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Abstract: The integration of edge-to-cloud infrastructures in smart grid (SG) data center
networks requires scalable, efficient, and secure architecture. Traditional server-based SG
data center architectures face high computational loads and delays. To address this problem,
a lightweight data center network (DCN) with low-cost, and fast-converging optimization
is required. This paper introduces a container-based time synchronization model (CTSM)
within a spine–leaf virtual private cloud (SL-VPC), deployed via AWS CloudFormation
stack as a practical use case. The CTSM optimizes resource utilization, security, and traf-
fic management while reducing computational overhead. The model was benchmarked
against five DCN topologies—DCell, Mesh, Skywalk, Dahu, and Ficonn—using Mininet
simulations and a software-defined CloudFormation stack on an Amazon EC2 HPC testbed
under realistic SG traffic patterns. The results show that CTSM achieved near-100% reliabil-
ity, with the highest received energy data (29.87%), lowest packetization delay (13.11%),
and highest traffic availability (70.85%). Stateless container engines improved resource allo-
cation, reducing administrative overhead and enhancing grid stability. Software-defined
Network (SDN)-driven adaptive routing and load balancing further optimized perfor-
mance under dynamic demand conditions. These findings position CTSM-SL-VPC as a
secure, scalable, and efficient solution for next-generation smart grid automation.

Keywords: cloud computing; data center network; smart grid; software-defined network;
containerization

1. Introduction
In today’s Cloud-First era, where smart grid digital innovation is accelerating at

breakneck speed, data centers face unprecedented demands—from managing massive
data traffic and supporting multi-tenant environments to delivering cutting-edge analytics
services. Yet, when traditional architecture reaches its limits, even powerful systems like
the legacy SGDAs struggle with computational overhead and service delays [1,2]. Thus, a
solution that not only addresses these limitations but also optimizes performance across
the board is needed.
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By integrating innovative models like container optimization and time synchroniza-
tion, these legacy systems can be transformed into highly efficient, resilient infrastructures
that are fit for the future. For example, the integration of smart grid (SG) technologies
into energy infrastructure marks a major step forward in sustainable energy management.
However, to unlock its full potential, key improvements in system design are required.
Traditional approaches often struggle with issues like scalability, efficiency, and synchro-
nization, especially in distributed edge environments [1]. To overcome these challenges,
the goal is to transform energy distribution and management by incorporating time syn-
chronization and container-based optimization into the distributed edge architecture of the
SG Fog [2]. This innovative strategy promises enhanced security, better resource utilization,
smoother operations, and seamless coordination across the grid [3].

To date, some specialized literature has proposed several strategies to address com-
putational overhead and service delays in legacy data center networks. However, these
strategies are introduced mostly at a discrete level, only including real-time service re-
covery mechanisms [4]; a congestion-aware (CA) control with buffer and egress port CA
algorithms and fine-grained window size adjustment [5]; Viseu, a latency-aware blockchain
framework for virtual internet services at the edge [6]; backward congestion notification
for end-to-end congestion management in Ethernet-based unified switch fabric [7]; ma-
chine learning-based predictive congestion control for TCP to mitigate packet loss and
improve the quality of the experience [8]; and switch-assistant loss recovery for RoCEv2 to
replace priority flow control in large-scale data centers [9]. Thus, this paper advances SG
edge-to-cloud integrations by enhancing the reliability, resilience, and efficiency of service
provisioning in SL-VPC beyond the discrete level.

As SGs continue to evolve, the growing demands on data centers have become increas-
ingly apparent, particularly concerning storage capacity, computing power, and bandwidth
capabilities [10]. The surge in data volume underscores the urgent need for expanded
storage solutions. However, data center hardware has often been developed without fully
considering the requirements of distributed systems, especially those managing substantial
east–west traffic, such as SG enterprise DCNs [1–3]. These networks necessitate extensive
computational resources and highly structured designs that can be effectively scaled as the
impact of SGs on service delivery in distributed architecture continues to evolve.

Handling increased traffic and workload through intelligent automation, complex
mathematical, and computational workflows is rarely implemented in legacy networks [11].
However, in modern network architectures, these approaches are often superior, enabling
dynamic optimization, predictive scaling, and cost-effective resource utilization. As a result,
a predictive learning curve, PLC (also referred to as intelligent analytics), is introduced
into the SL-VPC for performance optimization in SGDCNs. Our spine–leaf virtual private
cloud (SL-VPC) architecture implements the spine–leaf topology within a multi-cloud
environment. This topology comprises two distinct layers of switches: leaf switches
and spine switches. Leaf switches connect directly to individual servers, while spine
switches interconnect all leaf switches, ensuring a highly scalable, low-latency, and efficient
network. The architecture optimizes east–west traffic flow, enhances fault tolerance, and
supports high-bandwidth applications, making it ideal for SGCN (i.e., on-premises and
cloud) environments.

In this paper, container stack automation is integrated into an SL-VPC within an
AWS cloud infrastructure. This is adaptable to any cloud ecosystem, including Azure and
Google Cloud Platform (GCP) through network-defined functions which house containers
for Kubernetes. By incorporating stochastic gradient descent (SGD) controllers, the system
enables lightweight scheduling and efficient resource allocation. The results highlight
that CTSM SL-VPC outperforms traditional DCN architectures in received energy data
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and service throughput, while SGDA IPv6 Gateway and SGDA-VPC access exhibit higher
encryption–decryption overhead and varying media access and packetization delays. The
introduction of containerization, a CTSM, and software-defined CloudFormation stack (SD-
CFS) enhances computational efficiency, automation, scalability, security, and compliance,
supporting multi-cloud and hybrid environments.

A multi-combinational approach integrating edge computing, SDN, containerization,
AI-driven optimization, and hybrid cloud architecture effectively addresses computational
overhead and service delays in SGDCNs. Edge and fog computing reduce latency by
processing data closer to the energy paying residents, while SDN and NFV optimize
network traffic, minimizing congestion. Containerization and microservices enhance scala-
bility and modularity, preventing system-wide failures. AI-driven optimization and SGD-
based scheduling improve real-time analytics and resource allocation. Time-synchronized
SL architecture ensures low-latency, high-throughput data exchange, while hybrid and
multi-cloud integrations improve workload distribution, reliability, and security. With
CTSM and SDN-CFS, the proposed SGDCN demonstrates significant gains in efficiency
and performance.

The summary contributions of this paper include the following:

1. Developing a simple optimization framework utilizing stochastic gradient descent
(SGD) and the implicit function theorem (IFT) for dynamic load balancing and re-
source management in the SGDA network.

2. Proposing a multi-queuing model (MQM) for real-time load management via cloud-
based resource allocation and auto-scaling.

3. Establishing a decentralized edge-to-fog framework for efficient advanced metering
infrastructure (AMI) sensor communication and energy monitoring.

4. Implementing predictive workload balancing and multipath routing to reduce latency
and optimize traffic flow in SGDAs.

5. Developing a security group firewalling strategy using OpenFlow to enhance network
security and load management, providing a robust backend for data protection.

6. Conducting performance evaluations comparing SGDA efficiency with traditional
data center network topologies.

The rest of the paper is structured as follows. In Section 2, general studies on DCN
topologies are discussed. Section 3 discusses the methodology applied to fix the gaps.
Section 4 presents the performance evaluation of the DCN while Section 5 presents the
conclusion of the research findings and recommendations.

2. Relevant Literature Review
2.1. Topological Models

Legacy server-centric and switch-centric topologies are the two classifications of
data center networks based on where the intelligence of the DCN is located [12]. In
server-centric DCN design, the intelligence is built on the server, while in switch-centric
cases the intelligence is built on the switch. In this paper, we examined server-centric
topologies, switch-centric topologies, and spine–leaf architecture for prospective smart grid
DCN designs.

