
Academic Editor: Dongran Song

Received: 10 December 2024

Revised: 17 February 2025

Accepted: 21 February 2025

Published: 5 March 2025

Citation: Okafor, K.C.; Okafor, W.O.;

Longe, O.M.; Ayogu, I.I.; Anoh, K.;

Adebisi, B. Scalable Container-Based

Time Synchronization for Smart Grid

Data Center Networks. Technologies

2025, 13, 105. https://doi.org/

10.3390/technologies13030105

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Scalable Container-Based Time Synchronization for Smart Grid
Data Center Networks
Kennedy Chinedu Okafor 1,2,3,* , Wisdom Onyema Okafor 4, Omowunmi Mary Longe 2 ,
Ikechukwu Ignatius Ayogu 5, Kelvin Anoh 3 and Bamidele Adebisi 1

1 Department of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK;
b.adebisi@mmu.ac.uk

2 Department of Electrical and Electronic Engineering Science, University of Johannesburg,
Johannesburg 2006, South Africa; omowunmil@uj.ac.za

3 School of Engineering, University of Chichester, Bognor Regis PO21 1HR, UK; k.anoh@chi.ac.uk
4 School of Computer Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK;

wisdom.okafor.pg82650@unn.edu.ng
5 Department of Computer Science, Federal University of Technology, Owerri PMB 1526, Nigeria;

ignatius.ayogu@futo.edu.ng
* Correspondence: kennedy.okafor@mmu.ac.uk

Abstract: The integration of edge-to-cloud infrastructures in smart grid (SG) data center
networks requires scalable, efficient, and secure architecture. Traditional server-based SG
data center architectures face high computational loads and delays. To address this problem,
a lightweight data center network (DCN) with low-cost, and fast-converging optimization
is required. This paper introduces a container-based time synchronization model (CTSM)
within a spine–leaf virtual private cloud (SL-VPC), deployed via AWS CloudFormation
stack as a practical use case. The CTSM optimizes resource utilization, security, and traf-
fic management while reducing computational overhead. The model was benchmarked
against five DCN topologies—DCell, Mesh, Skywalk, Dahu, and Ficonn—using Mininet
simulations and a software-defined CloudFormation stack on an Amazon EC2 HPC testbed
under realistic SG traffic patterns. The results show that CTSM achieved near-100% reliabil-
ity, with the highest received energy data (29.87%), lowest packetization delay (13.11%),
and highest traffic availability (70.85%). Stateless container engines improved resource allo-
cation, reducing administrative overhead and enhancing grid stability. Software-defined
Network (SDN)-driven adaptive routing and load balancing further optimized perfor-
mance under dynamic demand conditions. These findings position CTSM-SL-VPC as a
secure, scalable, and efficient solution for next-generation smart grid automation.

Keywords: cloud computing; data center network; smart grid; software-defined network;
containerization

1. Introduction
In today’s Cloud-First era, where smart grid digital innovation is accelerating at

breakneck speed, data centers face unprecedented demands—from managing massive
data traffic and supporting multi-tenant environments to delivering cutting-edge analytics
services. Yet, when traditional architecture reaches its limits, even powerful systems like
the legacy SGDAs struggle with computational overhead and service delays [1,2]. Thus, a
solution that not only addresses these limitations but also optimizes performance across
the board is needed.

Technologies 2025, 13, 105 https://doi.org/10.3390/technologies13030105

https://doi.org/10.3390/technologies13030105
https://doi.org/10.3390/technologies13030105
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0002-9243-6789
https://orcid.org/0000-0002-2170-7289
https://orcid.org/0000-0002-2538-6945
https://orcid.org/0000-0001-9071-9120
https://doi.org/10.3390/technologies13030105
https://www.mdpi.com/article/10.3390/technologies13030105?type=check_update&version=2

Technologies 2025, 13, 105 2 of 33

By integrating innovative models like container optimization and time synchroniza-
tion, these legacy systems can be transformed into highly efficient, resilient infrastructures
that are fit for the future. For example, the integration of smart grid (SG) technologies
into energy infrastructure marks a major step forward in sustainable energy management.
However, to unlock its full potential, key improvements in system design are required.
Traditional approaches often struggle with issues like scalability, efficiency, and synchro-
nization, especially in distributed edge environments [1]. To overcome these challenges,
the goal is to transform energy distribution and management by incorporating time syn-
chronization and container-based optimization into the distributed edge architecture of the
SG Fog [2]. This innovative strategy promises enhanced security, better resource utilization,
smoother operations, and seamless coordination across the grid [3].

To date, some specialized literature has proposed several strategies to address com-
putational overhead and service delays in legacy data center networks. However, these
strategies are introduced mostly at a discrete level, only including real-time service re-
covery mechanisms [4]; a congestion-aware (CA) control with buffer and egress port CA
algorithms and fine-grained window size adjustment [5]; Viseu, a latency-aware blockchain
framework for virtual internet services at the edge [6]; backward congestion notification
for end-to-end congestion management in Ethernet-based unified switch fabric [7]; ma-
chine learning-based predictive congestion control for TCP to mitigate packet loss and
improve the quality of the experience [8]; and switch-assistant loss recovery for RoCEv2 to
replace priority flow control in large-scale data centers [9]. Thus, this paper advances SG
edge-to-cloud integrations by enhancing the reliability, resilience, and efficiency of service
provisioning in SL-VPC beyond the discrete level.

As SGs continue to evolve, the growing demands on data centers have become increas-
ingly apparent, particularly concerning storage capacity, computing power, and bandwidth
capabilities [10]. The surge in data volume underscores the urgent need for expanded
storage solutions. However, data center hardware has often been developed without fully
considering the requirements of distributed systems, especially those managing substantial
east–west traffic, such as SG enterprise DCNs [1–3]. These networks necessitate extensive
computational resources and highly structured designs that can be effectively scaled as the
impact of SGs on service delivery in distributed architecture continues to evolve.

