure 8 further demonstrate that the 

crosslink density in all three systems is equivalent, which is in consistent with the DSC glass transition 

results discussed above. 

Nevertheless, to investigate molecular processes further, the temperature dependence of the dielectric 

response of the three systems was considered and the resulting raw data obtained from 35 oC (i.e. well below 

the DSC Tg) to 110 oC (i.e. well above the DSC Tg) are shown in Figure 9. From these results, it is evident 

that the dielectric response of the E/100H/0 and E/100H/5SiN1050 systems are equivalent at all 

temperatures, but that the behaviour of E/82H/5SiN200 is very different, in that marked low frequency 

losses becomes increasingly evident as the temperature increases. While it is tempting to associate this 

directly with the change in matrix formulation resulting in a change in network architecture and consequent 

modified molecular dynamics, we believe that this is not the case. Analysis of the frequency dependence of 

the imaginary component of the relative permittivity of all three systems well above Tg demonstrates that 

this parameter varies with the reciprocal of the frequency. That is, the observed dielectric losses are 

associated with charge transport processes. As such, it is possible to subtract this contribution from the 

imaginary dielectric spectra, to reveal the underlying molecular dynamics: Figure 10 shows results obtained 

following such data manipulation, from which, two significant factors emerge. First, it is evident that both 

the strength and the frequency of the  relaxation in all three systems are comparable at both 100 oC and 

110 oC. Second, no additional features are seen in either nanocomposite system that can be associated with 

interphase regions within the polymer. Since the shape of the  relaxation peak in all three of our systems 

is comparable, no change in molecular dynamics at the nanoparticle/polymer interfaces can be seen in the 

specific material systems considered here.  

Finally, having considered the molecular dynamics after removal of the charge transport contribution to the 

dielectric loss, it is worth briefly examining the temperature dependence of charge transport itself. To do 

so, we need to estimate the contribution of the α relaxation at each temperature and then subtract this from 

the dielectric spectra in order to reveal the residual contribution associated with charge transport. The α 

relaxation at 100 and 110 oC can be determined from Figure 10 and, consequently, at temperatures ≤ 90 oC, 

the contribution to the overall dielectric loss can be estimated by shifting the results shown in Figure 10 to 

the left depending on the temperature. For example, the left shift of the α relaxation when the temperature 

decreases from 100 oC to 90 oC is considered the same as the shift of this relaxation when the temperature 
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decreases from 110 oC to 100 oC. Figure 11 shows the obtained results, which reveal a low frequency 

element whereby the imaginary permittivity varies with the reciprocal of frequency – as would be 

anticipated for charge transport process – together with a relatively small increase in high frequency losses, 

which we associate with remnants of the β relaxation. An Arrhenius data analysis can be used to analyse the 

data presented in Figure 11. Mathematically, such data analysis process equates to the standard use of a shift 

factor whereby, in the case of a specific relaxation, the frequency corresponding to maximum loss is 

commonly determined as a function of temperature and used in an Arrhenius analysis to estimate the 

activation energy of the associated process. In the case of charge transport, it is clearly not possible to follow 

such a procedure exactly, but it is possible to determine the equivalent shift factor in terms of the variation 

with temperature of the frequency corresponding to particular value of imaginary permittivity. The result of 

such an analysis are shown in Figure 12. This figure suggests that for the three systems two different 

mechanisms for charge transport occur; one dominates at temperatures higher than Tg, the other at 

temperatures less than Tg. At temperatures higher than Tg, the major charge transport contribution in such 

epoxy systems can be attributed to ionic conductivity [35]. The parallelism of the three Arrhenius lines of 

the three systems indicates comparable conduction activation energy, which consequently implies 

comparable network structure that similarly interacts with the ionic movement in the three systems. As the 

temperature decreases below Tg, epoxy network enters its glassy state, and this limits ionic transport. Thus, 

at temperature < Tg, an alternative charge transport process becomes dominant and while it is not possible 

unambiguously to identify this from the data presented above, we suggest that this may be electronic in 

origin. Again, Figure 12 shows that the Arrhenius lines for the three systems are parallel. Whereas, this 

result suggests that at temperature < Tg, the charge transport in the three systems could be electronic in 

nature, it does not explain why the conduction of sample E/82H/5SiN200 is greater. More discussion 

concerning DC conduction is given in the next section.  

We argue that the totality of the evidence presented above leads to a number of conclusions, which are 

applicable to the systems considered here and are not intended as generally applicable conclusions. 