In [13], the Dahu DCN model was proposed as an improvement powered by com-
modity Ethernet switches supporting direct link networks. By dynamically distributing
traffic equally across links, this model eradicates congestion points. When performing
load balancing using local data, it forwards traffic over non-minimal routes. However,
the decentralized load balancing heuristic is not scalable for SG environments. SG data
center implementations would be primarily restricted to multi-rooted tree switch-centered
topologies such as Dahu [13] and traditional data center architecture. The authors of [14]
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developed a changeable multi-tiered topology with substantial oversubscription by al-
tering the amount of forwarding and receiving links at each access tier and aggregation
tier switch. The fat-tree architecture [15] was proposed to describe how to sustain the
total aggregate bandwidth of clusters with tens of thousands of nodes using mostly cheap
Ethernet switches. The price difference between high-end switches and low-end switches
is significant, which inspired the creation of the fat-tree network. Unfortunately, this model
is not scalable for the SG ecosystem due to the limitation of the port switch. Various efforts
in the literature seem to isolate SG applications. The traditional data center architecture
denotes a multi-tiered design and vendor orientation.

Intelligent switches are used in the switch-centric category to conduct smart packet
routing in a data center. In this category, some switch-centric data center topologies include
JellyFish [16], DOS [17], FRINGE [18], and Skywalk [19]. In [20], the flattened butterfly
network topology was designed originally for on-chip connectivity networks. The authors
presented a flattened butterfly network for high-radix networks as a cost-effective topology.
This is useful in load-balanced traffic where, relative to the Clos network, its efficiency
is optimum. The advantage over the Clos network is achieved by removing redundant
hops when they are not required for load balancing. Again, the network integration of
SG systems may encounter computational overhead; however, efforts to build resilient
systems have continued to date. For instance, a Layered Scalable Data Center (LaScaDa)
was introduced as a DC topology in [21]. This is used for the construction of scalable
and cost-effective networking infrastructures for data centers. Interestingly, SG systems
will rely on server-centric DCN topologies to ensure robust server integration. The main
server-centric models in the literature include [22] DCell, BCube, FiConn, HCNs and BCNs,
DPillar, MCube BCDC, General Hypercube, HSDC, and Stellar Transformation [23]. Delay
in service processing is a common problem of server-centric DCN topologies. This is
unacceptable for SGDAs.

A new trend of DCN evolution has recently begun with spine–leaf architecture [23].
The architectural design is an example of Clos architecture, in which every leaf switch
is linked to each of the spine switches and is a full-mesh topology. Depending on the
capabilities of the networking switches, Layer 2 or Layer 3 technologies can be integrated
with the spine–leaf mesh. Each link must be routed in Layer 3 spine–leaves, which is
typically achieved using open shortest path first (OSPF) or equal-cost multipath routing
(ECMP) with border gateway protocol (BGP) dynamic routing. Layer 2 employs a loop-
free Ethernet fabric like transparent interconnection of lots of links (TRILL) or shortest
path bridging (SPB). The modern-day software-defined solutions (smart grid networks,
banking enterprise architecture) require more expanded east–west traffic, so the spine–leaf
architecture is realistically ideal [24]. Similarly, the DCNs in [25–28] offer scalable attributes
for enterprise adoption, though with several limitations. Table 1 summarizes the recent
efforts toward data center designs and application deployments.

Table 1. Summary of DCN design models and applications.

References Design Strategy Design Limitations Application Domain

X-NEST [29] Optical switching High computational
workload

A large-scale distributed machine
learning system

Flatter networks [30] Composable and
optical switching

High computational
workload

High-performance
computing workloads

Geo-DCN [31]
Multiple data centers
distributed without

data replication

High computational
workload

Data centers that are
geographically dispersed
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Table 1. Cont.

References Design Strategy Design Limitations Application Domain

Renewable Energy
DCN [32]

Scheduling algorithm for
reinforcement learning

(RL)-based jobs

High computational
workload

Big data analytics on a geo-distributed
data center for DER

Reinforcement learning Application

Aggregation DCN [33]
Combination of
two aggregators

—Two-Chain Topology
Routing complexity

Generic data center on round
aggregation top-of-rack DCN

PEFS [34]
Scheduling strategy that is
AI-driven, energy-aware,

proactive, and fault-tolerant
Delay complexity Cloud data centers (CDCs)

CALM [35]
Polynomial-time

algorithm/collocation-aware
survivable placement (CASP)

Resource usage complexity Cloud data centers (CDCs)

DCell [36] Hamiltonian-connected High computational
workload Cloud data centers (CDCs)

Skywalk [37] Low-latency interconnects Smaller QoS metric coverage Large-scale high-performance
computing (HPC)

BML-BCube [38] Distributed gradient
synchronization algorithm

High computational
workload

Large-scale distributed machine
learning (DML)

Generalized
Hypercube [39]

Exchanged generalized
hypercube (EGH)

High computational
workload Cloud data centers (CDCs)

RRect [40]
Server-centric network

linear diameter and scaled
parallel paths

High computational
workload Enterprise data center

HSDC [41] High scalability with
hypercube network

High computational
workload Enterprise data center

WaveCube [42]
WaveCube optical

multipathing and dynamic
bandwidth provisioning

High computational
workload Optical data center networks

BCCC [43] Diameter linearity High computational
workload Enterprise server-centric data center

GBC [44]

Examines low-cost
off-the-shelf switches and
servers with any specified
number of NIC interfaces.

High computational
workload Enterprise server-centric data center

LaScaDa [45] Explores hierarchical
row-based routing

High computational
workload Cloud data centers (CDCs)

cRetor [46]

Topology-aware
routing scheme.

A star algorithm for
SDN controllers

High computational
workload Cloud data centers (CDCs)

Proposed DCN Edge-to-cloud orchestration
using the SGDA network

Autonomous/managed
computational workload Smart grid infrastructure/Smart Cities

2.2. Research Gaps in SG DCNs

Several research gaps persist in the design of DCNs for cloud-based services, particu-
larly with handling high computational workloads. A crucial need exists for integrating
software-defined networking (SDN) into these designs to enable quick routing updates.
This integration would enhance the computational routing behavior, speed up convergence,
reduce route overhead, and improve fault tolerance. While significant progress has been
made in combining SDN with network function virtualization (NFV) as a multi-objective
optimization problem, there remains a gap in deploying SDN effectively within spine-



Technologies 2025, 13, 105 6 of 33

leaf topologies [47]. Current studies focus on SDN applications such as optical transport
networks [48], stateful data networking [49], OpenFlow-based SDN [50], and heuristic
SDN [51] within lightweight cloud domains, but SDN’s specific optimization in spine–leaf
architecture remains underexplored. Furthermore, the use of stochastic gradient descent
(SGD) computations for large-scale networks has shown promise in modern DCN designs.
However, little effort has been made to apply SGD quality of service (QoS) metrics for
optimizing SDN controller engine provisioning [52–58]. To bridge this gap, the introduction
of container-based time synchronization models with overhead-controlled SGD presents
a novel approach to achieving a lightweight DCN scenario. This paper introduced an
overhead-controlled SGD within SD-SL topology as a potential solution to address the
current gaps, particularly in optimizing the QoS for large-scale smart grid DCNs.

3. System Model
Figure 1 illustrates the IoT core infrastructure in SGDA for residential units depicting

edge-to-cloud integrations. Due to energy workflow sensitivities, we applied mathematical
optimization techniques used to handle dynamic load balancing, stability, and scalability.
SGD and multivariable calculus tools, particularly the implicit function theorem (IFT), serve
as the foundation for these optimizations. The goal of optimization is to minimize network
overhead, balance traffic loads, and enhance resource utilization while considering various
constraints such as bandwidth, processing capacity, and service delivery requirements.
This ecosystem can be formalized with constraints to optimize performance across the
SGDA, as shown in Figure 2.
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3.1. Analytical Framework-Scalable CTSM-SGDCN

A CTSM is introduced to a SGDCN to address real-time latency optimization and
traffic workload across the SG infrastructure. SDN is integrated to enable intelligent
automation of energy data traffic while SGD optimizes parameters dynamically.