Handling increased traffic and workload through intelligent automation, complex
mathematical, and computational workflows is rarely implemented in legacy networks [11].
However, in modern network architectures, these approaches are often superior, enabling
dynamic optimization, predictive scaling, and cost-effective resource utilization. As a result,
a predictive learning curve, PLC (also referred to as intelligent analytics), is introduced
into the SL-VPC for performance optimization in SGDCNs. Our spine–leaf virtual private
cloud (SL-VPC) architecture implements the spine–leaf topology within a multi-cloud
environment. This topology comprises two distinct layers of switches: leaf switches
and spine switches. Leaf switches connect directly to individual servers, while spine
switches interconnect all leaf switches, ensuring a highly scalable, low-latency, and efficient
network. The architecture optimizes east–west traffic flow, enhances fault tolerance, and
supports high-bandwidth applications, making it ideal for SGCN (i.e., on-premises and
cloud) environments.

In this paper, container stack automation is integrated into an SL-VPC within an
AWS cloud infrastructure. This is adaptable to any cloud ecosystem, including Azure and
Google Cloud Platform (GCP) through network-defined functions which house containers
for Kubernetes. By incorporating stochastic gradient descent (SGD) controllers, the system
enables lightweight scheduling and efficient resource allocation. The results highlight
that CTSM SL-VPC outperforms traditional DCN architectures in received energy data

Technologies 2025, 13, 105 3 of 33

and service throughput, while SGDA IPv6 Gateway and SGDA-VPC access exhibit higher
encryption–decryption overhead and varying media access and packetization delays. The
introduction of containerization, a CTSM, and software-defined CloudFormation stack (SD-
CFS) enhances computational efficiency, automation, scalability, security, and compliance,
supporting multi-cloud and hybrid environments.

A multi-combinational approach integrating edge computing, SDN, containerization,
AI-driven optimization, and hybrid cloud architecture effectively addresses computational
overhead and service delays in SGDCNs. Edge and fog computing reduce latency by
processing data closer to the energy paying residents, while SDN and NFV optimize
network traffic, minimizing congestion. Containerization and microservices enhance scala-
bility and modularity, preventing system-wide failures. AI-driven optimization and SGD-
based scheduling improve real-time analytics and resource allocation. Time-synchronized
SL architecture ensures low-latency, high-throughput data exchange, while hybrid and
multi-cloud integrations improve workload distribution, reliability, and security. With
CTSM and SDN-CFS, the proposed SGDCN demonstrates significant gains in efficiency
and performance.

The summary contributions of this paper include the following:

1. Developing a simple optimization framework utilizing stochastic gradient descent
(SGD) and the implicit function theorem (IFT) for dynamic load balancing and re-
source management in the SGDA network.

2. Proposing a multi-queuing model (MQM) for real-time load management via cloud-
based resource allocation and auto-scaling.

3. Establishing a decentralized edge-to-fog framework for efficient advanced metering
infrastructure (AMI) sensor communication and energy monitoring.

4. Implementing predictive workload balancing and multipath routing to reduce latency
and optimize traffic flow in SGDAs.

5. Developing a security group firewalling strategy using OpenFlow to enhance network
security and load management, providing a robust backend for data protection.

6. Conducting performance evaluations comparing SGDA efficiency with traditional
data center network topologies.

The rest of the paper is structured as follows. In Section 2, general studies on DCN
topologies are discussed. Section 3 discusses the methodology applied to fix the gaps.
Section 4 presents the performance evaluation of the DCN while Section 5 presents the
conclusion of the research findings and recommendations.

2. Relevant Literature Review
2.1. Topological Models

Legacy server-centric and switch-centric topologies are the two classifications of
data center networks based on where the intelligence of the DCN is located [12]. In
server-centric DCN design, the intelligence is built on the server, while in switch-centric
cases the intelligence is built on the switch. In this paper, we examined server-centric
topologies, switch-centric topologies, and spine–leaf architecture for prospective smart grid
DCN designs.

In [13], the Dahu DCN model was proposed as an improvement powered by com-
modity Ethernet switches supporting direct link networks. By dynamically distributing
traffic equally across links, this model eradicates congestion points. When performing
load balancing using local data, it forwards traffic over non-minimal routes. However,
the decentralized load balancing heuristic is not scalable for SG environments. SG data
center implementations would be primarily restricted to multi-rooted tree switch-centered
topologies such as Dahu [13] and traditional data center architecture. The authors of [14]

Technologies 2025, 13, 105 4 of 33

developed a changeable multi-tiered topology with substantial oversubscription by al-
tering the amount of forwarding and receiving links at each access tier and aggregation
tier switch. The fat-tree architecture [15] was proposed to describe how to sustain the
total aggregate bandwidth of clusters with tens of thousands of nodes using mostly cheap
Ethernet switches. The price difference between high-end switches and low-end switches
is significant, which inspired the creation of the fat-tree network. Unfortunately, this model
is not scalable for the SG ecosystem due to the limitation of the port switch. Various efforts
in the literature seem to isolate SG applications. The traditional data center architecture
denotes a multi-tiered design and vendor orientation.

Intelligent switches are used in the switch-centric category to conduct smart packet
routing in a data center. In this category, some switch-centric data center topologies include
JellyFish [16], DOS [17], FRINGE [18], and Skywalk [19]. In [20], the flattened butterfly
network topology was designed originally for on-chip connectivity networks. The authors
presented a flattened butterfly network for high-radix networks as a cost-effective topology.
This is useful in load-balanced traffic where, relative to the Clos network, its efficiency
is optimum. The advantage over the Clos network is achieved by removing redundant
hops when they are not required for load balancing. Again, the network integration of
SG systems may encounter computational overhead; however, efforts to build resilient
systems have continued to date. For instance, a Layered Scalable Data Center (LaScaDa)
was introduced as a DC topology in [21]. This is used for the construction of scalable
and cost-effective networking infrastructures for data centers. Interestingly, SG systems
will rely on server-centric DCN topologies to ensure robust server integration. The main
server-centric models in the literature include [22] DCell, BCube, FiConn, HCNs and BCNs,
DPillar, MCube BCDC, General Hypercube, HSDC, and Stellar Transformation [23]. Delay
in service processing is a common problem of server-centric DCN topologies. This is
unacceptable for SGDAs.