 First, that SiN200 should be considered both as a nano-filler and as a reactant and that this latter effect 

was properly accounted for in E/82H/5SiN200 by changing the epoxy : hardener ration used to 

formulate the matrix.  

 Second, the presence of neither nanofiller leads to any detectable alteration in dielectric relaxation 

processes as a consequence of the introduction of the nanoparticles. This is in contrast to the work of 

Hosier et al. [54], who observed that the addition of silicon nitride into a polyethylene matrix results in 

a low frequency relaxation that was progressively displaced to higher frequencies when the 

nanocomposite material was exposed to water. The absence of any additional relaxation in the 

nanocomposites investigated here therefore (a) implies that no significant water shells are present 

around the nanoparticles [11, 12] and (b) indicates that any regions close to the nanoparticle surfaces in 

which the molecular dynamics of the polymer chains are modified are so limited in extent as not to be 

detectable. 

 Third, we suggest that by varying the nanofiller thermal treatment and appropriately compensating for 

the influence that the nanofiller surface chemistry has on the epoxy cure reaction, we have generated 

three systems which differ only in terms of their intrinsic nanofiller surface chemistry/structure. In this 

case, the influence of the nanofiller surfaces on bulk electrical properties should be directly revealed: 

E/100H/0 contains no nanoparticle surfaces; in E/82H/5SiN200, nanoparticle surfaces are based on un-

relaxed silicon oxynitride chemistry/structure; in E/100H/5SiN1050 nanoparticle surface are based on 

thermally-relaxed silica (siloxane bridges). 
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Figure 8. Dielectric response, (a) real part of the relative permittivity and (b) imaginary part of the 

permittivity. 



17 

 

 

Figure 9. Dielectric spectra versus temperature, (a) real part of the relative permittivity and (b) imaginary 

part of the permittivity. 

 

Figure 10. Imaginary part of the permittivity after subtracting the contribution of DC conductivity at 100 

and 110 oC. 
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Figure 11. Imaginary part of the permittivity after subtracting the contribution of the α relaxation at 

selected temperatures for (a) E/100H/0, (b) E/82H/5SiN200 and (c)E/100H/5SiN1050. 

 

Figure 12. Effect of material formulation on the temperature dependence of charge transport, represented 

as an Arrhenius-type plot.  
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4.4. DC Conductivity and Breakdown Strength 

The time dependence of the DC conductivity at 45 oC of the three systems considered here is shown in 

Figure 13. The reduced scattering in the data obtained from sample E/82H/5SiN200 compared with the data 

obtained from the other samples is a simple consequence of the higher signal to noise ratio in these data, 

which stems directly from the higher current that flows through this sample. From these data, it is evident 

that any time dependence is weak, thereby validating the decision to take a simple average of all the 

measured data points to represent the DC conductivity of each system. Praeger et al. [15] reported time 

dependent conductivity data for nanosilica filled polyethylene, in which an initial decrease in conductivity 

with time was followed by a period in which the conductivity increased, an effect that they ascribed to 

dynamic water absorption effects. The slight increase in conductivity with time for E/82H/5SiN200 that is 

evident in Figure 13 at longer times may have a similar origin but, in this case, the effect is relatively minor 

compared to the marked differences that exist between this and the other systems. Repeating these 

measurements at different temperatures results in the data shown in Figure 14, which shows the mean of all 

the acquired conductivity values plus error bars, which represent the 95 % confidence bounds derived from 

each data set. From this figure, it is clear that the DC conductivity of the SiN200 filled system is significantly 

greater than that of the other two systems at all the temperatures considered here. The SiN1050 filled epoxy 

has a slightly lower DC conductivity than the unfilled epoxy. It is worth mentioning here that at the three 

considered temperatures, all the systems are deep in their glassy state and, therefore, the above conclusions 

may not be applicable at temperatures near or above Tg, where ionic conduction becomes increasingly 

important and may lead to different behaviour.  

This trend in the DC conductivity distinctly correlates with the DC breakdown results shown in Figure 15 

and Table 3. Since the polymer matrix in the three materials does not exhibit any significant variations, as 

demonstrated by the glass transition results and the dielectric response, these variations in the DC 

conductivity and breakdown strength cannot be related to variations in the epoxy network dynamics or 

structure. Additionally, a previous work [31] has concluded that the electrical behaviour of the same epoxy 

matrix does not correlate with the network structure or crosslinking density. Therefore, theses variations in 

electrical properties must be associated with the nanoparticles. Regarding the particle dispersion, the SiN200 

dispersion is much better than the SiN1050 dispersion and, hence, the dispersion factor would advise that 

the system filled with SiN200 has a better electric performance [17], which is not the case. Accordingly, the 

particle dispersion is not a decisive factor in determining the charge transport dynamics in these systems. 