3.1.1. Problem Definition and Optimization Formulation

This subsection describes the IoT smart grid infrastructure variables. Let us define
an objective function F(x, y), where x = (x1, x2 , . . ., xn) represents the QoS network
variables such as throughput, latency, or load, and y = (y1, y2 , . . ., ym) are the constraints,
including bandwidth limits, energy usage, and resource availability. The system is subject
to constraints. (x, y) represent the capacity and operational limits of the infrastructure.

The optimization problem can be expressed as Equation (1):

min
x,y

F(x, y)
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Subject to:
C1(x, y) ≤ b1, C2(x, y) ≤ b2, . . . Cm(x, y) ≤ bm (1)

where C1, C2, . . . Cm are constraint functions, and b1, b2, . . . bm are the upper bounds for
these constraints (e.g., bandwidth, traffic capacity, or power consumption limits).

3.1.2. Implicit Function Theorem for Load Balancing

Using the IFT, we define the system of Layer 3 routers and their routing functions for
the SL-VPC as Equation (2):

r Li(x1 . . . xn, . . . y1, . . . ym) = 0, i = 1 . . . R (2)

This formulation assumes the routers are part of a virtualized, differentiable system
where redundancy and failover can occur in a seamless manner. The IFT allows us to
express one variable as a function of others, simplifying the optimization problem, where

L : Rn+m represents a continuously differentiable virtual function across a product
space such that Rn ∗ Rn forms a Cartesian product of virtual spaces. This model aims
to optimize traffic load balancing while managing redundancy within the AMI of a SG
network. The redundancy mechanism automatically disconnects nodes from the core
internet gateway when multiple paths are available, ensuring efficient resource allocation
(Equation (3)).

x, y, z = SGSBn+1(x1 . . . xn, . . . y1, . . . ym). (3)

where SGSBn+1 denotes transparent failover clusters for load balancing.

Definition 1. Implicit Transparent Failover Service (ITSF) and Load Balancing.

The ITSF ensures the existence of differentiable fault-tolerant failover clusters
SGSB1, SGSB2, . . . SGSBn+1. This is required for load balancing across the SGDA net-
work. The implicit function theorem provides the necessary differentiability condi-
tions for achieving this balance in Equation (4). This guarantees uninterrupted energy
service provisioning.

3.2. Mathematical Model of Traffic and Stability

The automation service metrics are defined as a tuple:

M = (Q, Sd, T, A)

where
Q = {Q1, Q2 . . . Qn} is a set of QoS metrics (e.g., throughput, traffic availability).
Sd = (Sd1, Sd2, . . . Sdn+1) represents the SDN-OpenFlow components.
T = (t1, . . . t2, . . . tn+1) is a set of temporal service invocations.
A = (A1, . . . A2, . . . An+1) represents the activities or transactions of end-users.
The CTSM leverages SL-VPN containers to optimize traffic handling and service

provisioning through real-time stability monitoring. We now describe the main elements of
the model in Equations (4) and (5).

3.2.1. CTSM Traffic Stability Model

i. QoS vector path stability:

To maintain real-time synchronization, the QoS stability equation ensures time-
consistent data transmission (for high-density traffic), defined by the following equations.
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Qvp(t) =

[
∞

∑
t=0

(Q vp1
(t) + Qvp2

(t) + . . . + Qvpn+1
(t))

]
(4)

This guarantees predictable latency and resilient energy flow across the network.

ii. Stream Workload Path (SWP) Stability

The stream workload model ensures stable data synchronization across the SGDCN:

Sswp(t) =

[
∞

∑
t=0

Sswp1(t) + Sswp2(t) . . . Sswpn+1(t)

]
(5)

By deploying containerized SDN functions, the network dynamically adjusts to peak
loads, mitigating synchronization errors via auto-scaling fault tolerance.

3.2.2. CTSM Auto-Scaling and Traffic Optimization

As shown in Figure 2, we employed load balancing (i.e., Application Load Balancers
(ALBs)/Network Load Balancers (NLBs)) to ensure scalability and fault tolerance. The
ALB routes the HTTP/HTTPS traffic using WebSocket and content-based routing. The NLB
handles TCP/UDP energy transactions, ensuring high throughput and low latency. We
then used the auto-scaling group servers to dynamically adjust container instances based
on CPU utilization and network request rates. We note a constraint optimization concern
for traffic flow. Hence, to maintain synchronization under high-density traffic, the system
enforces a constraint:

Cm(x, y) ≤ b

where Cm(x, y) represents network constraints such as bandwidth and latency.
Also, stochastic gradient descent (SGD) with constraints is considered. To dynamically

optimize SGDA traffic, SGD updates network parameters using the loss function J(θ). This
measures the deviation from optimal traffic balancing. The SGD update rule is given by
Equation (6):

θ(K+1) = θ(k) − µ∇J((θ)(k)) (6)

where µ is the learning rate, and
∇J J((θ)(k)) is the gradient of the loss function with respect to the parameters θ.
This ensures real-time energy data synchronization, thereby improving load balancing

efficiency, latency minimization, and resilient failover recovery.

3.2.3. CTSM Multi-Queue System

A multi-queuing model (MQM) for load management via cloud architecture is intro-
duced. Once the edge AMIs generate events via the nodes to the cloud, the queuing system
is activated. The CTSM for the SGDA network alongside its AMI is further analyzed to
address real-time feedback. The microservice architectural design could benefit from classic
segmentation, failure isolation, scalability, and active–active resilience and resource opti-
mization under MQM. We assume our possible scenarios as load balancing across queues,
microservices with dedicated queue states, task segmentation services, dynamic allocation
via auto-scaling combined with cloud services (e.g., AWS SNS, GCP publish–subscribe,
Kafka, etc.).

• Dynamic allocation via auto-scaling

Let us use an auto-scaling use case as an example. Consider an M/M//2 MQM with
myriads of complex heterogenous servers entering idle vacation mode whenever there
is no workload. In the auto-scaling design, a fleet server S f goes on vacation when the
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others are active, SAa. Assume we have two heterogenous servers, SA and SB, using the
microservice-modified Poisson process parameter λ, and let µ1 and µ2 be the service rates
of both auto-scaling servers, respectively. Here, µ1 ̸= µ2. We assume that the durations of
their fleet vacations are independent but distributed with an exponential stochastic variable,
θ1 and θ2. During vacation sessions, traffic arrival demands on SA (a busy server with no
fleet vacation) will cause SB (a less busy server) to provision and service at lower rates.

In this case, the SB will have a service rate of θµ2, 0 ≤ θ ≤ 1. Once the service is
completed, SB will continue with the expected service rate µ2 until there is no more queue
before it goes on its own fleet vacation. The workload arrival, Wa, from various endpoints
follows first-come-first-served (FCFS) traffic discipline from the distribution load balancers.

• Continuous Time Markov Chain

From Figure 2, our fleet vacation M/M//2 MQM for SA and SB will be formulated
with a CTMC [59] whose scenario states at the possible time T are designated by (i, j)AB.

Here, i ≥ 0 represents the number of transactional workloads (TWs) in the design.
j = 0, 1, 2, . . . n represents fleet server status.

The fleet state Si,j (0, 0) denotes that both SA and SB are on vacation; the fleet state
Si,1 (i, 1) denotes i ≥ 0, i.e., TWs are in the auto-scaling system.

Given that SA is in a busy state, and SB is non-vacation, Si,1 (i, 2); i ≥ 0, and the TWs
are in the auto-scaling system.

Also, if SA is in a busy state, and SB is working during vacation, then Si,1 (i, 3) i ≥ 0,
and the TWs are in the auto-scaling system. This implies that both SA and SB will be busy,
working at optimal states.