A new trend of DCN evolution has recently begun with spine–leaf architecture [23].
The architectural design is an example of Clos architecture, in which every leaf switch
is linked to each of the spine switches and is a full-mesh topology. Depending on the
capabilities of the networking switches, Layer 2 or Layer 3 technologies can be integrated
with the spine–leaf mesh. Each link must be routed in Layer 3 spine–leaves, which is
typically achieved using open shortest path first (OSPF) or equal-cost multipath routing
(ECMP) with border gateway protocol (BGP) dynamic routing. Layer 2 employs a loop-
free Ethernet fabric like transparent interconnection of lots of links (TRILL) or shortest
path bridging (SPB). The modern-day software-defined solutions (smart grid networks,
banking enterprise architecture) require more expanded east–west traffic, so the spine–leaf
architecture is realistically ideal [24]. Similarly, the DCNs in [25–28] offer scalable attributes
for enterprise adoption, though with several limitations. Table 1 summarizes the recent
efforts toward data center designs and application deployments.

Table 1. Summary of DCN design models and applications.

References Design Strategy Design Limitations Application Domain

X-NEST [29] Optical switching High computational
workload

A large-scale distributed machine
learning system

Flatter networks [30] Composable and
optical switching

High computational
workload

High-performance
computing workloads

Geo-DCN [31]
Multiple data centers
distributed without

data replication

High computational
workload

Data centers that are
geographically dispersed

Technologies 2025, 13, 105 5 of 33

Table 1. Cont.

References Design Strategy Design Limitations Application Domain

Renewable Energy
DCN [32]

Scheduling algorithm for
reinforcement learning

(RL)-based jobs

High computational
workload

Big data analytics on a geo-distributed
data center for DER

Reinforcement learning Application

Aggregation DCN [33]
Combination of
two aggregators

—Two-Chain Topology
Routing complexity

Generic data center on round
aggregation top-of-rack DCN

PEFS [34]
Scheduling strategy that is
AI-driven, energy-aware,

proactive, and fault-tolerant
Delay complexity Cloud data centers (CDCs)

CALM [35]
Polynomial-time

algorithm/collocation-aware
survivable placement (CASP)

Resource usage complexity Cloud data centers (CDCs)

DCell [36] Hamiltonian-connected High computational
workload Cloud data centers (CDCs)

Skywalk [37] Low-latency interconnects Smaller QoS metric coverage Large-scale high-performance
computing (HPC)

BML-BCube [38] Distributed gradient
synchronization algorithm

High computational
workload

Large-scale distributed machine
learning (DML)

Generalized
Hypercube [39]

Exchanged generalized
hypercube (EGH)

High computational
workload Cloud data centers (CDCs)

RRect [40]
Server-centric network

linear diameter and scaled
parallel paths

High computational
workload Enterprise data center

HSDC [41] High scalability with
hypercube network

High computational
workload Enterprise data center

WaveCube [42]
WaveCube optical

multipathing and dynamic
bandwidth provisioning

High computational
workload Optical data center networks

BCCC [43] Diameter linearity High computational
workload Enterprise server-centric data center

GBC [44]

Examines low-cost
off-the-shelf switches and
servers with any specified
number of NIC interfaces.

High computational
workload Enterprise server-centric data center

LaScaDa [45] Explores hierarchical
row-based routing

High computational
workload Cloud data centers (CDCs)

cRetor [46]

Topology-aware
routing scheme.

A star algorithm for
SDN controllers

High computational
workload Cloud data centers (CDCs)

Proposed DCN Edge-to-cloud orchestration
using the SGDA network

Autonomous/managed
computational workload Smart grid infrastructure/Smart Cities

2.2. Research Gaps in SG DCNs

Several research gaps persist in the design of DCNs for cloud-based services, particu-
larly with handling high computational workloads. A crucial need exists for integrating
software-defined networking (SDN) into these designs to enable quick routing updates.
This integration would enhance the computational routing behavior, speed up convergence,
reduce route overhead, and improve fault tolerance. While significant progress has been
made in combining SDN with network function virtualization (NFV) as a multi-objective
optimization problem, there remains a gap in deploying SDN effectively within spine-

Technologies 2025, 13, 105 6 of 33

leaf topologies [47]. Current studies focus on SDN applications such as optical transport
networks [48], stateful data networking [49], OpenFlow-based SDN [50], and heuristic
SDN [51] within lightweight cloud domains, but SDN’s specific optimization in spine–leaf
architecture remains underexplored. Furthermore, the use of stochastic gradient descent
(SGD) computations for large-scale networks has shown promise in modern DCN designs.
However, little effort has been made to apply SGD quality of service (QoS) metrics for
optimizing SDN controller engine provisioning [52–58]. To bridge this gap, the introduction
of container-based time synchronization models with overhead-controlled SGD presents
a novel approach to achieving a lightweight DCN scenario. This paper introduced an
overhead-controlled SGD within SD-SL topology as a potential solution to address the
current gaps, particularly in optimizing the QoS for large-scale smart grid DCNs.

3. System Model
Figure 1 illustrates the IoT core infrastructure in SGDA for residential units depicting

edge-to-cloud integrations. Due to energy workflow sensitivities, we applied mathematical
optimization techniques used to handle dynamic load balancing, stability, and scalability.
SGD and multivariable calculus tools, particularly the implicit function theorem (IFT), serve
as the foundation for these optimizations. The goal of optimization is to minimize network
overhead, balance traffic loads, and enhance resource utilization while considering various
constraints such as bandwidth, processing capacity, and service delivery requirements.
This ecosystem can be formalized with constraints to optimize performance across the
SGDA, as shown in Figure 2.