Praeger et al. [42] studied the effect of calcinating a silica nanofiller at 1050 oC before introducing it into a 

polyethylene matrix. They found that the calcinated silica resulted in a considerable increase in the DC 

breakdown strength, while the as-delivered silica, without any heat treatment, caused a substantial reduction 

in the DC breakdown strength; no other heat treatment was tried. The authors referred this behaviour to the 

water shells that surround the hydrophilic as-delivered silica and evaporate upon heating the particles at 

1050 oC. Water molecules are highly polar and can be auto-ionized (i.e. producing OH- and H3O+ ions), 

leading to higher charge transport [12, 67]. In the current investigation, care was taken to remove such water 

layers by heating the particles at 200 oC and drying the samples at vacuum for > 14 days. Additionally, as 

was discussed when analyzing the dielectric response, no evidence has been identified for the presence of 

water shells around the SiN200 particles. Returning to the FTIR results, the surface of SiN200 particles has 

complex chemistry, is partially oxidized to silica, and contains many defects as indicated by detecting carbon 

and hydrogen atoms. Beside the amorphous structure of the particles, this surface chemistry suggests 

disordered band gap in the particle interphase with a high concentration of localized electronic states. As 
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was discussed earlier, such particle interphase might increase the charge transport, as was illustrated by 

Figure 2, and thus it may account for the higher DC conductivity and lower DC breakdown strength 

observed for this sample. On the other hand, the SiN1050 is covered by a silica layer terminating with stable 

siloxane bridges without NH or OH groups. Such surface chemistry indicates particle interphase with a 

lower concentration of localized electronic states. Indeed, Sameshima et al. found that changing the surface 

chemistry of silica films into Si-O-Si network significantly reduces the density of trap states [68]. 

Furthermore, it is known that the silica has a considerable larger band gap than the silicon nitride [69], which 

implies a particle interphase with wider band gap. Consequently, the particle interphase, in this case, might 

work as an energy barrier that scatters charge carriers as was proposed by Figure 3. Such particle scattering 

effect has already been cited elsewhere [36, 38] as a mechanism for improving dielectric properties of 

nanocomposites and, thus, the PIM model presents a possible explanation for the origin of this effect. 

  

Figure 13. DC conductivity measurements at 45 oC and electric field of 42 kV mm-1. 

 

Figure 14. Average of DC conductivity for all samples at different temperatures and electric field of 42 

kV mm-1, the error bars indicate the 95 % confidence bounds of the average. 
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Figure 15. DC breakdown measurements at room temperature. 

Table 3. Weibull parameters derived from the DC breakdown measurements for all samples, the 

uncertainties are based on the 95 % confidence bounds. 

Sample code  E/100H/0 E/82H/5SiN200 E/100H/5SiN1050 

Weibull scale parameter 

(kV mm-1) 
646 ±18 472 ±12 660 ±17 

Weibull shape parameter  19 ±6 22 ±7 20 ±6.8 

 

5. Conclusions  

In this study, we propose dividing the interphase region between the nanoparticles and the polymer into 

particle interphase and polymer interphase. Since most reported work has concentrated on the polymer 

interphase, the emphasis here was for highlighting the importance of the particle interphase. The study 

demonstrated that the particle interphase has a critical influence on the electrical properties of 

nanodielectrics, which might be more crucial than the polymer interphase. This may be attributed to that the 

particle material has higher density and, consequently, any perturbations in the particle interphase will lead 

to modifying the electronic density of states and, therefore, affect the electronic dynamics in this region and, 

ultimately, in the whole nanodielectric system.  

The electrical properties are essentially affected by the dynamics of charge carriers, which could be as small 

as electrons, and therefore, the behaviour of these properties is not necessarily correlated with the dynamics 

of larger constituents, i.e. dynamics of the polymeric segments or chains. The experimental results clearly 

support such conclusion, where all the samples exhibit similar molecular dynamics but significantly 

different charge transportation and, consequently, electrical performance at temperatures well below Tg. 

Therefore, designing nanodielectrics might need deeper and more analytical approach than the currently 

empirically-dominated approach. Such approach should consider the relative location of the conduction and 

valence energy levels between the filler and matrix materials. These levels can be engineered by properly 

selecting the suitable filler/matrix combinations. Furthermore, the variations that may occur in these levels 

in the interphase regions should be considered, since they can lead to a significant impact on the dielectric 

performance of nanodielectric systems. 
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