We can then introduce a CTMC generator Q referred to as a quasi-birth-and-death
(QBD) process [60]. The transitional carders 0, 1, . . . n denote the possible epoch states,
ρ[0 = {(0, 0)}, 1 = {(1, 0), (1, 1), (1, 2)}, and i = {(i, 0), (i, 1), (i, 2), (i, 3)}, if i ≥ 2 [61].
The transition state diagram is also depicted in Figure 2, capturing all the layers of inte-
gration applied in our previous edge marketplace robots [62]. Therefore, by employing
a dynamic auto-scaling strategy and CTMC, systems can efficiently manage and allocate
heterogeneous server resources under varying workloads. This means that servers switch
between active service and idle “vacation” modes, with adjustments in service rates (such
as a reduced rate for provisioning tasks) governed by stochastic processes and modified
Poisson parameters.

Our model provides a robust analytical framework to predict performance and op-
timize resource utilization when attached with edge nodes. The integration of a scalable
container-based time synchronization mechanism (CTSM) with software-defined network-
ing (SDN), implicit transparent failover service (ITSF), and stochastic gradient descent
(SGD) in Figure 1 (i.e., SGDCN) ensures fault-tolerant time synchronization, optimizes
workload distribution through auto-scaling and load balancing, and reduces latency while
improving QoS under high-density energy transactions. By dynamically adjusting network
parameters in response to fluctuating grid conditions, CTSM enhances the stability, effi-
ciency, and real-time resilience of SGDCN, ensuring seamless and scalable operations within
complex smart grid infrastructures. We shall now describe the functional components in
Figure 2, linking their integration with our edge AMIs in Section 4.

4. SGDA Ecosystem
4.1. System Components
4.1.1. Edge Layer

We employed various computational techniques, including exponential, gamma,
Bernoulli, and binomial distributions, to model key edge components of the SGDA system
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in Figure 2. The exponential distribution was used to represent the life span of generation
companies (GENCOs) and independent power plants (IPPs), and the gamma distribution
captured the aggregated energy output. By simulating the energy generation over time
with Minitab software version 21.1.0, we calculated the energy outputs and probabilities at
different intervals, giving insights into energy production patterns. The results highlighted
the role of exponential and gamma distributions in understanding the total megawatts
produced by different GENCOs. For the distribution of energy to DISCOs, we applied
Bernoulli and binomial distributions. The Bernoulli distribution was used to model the
success or failure of individual smart meter readings, while the binomial distribution
modeled the collective readings from multiple meters. These methods helped determine
peak and non-peak energy usage, essential for load management.

4.1.2. Fog Layer

At the downstream zone (see Figure 1), the edge-to-fog layer in the SGDA operates
as a distributed system, where AMI sensor networks leverage embedded computation for
real-time energy monitoring and control. Advanced algorithms, including feedback loops,
enable seamless communication with the consolidation layer, optimizing grid load balanc-
ing and system management. This layer integrates decentralized meter data management
with the operation center and communication interfaces, enhancing control. A service-edge
algorithm automates edge processes, enabling SG distribution automation to interconnect
AMI sensors and field equipment for remote monitoring, control, and data aggregation.
Dynamic interactions between energy users and the SG are supported through the CTSM
dynamic dispatch mode, ensuring efficient data exchange across network elements. This
is vital for secure, reliable SG communication. Additionally, the cloud-based, container-
ized infrastructure enables seamless east–west data stream migration from edge to cloud,
achieving low-latency and high-throughput performance in SG networks.

4.1.3. Consolidation Domain (DC)

The CD integrates the CTSM within the SL-VPC to enhance computational efficiency
and synchronize operations across containerized environments. As shown in Figure 1,
this data-centric fabric management and automation layer optimizes performance by
incorporating latency prediction within the SL-VPC. This domain plays a critical role in
handling AMI data streams, where low latency and optimized traffic flow are essential.
The SL-VPC backbone ensures uniform traffic distribution and minimizes latency using
predictive workload balancing. Equal-cost multipath (ECMP) routing further enhances
efficiency by distributing traffic evenly across multiple paths, mitigating bottlenecks and
preventing loops. Its modular design scales dynamically, addressing port density challenges
and ensuring seamless SG operations as traffic demands grow. The VPC and application
services rely on container-based time synchronization microservices deployed over a
stacked VPC. A container orchestrator encapsulates the cloud service stack, enabling
structured deployment. SDN cloud functionality services (SDN-CFS) provision essential
components, including the SG API gateway and OpenFlow controller interfaces, which
manage network traffic and service functions. Load balancers and the OpenFlow console
interface facilitate comprehensive flow table logging, covering operations like insertion,
removal, updates, and data retrieval. The OpenFlow-enabled infrastructure functions as a
firewall, static load balancer (SLB), convergence switch, and a hybrid volume bulk balancer
(VBB) and volume billing container (VBC). Flow table configurations, managed by the
OpenFlow controller, govern service deployment and ensure efficient network operations.
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4.1.4. Mininet CloudFormation IaC

A container optimization strategy is designed to reduce computational overhead in
legacy SGDAs. An SDN-enabled container, built with infrastructure as code (IaC), manages
the consolidation layer (Figure 1), optimizing resource allocation and workload manage-
ment within SGDA. Using AWS CloudFormation, the Mininet framework enables CTSM
validation, ensuring experimental accuracy. In the SL-VPC domain, IaC automates con-
tainer deployment across multiple instances, creating a resilient environment for continuous
integration and delivery. The AWS cloud architecture orchestrates these containers, ensur-
ing scalability, reliability, and automated provisioning. Each container image functions as a
lightweight, isolated service, bundling essential components like SG cloud code, runtime,
libraries, and configurations. Once deployed, these images instantiate containers within
the SDN-CFS engine, maintaining a consistent runtime environment. Additionally, the
containerized infrastructure isolates key components such as gateways and load balancers,
promoting network stability and uniformity across instances.

4.1.5. Security Group Firewalling

The backend security layer in the DCN design employs the SG OpenFlow firewall
(Figure 2) to protect load control and management servers. This edge-to-cloud security
framework leverages logical virtualization segmentation, creating tiered security functions
within the OpenFlow table map services. These functions are virtualized and consoli-
dated into a virtual security node, enhancing network flexibility and security. The firewall
enforces access control policies, continuously monitoring legitimate and illegitimate con-
nections in real time. Using containerized security instances, the system dynamically scales
to accommodate increasing workloads. The OpenFlow firewall gateway manages firewall
operations, service load balancing, and flow table security policies, ensuring controlled
network access. For enhanced resilience, redundant security enforcement mechanisms
integrate with ALBs and auto-scaling. ALBs distribute traffic across security-hardened
instances, preventing overload attacks, while auto-scaling adjusts security resources dy-
namically to mitigate denial-of-service (DoS) risks. The CTSM embeds security at the edge
AMI and SGDA, ensuring real-time threat detection and anomaly response.

4.2. SGDA AMI Hardware Architecture and System Components

The SGDA AMI (advanced metering infrastructure) edge layer integrates multiple
components to facilitate real-time grid monitoring, control, and data aggregation. The key
elements are as follows:

1. Transmission and Step-Down Transformers

• Primary Setup: Three transmission transformers (models A, B, and C) are used.
In our demonstration setup, each transformer steps down 240 V to 12 V.

• Grid Voltage Adaptation: Although actual grids operate with power ratings
ranging from 11 kVA to 133 kVA, our configuration employs a three-phase
transformer to step down a primary voltage of 415 V to 240 V per phase before
additional local step-downs.

2. Sensing and Data Acquisition

• Sensor Deployment: Sensors continuously monitor power parameters—current
and voltage—across both transmission and distribution networks.

• Distribution-Level Monitoring: At the distribution level (DISCO), smart me-
ters equipped with load-scheduling sensors provide enhanced monitoring of
power consumption.
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3. System Layers and Communication: The SG system operates through three inte-
grated layers:

• Metering Layer: Captures and transmits grid data from various points in the network.
• Monitoring/Control Layer: Processes and analyses real-time grid parameters to

support immediate operational decisions.
• Cloud/IoT Interface: Utilizes wireless IoT modules and a dedicated VPC landing

zone to support demand-side management (DSM) and provide centralized control.