Technologies 2025, 13, x FOR PEER REVIEW 6 of 34

objective optimization problem, there remains a gap in deploying SDN effectively within
spine-leaf topologies [47]. Current studies focus on SDN applications such as optical
transport networks [48], stateful data networking [49], OpenFlow-based SDN [50], and
heuristic SDN [51] within lightweight cloud domains, but SDN’s specific optimization in
spine–leaf architecture remains underexplored. Furthermore, the use of stochastic gradi-
ent descent (SGD) computations for large-scale networks has shown promise in modern
DCN designs. However, little effort has been made to apply SGD quality of service (QoS)
metrics for optimizing SDN controller engine provisioning [52–58]. To bridge this gap, the
introduction of container-based time synchronization models with overhead-controlled
SGD presents a novel approach to achieving a lightweight DCN scenario. This paper in-
troduced an overhead-controlled SGD within SD-SL topology as a potential solution to
address the current gaps, particularly in optimizing the QoS for large-scale smart grid
DCNs.

3. System Model
Figure 1 illustrates the IoT core infrastructure in SGDA for residential units depicting

edge-to-cloud integrations. Due to energy workflow sensitivities, we applied mathemati-
cal optimization techniques used to handle dynamic load balancing, stability, and scala-
bility. SGD and multivariable calculus tools, particularly the implicit function theorem
(IFT), serve as the foundation for these optimizations. The goal of optimization is to min-
imize network overhead, balance traffic loads, and enhance resource utilization while con-
sidering various constraints such as bandwidth, processing capacity, and service delivery
requirements. This ecosystem can be formalized with constraints to optimize performance
across the SGDA, as shown in Figure 2.

DER_2

Automated Aliasing
Sensors

Smart Grid Automation

Threshold_Monitoring

SGA Switching

SGA Back-End Monitoring

Smart
Metering-1

Smart
Metering-2

Smart
Metering-3

Smart
Metering-4

Smart Metering-N+1

Residential Unit-1 Residential Unit-2 Residential Unit-3 Residential Unit-4 Residential Unit-
N+1

Load 1 Load 2 Load 3 Load 4 Load N+1

iKVA | jKVA

SGG

SGA_Server1

SGA_Server2

SGA_Server3

Distributed Load
Balancer L11

Distributed Load
Balancer L22

Distributed Load
Balancer L33

Distributed Load
Balancer L44

Distributed Load
Balancer Ln+1

S1

S2

S3

S1

DER_3 DER_4DER_1 DER_n+1

Figure 1. Residential units with layered SGDA with edge-to-cloud interfaces. Figure 1. Residential units with layered SGDA with edge-to-cloud interfaces.

Technologies 2025, 13, 105 7 of 33Technologies 2025, 13, x FOR PEER REVIEW 7 of 34

Figure 2. Smart grid edge-to-cloud integration using CTSM multi-queue system for heterogenous
fleet servers.

3.1. Analytical Framework-Scalable CTSM-SGDCN

A CTSM is introduced to a SGDCN to address real-time latency optimization and
traffic workload across the SG infrastructure. SDN is integrated to enable intelligent auto-
mation of energy data traffic while SGD optimizes parameters dynamically.

3.1.1. Problem Definition and Optimization Formulation

This subsection describes the IoT smart grid infrastructure variables. Let us define an
objective function 𝐹(𝑥, 𝑦), where 𝑥 = (𝑥ଵ, 𝑥ଶ,…, 𝑥) represents the QoS network variables
such as throughput, latency, or load, and 𝑦 = (𝑦ଵ, 𝑦ଶ,…, 𝑦) are the constraints, including
bandwidth limits, energy usage, and resource availability. The system is subject to con-
straints. (𝑥, 𝑦) represent the capacity and operational limits of the infrastructure.

The optimization problem can be expressed as Equation (1): min௫,௬ 𝐹(𝑥, 𝑦)

Figure 2. Smart grid edge-to-cloud integration using CTSM multi-queue system for heterogenous
fleet servers.

3.1. Analytical Framework-Scalable CTSM-SGDCN

A CTSM is introduced to a SGDCN to address real-time latency optimization and
traffic workload across the SG infrastructure. SDN is integrated to enable intelligent
automation of energy data traffic while SGD optimizes parameters dynamically.

3.1.1. Problem Definition and Optimization Formulation

This subsection describes the IoT smart grid infrastructure variables. Let us define
an objective function F(x, y), where x = (x1, x2 , . . ., xn) represents the QoS network
variables such as throughput, latency, or load, and y = (y1, y2 , . . ., ym) are the constraints,
including bandwidth limits, energy usage, and resource availability. The system is subject
to constraints. (x, y) represent the capacity and operational limits of the infrastructure.

The optimization problem can be expressed as Equation (1):

min
x,y

F(x, y)

Technologies 2025, 13, 105 8 of 33

Subject to:
C1(x, y) ≤ b1, C2(x, y) ≤ b2, . . . Cm(x, y) ≤ bm (1)

where C1, C2, . . . Cm are constraint functions, and b1, b2, . . . bm are the upper bounds for
these constraints (e.g., bandwidth, traffic capacity, or power consumption limits).

3.1.2. Implicit Function Theorem for Load Balancing

Using the IFT, we define the system of Layer 3 routers and their routing functions for
the SL-VPC as Equation (2):

r Li(x1 . . . xn, . . . y1, . . . ym) = 0, i = 1 . . . R (2)

This formulation assumes the routers are part of a virtualized, differentiable system
where redundancy and failover can occur in a seamless manner. The IFT allows us to
express one variable as a function of others, simplifying the optimization problem, where

L : Rn+m represents a continuously differentiable virtual function across a product
space such that Rn ∗ Rn forms a Cartesian product of virtual spaces. This model aims
to optimize traffic load balancing while managing redundancy within the AMI of a SG
network. The redundancy mechanism automatically disconnects nodes from the core
internet gateway when multiple paths are available, ensuring efficient resource allocation
(Equation (3)).

x, y, z = SGSBn+1(x1 . . . xn, . . . y1, . . . ym). (3)

where SGSBn+1 denotes transparent failover clusters for load balancing.