4. Distribution Network Control

• Relay Operations: The distribution network employs relays to route power
efficiently to consumer blocks (see Figure 3).

• Local Controller: A PIC18F4550 microcontroller manages DISCO operations. It
interfaces with the following:

■ Current Sensing: An ACS712-30 sensor measures current usage.
■ Voltage Monitoring: A voltage divider circuit tracks voltage consumption,

with data fed into the microcontroller’s ADC to compute and display
load demand.

• RF Communication: An RF IoT module transmits real-time data to the cloud,
enabling remote relay activation and precise load management.

5. Real-Time Feedback and Quality of Service (QoS)

• The AMI edge layer facilitates dynamic feedback between generation companies
(GENCOs) and residential consumers (see Figure 4).

• After validating the accuracy of our smart grid neural network model, it was
deployed in the design testbed. This implementation meets the QoS requirements
by optimizing transmission capacity and minimizing time delays for critical
services such as load management.

6. Advanced Data Aggregation and Algorithmic Processing
To ensure robust performance, key algorithms within the SG system include
the following:

• Traffic-Token Construction
• Data Encryption
• Sink Data Aggregation (SGDA)

For developing SGDA process node models, a conjugate batch gradient method was
adopted instead of stochastic gradient descent (SGD). This method was chosen because it
does not require access to the full training dataset from customer interface units (CIUs) and
AMI node sets. The algorithm works as follows:

• Initialization: Start with an arbitrary CIU node vector, denoted as ϑ0.
• Iterative Process:

At each iteration i, a CIU row, i(k) (where i ∈ {1, . . ., n}), is randomly selected from the
layered cluster parent nodes.

• Gradient Computation:
The selected data streams are used to compute the gradient based on the local loss
function, ∂(xi, yi), as detailed in Algorithm 1.

• Convergence:
The procedure iteratively projects onto available hyper-node planes until convergence
is achieved.
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Figure 4. Proof-of-concept Advanced Metering Infrastructure (AMI) that employs full-duplex com-
putational modeling of energy generation and distribution. This model utilizes exponential, gamma,
Bernoulli, and binomial distributions to simulate GENCO lifespan, aggregated energy output, and
smart meter reading accuracy for dynamic load management in the cloud. The SG system comprises
key components such as smart load control switching modules, voltage and current sensors, and
IoT RF communication modules, which monitor and manage electrical parameters while facilitating
real-time data exchange. Enclosed edge aggregation boxes with both disabled and active load points
organize and control distributed energy resources. Data acquisition mobile devices gather opera-
tional data, and high-frequency display modules provide energy readings and system status updates,
enabling informed decision-making and effective grid management.

In practice, a continuous time Markov chain algorithm function is established. The
algorithm outlines the customer interface unit (CIU) connection process at the edge layer.
This takes the source ID, s, destination ID, d, and data size, m as inputs, and outputs a data
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stream, n, arriving at the local aggregator, Lag. Through iterative processing, Algorithm
1 sets the CIU and AMI destinations as vectors of different lengths while setting the
cluster parent as AMI transmitter. To integrate stochastic gradient descent (SGD) variables
into Algorithm 1, we can use them to optimize the decision-making process, particularly
in determining the optimal data flow paths between CIU and AMI based on iterative
learning. In this design, SGD is used to iteratively update the weight vector ωi based on
the gradient of the loss function L(ωi). The learning rate η controls how much the weights
are adjusted in each iteration, optimizing the connection between CIUs and AMI for better
data flow efficiency.

Algorithm 1: Edge Connection with SGD Optimization

1: CIU Input: (s, d, m)

2: CIU Output: n
3: Initialize learning rate η for SGD Optimisation
4: Initialise weight vector ω0 for AMI-CIU Connection
5: Determine (CIU +AMI Destination) as vectors of different lengths.
6: For (CIU = 0, CIU > 0, i++) then
7: Compute Gradient: ∇ωi L(ωi) based on current load and connection
8: Update Weight: ωi +1 = ωi − η.
9: Set Cluster Parent as (AMI Tx); : ∇ωi L(ωi)(SGD Step)
10 Set Cluster parent as (AMI Tx) based on updated weights
11: End loop when convergence is achieved
12: End

4.3. Hardware Implementation

As described in Section 4.2, the edge AMI integration is now depicted in Figure 3,
illustrating the load management within the SGDA architecture. The system integrates
a PIC-based IoT microcontroller with a 10-bit ADC, converting sensor signals into digi-
tal data to calculate power consumption from current and voltage measurements. The
PIC18F4550 controller manages GENCO operations, controlling power flow by energizing
or de-energizing relays connected to the distribution bus. A display dashboard visu-
alizes real-time power data, while a GSM module and RF IoT module establish secure
cloud communication.

i. System activation and control are accomplished with the following:

• GENCO sources (A, B, C) under testing, displaying status on an LCD interface.
• The RF IoT module configuration for real-time communication via activation

start buttons which energizes relays, and routes power to the distribution buses.
• The cloud-driven LCD displays available power and real-time load status.

ii. Dynamic load management and smart control

• Load variations trigger cloud-based automation as follows:

(a) As demand increases, the DISCO reports to the cloud control unit, which
activates additional GENCOs to meet consumption needs (Figure 4).

(b) If demand exceeds capacity, the system implements smart load shedding,
de-energizing relays to disconnect non-priority loads.

(c) When demand drops, the system takes GENCOs offline, preventing
overproduction.

iii. Neural network-driven self-healing optimizes power allocation, ensuring efficient
demand–supply balancing while minimizing energy wastage. This seamless inte-
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gration of SGDA hardware, IoT, and cloud infrastructure can improve real-time
monitoring, control, and energy efficiency in next-generation smart grids.

4.4. Neural Edge Network Design

This section describes the design and implementation of the proposed SGDA lever-
aging a neural engine to predict energy consumption patterns, as shown in Figure 5. We
assumed subscribers/customers at GENCOs/TCN/DISCOs. MATLAB R2022a was used to
integrate preprocessing, feature selection, clustering, and a supervised learning algorithm
for dynamic load management.
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4.4.1. Network Architecture

The core predictive model is based on a radial basis function network. In our imple-
mentation, the network consists of an input layer, a hidden layer, and an output layer.

In the hidden layer, the input vector is linearly mapped to a set of basis functions
using weights wi. The network’s output is then defined as:

y = f (x)−W(x) = ∑n
i=1 wi φi(x) (7)

Specifically, each subscriber’s data are represented as an input vector:

u = (u1, u2u3. . . un)
T ∈ Rn (8)

where
φi(x) = output of the i-th basis function
wi = corresponding weight of node i
h = number of hidden nodes.
For classification, the network’s output is constrained within the interval (0,1) and is

further transformed by:

y = w(x) =

{
1 i f subscriber′s load is at peak

0 i f subscriber′s load Non− peak
(9)

4.4.2. Preprocessing and Learning Algorithm

Before training, the data undergo several preprocessing steps, such as the following:
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• Dimensionality Reduction: To eliminate redundant features.
• Data Normalization: Scaling all input features to lie between 0 and 1, forming a

consistent input-target matrix.
• Clustering: Pre-filtering the data into clusters helps in detecting anomalies such as

faulty demand meters or abnormal customer behavior.

Following preprocessing, the learning algorithm employs the Stochastic Gradient
Neural Process Controller (SG-NNPC), combined with an integrated forecasting engine to
predict future energy demand. The dataset is randomly partitioned into training and testing
sets, and model parameters are optimized to minimize the mean squared error (MSE).
During training, the model iteratively computes hidden cluster centers—adjusting for
inter-sample similarity—to refine its predictions. The overall performance is benchmarked
using MSE, which for each hidden layer is calculated as:

ϑ̂h =
1

s× nT

S

∑
r=1

nT

∑
i=1

I(yr
i ̸= ŷr

l ) (10)

where
s = number of cross-validation runs;
nT = the total number of test samples;
I(·) = Indicator function that returns 1 when the predicted value differs from the true

value, and 0 otherwise;
h = number of hidden nodes.

4.4.3. Experimental Setup and Performance Evaluation

The SGDA system was evaluated using data samples collected from a DISCO in a
simulated SG environment. In our experimental configuration (see Table 2), the neural
network was set up with the following parameters:

Table 2. Parameters of SG neural network.

Generator Discriminator Values

Input units 4

Output units 1

Activation Levenberg_Marquardt

Hidden layers 10

Optimization goal MSE (minimum square error)

Training epoch 56

Classifier output 25

Training was further validated using a 3-fold cross-validation process. As the number
of AMI node samples increased, the model demonstrated improved learning, achieving
the best validation performance at the 50th epoch with an MSE of 2.7359 × 10−11. This
low error margin indicates robust performance and a prediction accuracy of nearly 100%.
Figure 5 illustrates the overall neural controller architecture, while Figure 6 presents the
MSE plot for the SG edge neural network model.
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4.4.4. Data Aggregation via AMI Local Concentrator

In addition to prediction, the SGDA incorporates a data aggregation mechanism using
an AMI local concentrator. Algorithm 2 outlines the procedural steps for the following:

• Executing batches of conjugate gradient updates concurrently across AMI nodes.
• Aggregating the data by averaging values computed for each iteration η(k+1).
• Synchronizing node operations to ensure efficient data flow and scalability.

The AMI local concentrator not only reduces computational overhead but also ensures
that data streams—regardless of queue length—are effectively managed. This coordinated
aggregation supports the dynamic load management required in smart grid environments.

4.5. Computational Complexity Analysis

The time complexity analysis of the CTSM involves mapping between the AMI user
layer and the related service orchestrations for temporal data stream provisioning. The key
components are as follows:

Let
Nu represent the port of the SDN user network feature, matching the number of

CTSM services;
Ni represent the scope of service concurrent attributes, which matches the number of

instantiating nodes;
Eu represent the scope of embedded security attributes;
Ei represent the complexity of SDN OpenFlow entries;

Nmax = Maxj(Nu, Ni), and EMax = Maxk(Eu, Ei). (11)

Using Equation (11), the time complexity of the CTSM-connected layered algorithms
(Algorithms 1–7) for temporal complexity embedding is O(NuEu + NiEi) = O

(
NMaxj, EMax

)
.
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Let d denote the size of the SDN hidden databases/tables, ϑ denote the size of the QoS
parameters, and the time complexity of CTSM become O

((
d2 + EMaxd

)
∗ ϑ )).

The time complexity analysis (TCA) is given by

TCA =
(

ϑd2 + ϑdEMax + NMaxEMax

)
(12)

Given that the SDN identification of d and EMax is proportional to NMax, the TCA can
be simplified to

O
(

ϑN2
Max

)
(13)

In the production environment, this analysis intrinsically justifies the importance of
minimizing QoS metrics to reduce computational workload.

Algorithm 2: AMI Local Concentrator/Local Aggregator

1: Input: local ID, destination ID, queue size, link Information
2: Output: Infinite queue dispatched to the Global sink

Procedure:
3: Draw AM local Connection;
4: AMI_Global Connection j
5: Initialise i iterations T, ϑˆk←0; ϑˆk (CIU and AMI)
6: Map smart meter data of the individual nodes
7: While all data(i) that hasn’t been converged, do
8: For all i (AMI) ∈ {0, . . . j + 1} do read (i);
9: For i := 0 to N− 1 do read (φ [i]);
10: For i := 0 to N− 1 do read (∂ [i]);
11: For i := 0 to N− 1 do read (nk+1 [i]);
12: For j: = 0 to N − 1 do read ϑr[i]: = φ([i]);+ ∂([i]);+ . . . (nk+1[i]);
13: For i: = 0 to N − 1 do Write (j[i]);

ηk+1(CIU and AMI) = 1
N ∑N

i=1 ηk

14: End

Algorithm 3: Container logical instantiation/Global Grid Concentrator

1: Input: grid workload sources
2. Output: autoscaling group instances
3. Create an Object instance:

Instantiate an object from a map.
4: For node Iteration

For each node i from I to Nk+1

5: Call Open Firewall Function to add
F(I 0, J1,K1, Nk+1:sg-link: sg-link)

sg-link
6: load container balancer

Load balancer self-connection
7: Recycle loop ( ).

execute recycle loop ( )
8: Direct control

directly control the container resources
9: End
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Algorithm 4: SDN OpenFlow Firewall Services

1: Input: Call Schedule (), OpenFlow firewall services (), services bundling (), Source
address, a destination

address, 2 queue size, link, link Information
2: Output: OpenFlow Destination (Load balancer ports)
3: Parameters: OpenFlow _weight← Empty, weight← o; weighted Moving← 0;
totalWeight← 0,
4: OpenFlow_weight_ Container_history_queue← null;
5: i← 0;
6: While < OpenFlow monitor Call Schedule do
7: queue← (HistoryListSize—OpenFlow_monitor Call − i)
8: OpenFlow _weight← fiboA1 + fiboB2;
9: OpenFlow weighted Moving← weighted Moving+ (Container
historyItem * weight);
10: Recycle loop;
11: end while
12: Calculate event filtering () & execute dynamic network balancing:
13: Legitimate initial Value←(OpenFlow weight) * (pastInitialValue +
trendPosteriorValue);
14: illegitimateTrendPosteriorValue← (initialValue–pastInitialValue)+ (PosteriorValue)
15: If (Sensed event = 1), then,
16: Set services (),
17: Create another instance of the virtual node on OpenFlow;
18: Optimise flow table;
19: Do list control ( );
End

Algorithms 3 and 4 were used to drop the impacts of data availability threats against
the SGDA AMI.

Edge Streaming Algorithm

In Algorithm 5, once a smart meter joins a subnet group, binomial distribution is
activated to optimize node placement. If a sink node is within range, the smart meter
receives a TCP data stream message from the AMI base hub and assigns the sink node
as the cluster parent. Nodes validate messages based on their level: higher-level nodes
connect with different clusters, while lower-level nodes only interact within their cluster
and with the parent node. Edge computing is utilized to enhance real-time processing,
enabling each node to locally manage and detect associated AMI nodes. Cluster parent
nodes use this edge-enabled infrastructure to create secure network data across all anchor
nodes in the AMI subnet clusters.

Algorithm 7 begins by receiving an AMI network message and its type, then sends the
output to the sink AMI local concentrator. For each iteration from 1 to Kn+1, it processes
encrypted data by gathering a random neighbor, waiting for a response from the AMI
cluster node, and computing a new encryption key. It then sets the direction and curve
level, applies homomorphic encryption, and packs the encrypted data. After waiting and
preparing to send the data to the local aggregator, it checks if the construction is complete
and, if so, sends the final data to the local concentrator.
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Algorithm 5: CTSM Secured Network Construction

1: Input: AMI Network design message
2: Output: output in the Sink placed in the Cluster Servers
Procedure:
3: Set CTSM VPC Encryption = 1
4: If (a node is a source node) then
5: Exit Call (AMI base hub)
6: Perform Flooding (initial Level, base stationID)
7: Wait for the TCP HELLO message to arrive
8: If (a Smart Meter sensor node sends a message to the AMI node) then
9: Set the message’s parentID, recHopCnt, and recLevel
10: Increment Net Information curEntry
11: If (current hop count > recHopCnt + 1) then
12: Set current hop count = recHopCnt + 1
13: If (current hop count > recHopCnt + 1) then
14: Break
15: If (TOS LOCAL ADDRESS is not a leaf node) then
16: Perform Inundation (current Level, current Node ID)
17: If (message Type is Encrypted) then
18: JOIN
19: If (the maximum number of child nodes is not exceeded by the parent node) then
20: Set parent = parentID
21: Else
22: Send message (RESET) to a node
23: End If
24: End If
25: End If
26: End If
27: End If
28: End