Definition 1. Implicit Transparent Failover Service (ITSF) and Load Balancing.

The ITSF ensures the existence of differentiable fault-tolerant failover clusters
SGSB1, SGSB2, . . . SGSBn+1. This is required for load balancing across the SGDA net-
work. The implicit function theorem provides the necessary differentiability condi-
tions for achieving this balance in Equation (4). This guarantees uninterrupted energy
service provisioning.

3.2. Mathematical Model of Traffic and Stability

The automation service metrics are defined as a tuple:

M = (Q, Sd, T, A)

where
Q = {Q1, Q2 . . . Qn} is a set of QoS metrics (e.g., throughput, traffic availability).
Sd = (Sd1, Sd2, . . . Sdn+1) represents the SDN-OpenFlow components.
T = (t1, . . . t2, . . . tn+1) is a set of temporal service invocations.
A = (A1, . . . A2, . . . An+1) represents the activities or transactions of end-users.
The CTSM leverages SL-VPN containers to optimize traffic handling and service

provisioning through real-time stability monitoring. We now describe the main elements of
the model in Equations (4) and (5).

3.2.1. CTSM Traffic Stability Model

i. QoS vector path stability:

To maintain real-time synchronization, the QoS stability equation ensures time-
consistent data transmission (for high-density traffic), defined by the following equations.

Technologies 2025, 13, 105 9 of 33

Qvp(t) =

[
∞

∑
t=0

(Q vp1
(t) + Qvp2

(t) + . . . + Qvpn+1
(t))

]
(4)

This guarantees predictable latency and resilient energy flow across the network.

ii. Stream Workload Path (SWP) Stability

The stream workload model ensures stable data synchronization across the SGDCN:

Sswp(t) =

[
∞

∑
t=0

Sswp1(t) + Sswp2(t) . . . Sswpn+1(t)

]
(5)

By deploying containerized SDN functions, the network dynamically adjusts to peak
loads, mitigating synchronization errors via auto-scaling fault tolerance.

3.2.2. CTSM Auto-Scaling and Traffic Optimization

As shown in Figure 2, we employed load balancing (i.e., Application Load Balancers
(ALBs)/Network Load Balancers (NLBs)) to ensure scalability and fault tolerance. The
ALB routes the HTTP/HTTPS traffic using WebSocket and content-based routing. The NLB
handles TCP/UDP energy transactions, ensuring high throughput and low latency. We
then used the auto-scaling group servers to dynamically adjust container instances based
on CPU utilization and network request rates. We note a constraint optimization concern
for traffic flow. Hence, to maintain synchronization under high-density traffic, the system
enforces a constraint:

Cm(x, y) ≤ b

where Cm(x, y) represents network constraints such as bandwidth and latency.
Also, stochastic gradient descent (SGD) with constraints is considered. To dynamically

optimize SGDA traffic, SGD updates network parameters using the loss function J(θ). This
measures the deviation from optimal traffic balancing. The SGD update rule is given by
Equation (6):

θ(K+1) = θ(k) − µ∇J((θ)(k)) (6)

where µ is the learning rate, and
∇J J((θ)(k)) is the gradient of the loss function with respect to the parameters θ.
This ensures real-time energy data synchronization, thereby improving load balancing

efficiency, latency minimization, and resilient failover recovery.

3.2.3. CTSM Multi-Queue System

A multi-queuing model (MQM) for load management via cloud architecture is intro-
duced. Once the edge AMIs generate events via the nodes to the cloud, the queuing system
is activated. The CTSM for the SGDA network alongside its AMI is further analyzed to
address real-time feedback. The microservice architectural design could benefit from classic
segmentation, failure isolation, scalability, and active–active resilience and resource opti-
mization under MQM. We assume our possible scenarios as load balancing across queues,
microservices with dedicated queue states, task segmentation services, dynamic allocation
via auto-scaling combined with cloud services (e.g., AWS SNS, GCP publish–subscribe,
Kafka, etc.).

• Dynamic allocation via auto-scaling

Let us use an auto-scaling use case as an example. Consider an M/M//2 MQM with
myriads of complex heterogenous servers entering idle vacation mode whenever there
is no workload. In the auto-scaling design, a fleet server S f goes on vacation when the

Technologies 2025, 13, 105 10 of 33

others are active, SAa. Assume we have two heterogenous servers, SA and SB, using the
microservice-modified Poisson process parameter λ, and let µ1 and µ2 be the service rates
of both auto-scaling servers, respectively. Here, µ1 ̸= µ2. We assume that the durations of
their fleet vacations are independent but distributed with an exponential stochastic variable,
θ1 and θ2. During vacation sessions, traffic arrival demands on SA (a busy server with no
fleet vacation) will cause SB (a less busy server) to provision and service at lower rates.

In this case, the SB will have a service rate of θµ2, 0 ≤ θ ≤ 1. Once the service is
completed, SB will continue with the expected service rate µ2 until there is no more queue
before it goes on its own fleet vacation. The workload arrival, Wa, from various endpoints
follows first-come-first-served (FCFS) traffic discipline from the distribution load balancers.

• Continuous Time Markov Chain

From Figure 2, our fleet vacation M/M//2 MQM for SA and SB will be formulated
with a CTMC [59] whose scenario states at the possible time T are designated by (i, j)AB.

Here, i ≥ 0 represents the number of transactional workloads (TWs) in the design.
j = 0, 1, 2, . . . n represents fleet server status.

The fleet state Si,j (0, 0) denotes that both SA and SB are on vacation; the fleet state
Si,1 (i, 1) denotes i ≥ 0, i.e., TWs are in the auto-scaling system.

Given that SA is in a busy state, and SB is non-vacation, Si,1 (i, 2); i ≥ 0, and the TWs
are in the auto-scaling system.

Also, if SA is in a busy state, and SB is working during vacation, then Si,1 (i, 3) i ≥ 0,
and the TWs are in the auto-scaling system. This implies that both SA and SB will be busy,
working at optimal states.

We can then introduce a CTMC generator Q referred to as a quasi-birth-and-death
(QBD) process [60]. The transitional carders 0, 1, . . . n denote the possible epoch states,
ρ[0 = {(0, 0)}, 1 = {(1, 0), (1, 1), (1, 2)}, and i = {(i, 0), (i, 1), (i, 2), (i, 3)}, if i ≥ 2 [61].
The transition state diagram is also depicted in Figure 2, capturing all the layers of inte-
gration applied in our previous edge marketplace robots [62]. Therefore, by employing
a dynamic auto-scaling strategy and CTMC, systems can efficiently manage and allocate
heterogeneous server resources under varying workloads. This means that servers switch
between active service and idle “vacation” modes, with adjustments in service rates (such
as a reduced rate for provisioning tasks) governed by stochastic processes and modified
Poisson parameters.

Our model provides a robust analytical framework to predict performance and op-
timize resource utilization when attached with edge nodes. The integration of a scalable
container-based time synchronization mechanism (CTSM) with software-defined network-
ing (SDN), implicit transparent failover service (ITSF), and stochastic gradient descent
(SGD) in Figure 1 (i.e., SGDCN) ensures fault-tolerant time synchronization, optimizes
workload distribution through auto-scaling and load balancing, and reduces latency while
improving QoS under high-density energy transactions. By dynamically adjusting network
parameters in response to fluctuating grid conditions, CTSM enhances the stability, effi-
ciency, and real-time resilience of SGDCN, ensuring seamless and scalable operations within
complex smart grid infrastructures. We shall now describe the functional components in
Figure 2, linking their integration with our edge AMIs in Section 4.

4. SGDA Ecosystem
4.1. System Components
4.1.1. Edge Layer

We employed various computational techniques, including exponential, gamma,
Bernoulli, and binomial distributions, to model key edge components of the SGDA system

Technologies 2025, 13, 105 11 of 33

in Figure 2. The exponential distribution was used to represent the life span of generation
companies (GENCOs) and independent power plants (IPPs), and the gamma distribution
captured the aggregated energy output. By simulating the energy generation over time
with Minitab software version 21.1.0, we calculated the energy outputs and probabilities at
different intervals, giving insights into energy production patterns. The results highlighted
the role of exponential and gamma distributions in understanding the total megawatts
produced by different GENCOs. For the distribution of energy to DISCOs, we applied
Bernoulli and binomial distributions. The Bernoulli distribution was used to model the
success or failure of individual smart meter readings, while the binomial distribution
modeled the collective readings from multiple meters. These methods helped determine
peak and non-peak energy usage, essential for load management.

4.1.2. Fog Layer

At the downstream zone (see Figure 1), the edge-to-fog layer in the SGDA operates
as a distributed system, where AMI sensor networks leverage embedded computation for
real-time energy monitoring and control. Advanced algorithms, including feedback loops,
enable seamless communication with the consolidation layer, optimizing grid load balanc-
ing and system management. This layer integrates decentralized meter data management
with the operation center and communication interfaces, enhancing control. A service-edge
algorithm automates edge processes, enabling SG distribution automation to interconnect
AMI sensors and field equipment for remote monitoring, control, and data aggregation.
Dynamic interactions between energy users and the SG are supported through the CTSM
dynamic dispatch mode, ensuring efficient data exchange across network elements. This
is vital for secure, reliable SG communication. Additionally, the cloud-based, container-
ized infrastructure enables seamless east–west data stream migration from edge to cloud,
achieving low-latency and high-throughput performance in SG networks.

4.1.3. Consolidation Domain (DC)

The CD integrates the CTSM within the SL-VPC to enhance computational efficiency
and synchronize operations across containerized environments. As shown in Figure 1,
this data-centric fabric management and automation layer optimizes performance by
incorporating latency prediction within the SL-VPC. This domain plays a critical role in
handling AMI data streams, where low latency and optimized traffic flow are essential.
The SL-VPC backbone ensures uniform traffic distribution and minimizes latency using
predictive workload balancing. Equal-cost multipath (ECMP) routing further enhances
efficiency by distributing traffic evenly across multiple paths, mitigating bottlenecks and
preventing loops. Its modular design scales dynamically, addressing port density challenges
and ensuring seamless SG operations as traffic demands grow. The VPC and application
services rely on container-based time synchronization microservices deployed over a
stacked VPC. A container orchestrator encapsulates the cloud service stack, enabling
structured deployment. SDN cloud functionality services (SDN-CFS) provision essential
components, including the SG API gateway and OpenFlow controller interfaces, which
manage network traffic and service functions. Load balancers and the OpenFlow console
interface facilitate comprehensive flow table logging, covering operations like insertion,
removal, updates, and data retrieval. The OpenFlow-enabled infrastructure functions as a
firewall, static load balancer (SLB), convergence switch, and a hybrid volume bulk balancer
(VBB) and volume billing container (VBC). Flow table configurations, managed by the
OpenFlow controller, govern service deployment and ensure efficient network operations.

Technologies 2025, 13, 105 12 of 33

4.1.4. Mininet CloudFormation IaC

A container optimization strategy is designed to reduce computational overhead in
legacy SGDAs. An SDN-enabled container, built with infrastructure as code (IaC), manages
the consolidation layer (Figure 1), optimizing resource allocation and workload manage-
ment within SGDA. Using AWS CloudFormation, the Mininet framework enables CTSM
validation, ensuring experimental accuracy. In the SL-VPC domain, IaC automates con-
tainer deployment across multiple instances, creating a resilient environment for continuous
integration and delivery. The AWS cloud architecture orchestrates these containers, ensur-
ing scalability, reliability, and automated provisioning. Each container image functions as a
lightweight, isolated service, bundling essential components like SG cloud code, runtime,
libraries, and configurations. Once deployed, these images instantiate containers within
the SDN-CFS engine, maintaining a consistent runtime environment. Additionally, the
containerized infrastructure isolates key components such as gateways and load balancers,
promoting network stability and uniformity across instances.