Algorithm 6: CTSM Encrypted Data Construction

1: Input: Network Message, Message type
2: Output: output Sent to Sink AMI local concentrator
Procedure:
3: For i = 1 to Kn+1 do
4: Obtain Data that Has Been Encrypted
5: AggregateNode = gather neighbor(random)
6: Wait for the AMI cluster Node to provide a response message
7: newValue = ComputeKey(AMI cluster Node, KeySeed data, Received_KeySeed data)
8: make Direction = directionValue(newValue)
9: current CurveLevel = setCurveLevel
10: Homomorphic Curve = encryptedData(direction, curveLevel, newUpdate)
11: Packing(encryptedData)
12: Wait
13: Ready to send to the local aggregator
14: If (the construction is complete) then
15: Send to Local concentrator
16: End If
17: End For
End
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In Algorithm 7, TCP energy data flooding secures data aggregation from the AMI
nodes to the SDN controller. The process begins with the AMI nodes. In smart grid mode,
data from the CIUs are received by an AMI base node, which re-encrypts them along
with its own data. The encrypted data are then sent from the source nodes to the global
concentrator, enforcing encryption with specific key lengths during the transfer to the
master AMI nodes. Before encrypted communication is sent to the sink node, the AMI
nodes must be activated. To transmit upstream and downstream messages to the sink,
both local and global concentrators must meet the encryption and decryption requirements.
Upon receiving the event message, the sink node triggers the local concentrator function.
Data from the edge nodes, collected by the local concentrator, are fully encrypted before
being transmitted to the grid via the OpenFlow SL-VPC. Anomaly detection is confirmed
using the TCP encryption filtering technique. Legitimate traffic arriving at the user AMI
master nodes is decrypted while any illegitimate traffic is rejected.

Algorithm 7: CTSM Aggregated Data Security

1. Receive Input:

• Get AMI Network Message and Message Type as input.

2. Send to Sink AMI:
• Send the Message and Message Type to the Sink AMI Node (AMI meters).

3. Iterate through Nodes:

• For each node N(i), where i = 1 to Kn+1 (Kn is the number of AMI nodes):

1. Apply the Data Aggregation function to the Message and msgType.
2. If a metering node is set:

■ Send the encrypted message to the Sink AMI Node.

3. Else:

■ If an AMI node receives an update message from the receiver sensor node:
1. Connect to the local concentrator (DMF).
2. If an event message is encoded and received by the local concentrator:

■ Store the encrypted data (using Homomorphic encryption).

4. Decryption and Data Aggregation:

• Apply the Decryption function to the encrypted data:
decryptedData = Decrypt(encData)

• Add the decryptedData to the aggregatedData:
aggregatedData += decryptedData

5. Global Concentrator Interaction:

• Retrieve data from the Global Concentrator.
• Apply the homomorphic encryption curve:

HomomorphicCurve = newEncData(direction, curveLevel, aggregatedData)

6. Local Concentrator Completion:

• If all data is received from the local concentrator child nodes:

1. Send an encrypted message to the Grid OpenFlow Firewall ParentNode.

7. Sink Node Actions:

• If the node is a Sink Node:

1. Filter for TCP encryption abnormalities.
2. Store the encrypted data from the message.

8. Final Decryption:

• Decrypt the encData:
decryptedData = Decrypt(encData)

9. Send to Master Station:

• Send the decryptedData to the Customer Smart Meter Master Stations.

10. End.
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4.6. Performance Evaluation
4.6.1. DCN Description

Given the edge-to-cloud integration, the performance of SG data aggregation (SGDA)
was evaluated using a lightweight, container-based, time-synchronized spine–leaf data
center deployed with AWS CloudFormation stack infrastructure. The assessment compared
five traditional DCN topologies with the proposed SGDA, considering performance under
stochastic gradient descent dependencies. Six DCN topologies—CTSM SL-VPC, DCell,
Mesh, Skywalk, Dahu, and Ficonn—were subjected to performance benchmarking, as
shown in Figure 7. To simulate real-world SGDCN traffic, Mininet was customized to
replay pcap packet capture files, modeling SL-VPC traffic variations with SDN-CFS.
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Figure 7. Simulated SGDA implementation. The edge-to-cloud AMI experiments were conducted on
an EC2 HPC testbed featuring Intel Xeon Gold 6132 CPUs, NVIDIA GeForce GTX 1080Ti GPUs, and
192GB of RAM. We used Python 3.7.4 and PyTorch 1.1.0 to implement the CTSM modules on the EC2
HPC infrastructure. A Cisco Nexus 7700 core switch with 18 slots managed network connectivity, sup-
porting up to 768 × 1 and 10 Gigabit Ethernet ports, 384 × 40 Gigabit Ethernet ports, and 192 × 100
Gigabit Ethernet ports, which efficiently handled the SG workloads and automation processes.

Performance analysis was conducted on Amazon EC2 HPC instances, running a
kernel-level SDN switch and application code execution. For AMI sensor and field device
integration, CISCO 7705 SAR-HC and SAR-We devices were used, enabling remote monitor-
ing, control, and SG data aggregation. The SDN controller dynamically recalculated routes
using reinforcement learning, optimizing data streams based on experiential patterns. Key
SGDA performance indicators included service delays, throughput, energy data reception,
cryptographic overhead, and service traffic availability.

4.6.2. Evaluation Results

The CTSM SL-VPN architecture utilized the shortest path routing protocol with an
SDN controller, as shown in Figure 8. Our results indicate that the SGDA collects energy
data efficiently from the AMIs. The data transmission to the cloud data center network
is consistent at both peak and off-peak load periods, supporting analytics tasks like load
management, billing, and auditing. The observed data transmission process is highly
reliable, nearing 100%, due to robust mechanisms such as full-duplex synchronization and
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beacon collision avoidance among AMI nodes, local concentrators, and the cloud OpenFlow
gateway. Load scheduling within the SGDA distributes load in varying percentages across
various network architectures. The CTSM SL-VPN architecture achieved the highest
reliability at 29.87%, followed by DCell at 19.48%, Mesh at 22.08%, Skywalk at 5.19%, Dahu
at 15.58%, and Ficonn at 7.8%. This indicates that the CTSM SL-VPN architecture performs
better than other DCN schemes in terms of reliable data stream reception and stability
at the cloud, especially during load shifts from peak to off-peak periods. This improved
reliability and stability are promising for effectively reducing utility bills and managing
peak loads.
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Figure 9 shows the packetization service delays for energy data streams in the SGDA.
This measures the total time needed to transmit data from the AMI to the cloud. These
delays are crucial as they affect SG communication performance. Analysis using the
platform statistics engine revealed the following packetization service delays for different
SGDAs: CTSM SL-VPC had a delay of 13.11%, DCell 21.31%, Mesh 19.67%, Skywalk
18.03%, Dahu 16.39%, and Ficonn 11.49% during load scheduling on the SGDA. These
results indicate that the CTSM SL-VPC architecture exhibits lower packetization service
delays compared to other SGDA schemes, especially as energy demands transition from
peak to off-peak periods. This performance improvement is promising for reducing utility
bills and easing peak loads in the grid network.
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Figure 10 highlights the SGDA media access delays on DCN engine switching inter-
faces. It provides the time-frame between two successive resource allocations to likely
related users during grid load management. With the daemon API, the Swarm orchestrator
can update services using service parameters. During load scheduling on the SGDA, it
was observed from the riverbed statistics engine that the CTSMs SL-VPN, DCell, Mesh,
Skywalk, Dahu, and Ficonn gave 10.99%, 27.47%, 24.91%, 18.32%, 14.65%, and 3.66%,
respectively. This implies that container isolation offers a reliable workload. Figure 8
indicates that due to the stateless container engine operated by the PLC, the proposed
CTSM spine–leaf utilized optimum resources on the grid network as compared to other
schemes as load demands in peak periods were moved to off-peak periods. This will make
the objective of reducing administrative overhead feasible in the cloud.