4.1.5. Security Group Firewalling

The backend security layer in the DCN design employs the SG OpenFlow firewall
(Figure 2) to protect load control and management servers. This edge-to-cloud security
framework leverages logical virtualization segmentation, creating tiered security functions
within the OpenFlow table map services. These functions are virtualized and consoli-
dated into a virtual security node, enhancing network flexibility and security. The firewall
enforces access control policies, continuously monitoring legitimate and illegitimate con-
nections in real time. Using containerized security instances, the system dynamically scales
to accommodate increasing workloads. The OpenFlow firewall gateway manages firewall
operations, service load balancing, and flow table security policies, ensuring controlled
network access. For enhanced resilience, redundant security enforcement mechanisms
integrate with ALBs and auto-scaling. ALBs distribute traffic across security-hardened
instances, preventing overload attacks, while auto-scaling adjusts security resources dy-
namically to mitigate denial-of-service (DoS) risks. The CTSM embeds security at the edge
AMI and SGDA, ensuring real-time threat detection and anomaly response.

4.2. SGDA AMI Hardware Architecture and System Components

The SGDA AMI (advanced metering infrastructure) edge layer integrates multiple
components to facilitate real-time grid monitoring, control, and data aggregation. The key
elements are as follows:

1. Transmission and Step-Down Transformers

• Primary Setup: Three transmission transformers (models A, B, and C) are used.
In our demonstration setup, each transformer steps down 240 V to 12 V.

• Grid Voltage Adaptation: Although actual grids operate with power ratings
ranging from 11 kVA to 133 kVA, our configuration employs a three-phase
transformer to step down a primary voltage of 415 V to 240 V per phase before
additional local step-downs.

2. Sensing and Data Acquisition

• Sensor Deployment: Sensors continuously monitor power parameters—current
and voltage—across both transmission and distribution networks.

• Distribution-Level Monitoring: At the distribution level (DISCO), smart me-
ters equipped with load-scheduling sensors provide enhanced monitoring of
power consumption.

Technologies 2025, 13, 105 13 of 33

3. System Layers and Communication: The SG system operates through three inte-
grated layers:

• Metering Layer: Captures and transmits grid data from various points in the network.
• Monitoring/Control Layer: Processes and analyses real-time grid parameters to

support immediate operational decisions.
• Cloud/IoT Interface: Utilizes wireless IoT modules and a dedicated VPC landing

zone to support demand-side management (DSM) and provide centralized control.

4. Distribution Network Control

• Relay Operations: The distribution network employs relays to route power
efficiently to consumer blocks (see Figure 3).

• Local Controller: A PIC18F4550 microcontroller manages DISCO operations. It
interfaces with the following:

■ Current Sensing: An ACS712-30 sensor measures current usage.
■ Voltage Monitoring: A voltage divider circuit tracks voltage consumption,

with data fed into the microcontroller’s ADC to compute and display
load demand.

• RF Communication: An RF IoT module transmits real-time data to the cloud,
enabling remote relay activation and precise load management.

5. Real-Time Feedback and Quality of Service (QoS)

• The AMI edge layer facilitates dynamic feedback between generation companies
(GENCOs) and residential consumers (see Figure 4).

• After validating the accuracy of our smart grid neural network model, it was
deployed in the design testbed. This implementation meets the QoS requirements
by optimizing transmission capacity and minimizing time delays for critical
services such as load management.

6. Advanced Data Aggregation and Algorithmic Processing
To ensure robust performance, key algorithms within the SG system include
the following:

• Traffic-Token Construction
• Data Encryption
• Sink Data Aggregation (SGDA)

For developing SGDA process node models, a conjugate batch gradient method was
adopted instead of stochastic gradient descent (SGD). This method was chosen because it
does not require access to the full training dataset from customer interface units (CIUs) and
AMI node sets. The algorithm works as follows:

• Initialization: Start with an arbitrary CIU node vector, denoted as ϑ0.
• Iterative Process:

At each iteration i, a CIU row, i(k) (where i ∈ {1, . . ., n}), is randomly selected from the
layered cluster parent nodes.

• Gradient Computation:
The selected data streams are used to compute the gradient based on the local loss
function, ∂(xi, yi), as detailed in Algorithm 1.

• Convergence:
The procedure iteratively projects onto available hyper-node planes until convergence
is achieved.

Technologies 2025, 13, 105 14 of 33Technologies 2025, 13, x FOR PEER REVIEW 14 of 34

Figure 3. (a,b): Implementation of the load management AMI hardware in SGDA.

Figure 4.: Proof-of-concept Advanced Metering Infrastructure (AMI) that employs full-duplex com-
putational modeling of energy generation and distribution. This model utilizes exponential, gamma,
Bernoulli, and binomial distributions to simulate GENCO lifespan, aggregated energy output, and
smart meter reading accuracy for dynamic load management in the cloud. The SG system comprises
key components such as smart load control switching modules, voltage and current sensors, and
IoT RF communication modules, which monitor and manage electrical parameters while facilitating
real-time data exchange. Enclosed edge aggregation boxes with both disabled and active load points
organize and control distributed energy resources. Data acquisition mobile devices gather opera-
tional data, and high-frequency display modules provide energy readings and system status up-
dates, enabling informed decision-making and effective grid management.

For developing SGDA process node models, a conjugate batch gradient method was
adopted instead of stochastic gradient descent (SGD). This method was chosen because it

Figure 3. (a,b): Implementation of the load management AMI hardware in SGDA.

Technologies 2025, 13, x FOR PEER REVIEW 14 of 34

Figure 3. (a,b): Implementation of the load management AMI hardware in SGDA.