Figure 11 shows the SGDA service throughput response under the PLC scheme.
Regardless of SGDA DCN service limitations such as physical medium, assaults, computing
power, and traffic protocols, the highest possible throughput is always chosen. When using
SGDA in load scheduling mode, it was observed from the riverbed statistics engine that
the CTSMs SL-VPN, DCell, Mesh, Skywalk, Dahu, and Ficonn offered 27.27%, 21.21%,
19.70%, 16.67%, 9.15%, and 3.33%, respectively. This means that when load demands at
peak times were shifted to off-peak times, the proposed CTSM SL-VPN utilized optimum
resources at scale while predictively managing the grid network when compared to other
SGDA topologies.
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Figure 12 highlights the SGDA availability from a fault-failure injection mode perspec-
tive. Since the system is autonomous, at full-scale subscription, three major SG security
schemes were used to test for availability. In context, availability is the most important
security objective in SGDA service provisioning. Therefore, establishing that availability in
SGDA communications deals with various security types for network availability, a secured
fault injection scheme is needed. Owing to the importance of providing seamless service
from SGDA AMI power systems, protection against various attacks on the CTSM SL-VPN
algorithm was explored. The CTSM scheme continuously monitors the state of the grid;
for example, disruption, instability, etc. During load scheduling on the SG network, it was
observed from the riverbed statistics engine that the proposed CTSM, SGDA IPv6 gateway,
and CTSM SL-VPN access had 70.85%, 20.17%, and 8.98%, respectively. This implies that
as load demands in the peak periods were shifted to the off-peak periods, the proposed
CTSM provided optimum availability when compared to other SGDA schemes.
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Figure 13 shows the SGDA encryption–decryption overhead subscription under the
influence of these security schemes, viz. proposed CTSM, SGDA IPv6 gateway, and SGDA-
VPC access. The proposed CTSM SL-VPN, SGDA IPv6 gateway, and SGDA-VPC access
had 28.13%, 37.5%, and 34.37%, respectively, during load scheduling on the SGDA network,
according to the riverbed statistics engine observation.

The implication is that as load demands in peak hours were transferred to off-peak
periods, the projected CTSM SL-VPN offered the least overhead when compared to alterna-
tive schemes. This makes the goal of protecting the grid from attack vectors and payloads a
lot more realistic.
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Table 3 shows how load scheduling impacts SGDCN infrastructure. The sensitivity
analysis interpretation is discussed below:

1. Received Energy Data: The CTSM SL-VPN architecture exhibits the highest percentage
of received energy data (29.87%), indicating better energy consumption and efficiency
compared to the other architectures. Sensitivity in context suggests that optimizing
energy data reception is crucial for system performance, especially in high-demand
SG systems.

2. Packetization Service Delays: The CTSM SL-VPN shows the lowest packetization
delay (13.11%), making it the most sensitive to minimizing delays in packetization.
Lower packetization delays result in a more responsive system, which is needed for
AMI edge data processing.

3. Load Balancer Access Delays: The Ficonn architecture has the lowest load balancer
access delay (3.66%), while the DCell architecture exhibits the highest (27.47%). This
indicates that architectures with lower access delays can better handle dynamic traffic
and high-volume requests, making them more sensitive to load balancing efficiency.

4. Service Throughput: CTSM SL-VPN leads with the highest service throughput
(27.27%), which is significant for ensuring the efficient delivery of high-bandwidth
services. Sensitivity in service throughput highlights the importance of network
architectures with a high capacity to maintain performance under heavy loads.

5. Traffic Availability: CTSM SL-VPN also demonstrates high traffic availability (70.85%),
which ensures stable network connections. Sensitivity in traffic availability means
that architectures supporting greater availability are more resilient to disruptions,
contributing to continuous edge-to-cloud service delivery.

6. Encryption–Decryption Overhead: SGDA IPv6 Gateway and SGDA-SL-VPC have
the highest encryption–decryption overheads (37.50% and 34.37%), indicating these
architectures are more sensitive to security-related processing costs. Minimizing
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encryption overhead is crucial for optimizing performance, especially in our edge-to-
cloud ecosystem (see Figure 2).

Table 3. Performance comparison of network architectures in SG systems.

Metrics
CTSM

Spine-Leaf
(%)

Dcell
(%)

Mesh
(%)

Skywalk
(%)

Dahu
(%)

Ficonn
(%)

SGDA IPv6
Gateway (%)

SGDA-
SL-VPC (%)

Received Energy Data
kilowatt-hours (kWh) 29.87 19.48 22.08 5.19 15.58 7.8 17.07 11.69

Packetization Service
Delays (µs) 13.11 21.31 19.67 18.03 16.39 11.49 15.75 14.35

Load Balancer Access
Delays (ms) 10.99 27.47 24.91 18.32 14.65 3.66 20.18 16.49

Service Throughput
(Mbps) 27.27 21.21 19.70 16.67 9.15 3.33 14.92 11.24

Traffic Availability (Mbps) 70.85 37.19 30.45 25.81 18.34 10.91 20.17 8.98

Encryption–Decryption
Overhead (Mbps) 28.13 33.44 30.93 26.19 22.91 12.78 37.50 34.37

The results show that the proposed CTSM SL-VPN architecture outperforms others
in several selected key metrics. From the sensitivity analysis, our proposal is particularly
effective in high-density SG environments due to its balance in energy efficiency and low
latency. Conversely, architectures like Ficonn are more sensitive to load balancing. We
argue that the proposed design shows higher sensitivity to encryption overhead, suggesting
areas for optimization in future design.

5. Conclusions
This paper presented a container-based time synchronization spine–leaf data center

network (DCN) for smart grid infrastructure, utilizing container stack technology. An
efficient container time synchronization model (CTSM) for optimizing service provisioning
in the SGDA was introduced. The design addresses key challenges in big data queuing
management, and automation concerns. Furthermore, an adaptable stochastic gradient de-
scent (SGD) computational model for the workload SL-VPC was created and experimented
and found to be adaptable across multiple tiers. This paper has used an SDN-driven SGD
approach to tackle issues inherent in both switch-centric and server-centric DCN designs for
SGDCNs. Through a comparative study of five different topologies, the proposed approach
was validated. The results demonstrate that the architecture proposed outperforms existing
designs such as DCell, Mesh, Skywalk, Dahu, and Ficonn. Our results showcase the effi-
ciency of the proposed design in the management of traffic workflows while maintaining
satisfactory quality of service (QoS) metrics from edge to cloud.
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Abbreviations

SGDA Smart Grid Distributed Architecture
DCN Data Center Network
SDN Software-Defined Network
SDN-CFS Software-Defined CloudFormation Stack
CTSM Container-based Time Synchronization Model
SL-VPC Spine–Leaf Virtual Private Cloud
MQM Multi-Queuing Model
LaScaDa Layered Scalable Data Center
OSPF Open Shortest Path First
ECMP Equal-Cost Multipath Routing
BGP Border Gateway Protocol
TRILL Transparent Interconnection of Lots of Links
SPB Shortest Path Bridging
IFT Implicit Function Theorem
AMI Advanced Metering Infrastructure
GENCOs Generation Companies
ITSF Implicit Transparent Failover Service
ALB Application Load Balancers
NLB Network Load Balancer
CTMC Continuous Time Markov Chain
QBD Quasi-Birth-and-Death Process
IPP Independent Power Plants
DISCOs Distribution Companies
ECMP Equal-Cost Multipath
VBB Volume Bulk Balancer
VBC Volume Billing Container
AWS Amazon Web Services
IaC Infrastructure as Code
ALB Application Load Balancers
DSM Demand-Side Management
CIU Customer Interface Unit
SRBNF Subscriber Radial Basis Neural Network Function
SGRBNF Stochastic Gradient Radial Basis Neural Function
SG-NNPC Stochastic Gradient Neural Network Process Controller
AMI-SGDA AMI Intelligent Stochastic Gradient Descent Algorithm
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