Figure 4.: Proof-of-concept Advanced Metering Infrastructure (AMI) that employs full-duplex com-
putational modeling of energy generation and distribution. This model utilizes exponential, gamma,
Bernoulli, and binomial distributions to simulate GENCO lifespan, aggregated energy output, and
smart meter reading accuracy for dynamic load management in the cloud. The SG system comprises
key components such as smart load control switching modules, voltage and current sensors, and
IoT RF communication modules, which monitor and manage electrical parameters while facilitating
real-time data exchange. Enclosed edge aggregation boxes with both disabled and active load points
organize and control distributed energy resources. Data acquisition mobile devices gather opera-
tional data, and high-frequency display modules provide energy readings and system status up-
dates, enabling informed decision-making and effective grid management.

For developing SGDA process node models, a conjugate batch gradient method was
adopted instead of stochastic gradient descent (SGD). This method was chosen because it

Figure 4. Proof-of-concept Advanced Metering Infrastructure (AMI) that employs full-duplex com-
putational modeling of energy generation and distribution. This model utilizes exponential, gamma,
Bernoulli, and binomial distributions to simulate GENCO lifespan, aggregated energy output, and
smart meter reading accuracy for dynamic load management in the cloud. The SG system comprises
key components such as smart load control switching modules, voltage and current sensors, and
IoT RF communication modules, which monitor and manage electrical parameters while facilitating
real-time data exchange. Enclosed edge aggregation boxes with both disabled and active load points
organize and control distributed energy resources. Data acquisition mobile devices gather opera-
tional data, and high-frequency display modules provide energy readings and system status updates,
enabling informed decision-making and effective grid management.

In practice, a continuous time Markov chain algorithm function is established. The
algorithm outlines the customer interface unit (CIU) connection process at the edge layer.
This takes the source ID, s, destination ID, d, and data size, m as inputs, and outputs a data

Technologies 2025, 13, 105 15 of 33

stream, n, arriving at the local aggregator, Lag. Through iterative processing, Algorithm
1 sets the CIU and AMI destinations as vectors of different lengths while setting the
cluster parent as AMI transmitter. To integrate stochastic gradient descent (SGD) variables
into Algorithm 1, we can use them to optimize the decision-making process, particularly
in determining the optimal data flow paths between CIU and AMI based on iterative
learning. In this design, SGD is used to iteratively update the weight vector ωi based on
the gradient of the loss function L(ωi). The learning rate η controls how much the weights
are adjusted in each iteration, optimizing the connection between CIUs and AMI for better
data flow efficiency.

Algorithm 1: Edge Connection with SGD Optimization

1: CIU Input: (s, d, m)

2: CIU Output: n
3: Initialize learning rate η for SGD Optimisation
4: Initialise weight vector ω0 for AMI-CIU Connection
5: Determine (CIU +AMI Destination) as vectors of different lengths.
6: For (CIU = 0, CIU > 0, i++) then
7: Compute Gradient: ∇ωi L(ωi) based on current load and connection
8: Update Weight: ωi +1 = ωi − η.
9: Set Cluster Parent as (AMI Tx); : ∇ωi L(ωi)(SGD Step)
10 Set Cluster parent as (AMI Tx) based on updated weights
11: End loop when convergence is achieved
12: End

4.3. Hardware Implementation

As described in Section 4.2, the edge AMI integration is now depicted in Figure 3,
illustrating the load management within the SGDA architecture. The system integrates
a PIC-based IoT microcontroller with a 10-bit ADC, converting sensor signals into digi-
tal data to calculate power consumption from current and voltage measurements. The
PIC18F4550 controller manages GENCO operations, controlling power flow by energizing
or de-energizing relays connected to the distribution bus. A display dashboard visu-
alizes real-time power data, while a GSM module and RF IoT module establish secure
cloud communication.

i. System activation and control are accomplished with the following:

• GENCO sources (A, B, C) under testing, displaying status on an LCD interface.
• The RF IoT module configuration for real-time communication via activation

start buttons which energizes relays, and routes power to the distribution buses.
• The cloud-driven LCD displays available power and real-time load status.

ii. Dynamic load management and smart control

• Load variations trigger cloud-based automation as follows:

(a) As demand increases, the DISCO reports to the cloud control unit, which
activates additional GENCOs to meet consumption needs (Figure 4).

(b) If demand exceeds capacity, the system implements smart load shedding,
de-energizing relays to disconnect non-priority loads.

(c) When demand drops, the system takes GENCOs offline, preventing
overproduction.

iii. Neural network-driven self-healing optimizes power allocation, ensuring efficient
demand–supply balancing while minimizing energy wastage. This seamless inte-

Technologies 2025, 13, 105 16 of 33

gration of SGDA hardware, IoT, and cloud infrastructure can improve real-time
monitoring, control, and energy efficiency in next-generation smart grids.

4.4. Neural Edge Network Design

This section describes the design and implementation of the proposed SGDA lever-
aging a neural engine to predict energy consumption patterns, as shown in Figure 5. We
assumed subscribers/customers at GENCOs/TCN/DISCOs. MATLAB R2022a was used to
integrate preprocessing, feature selection, clustering, and a supervised learning algorithm
for dynamic load management.

Technologies 2025, 13, x FOR PEER REVIEW 16 of 34

• GENCO sources (A, B, C) under testing, displaying status on an LCD interface.
• The RF IoT module configuration for real-time communication via activation

start buttons which energizes relays, and routes power to the distribution buses.
• The cloud-driven LCD displays available power and real-time load status.

ii. Dynamic load management and smart control

• Load variations trigger cloud-based automation as follows:

(a) As demand increases, the DISCO reports to the cloud control unit, which
activates additional GENCOs to meet consumption needs (Figure 4).

(b) If demand exceeds capacity, the system implements smart load shedding,
de-energizing relays to disconnect non-priority loads.

(c) When demand drops, the system takes GENCOs offline, preventing over-
production.

iii. Neural network-driven self-healing optimizes power allocation, ensuring efficient
demand–supply balancing while minimizing energy wastage. This seamless integra-
tion of SGDA hardware, IoT, and cloud infrastructure can improve real-time moni-
toring, control, and energy efficiency in next-generation smart grids.

4.4. Neural Edge Network Design

This section describes the design and implementation of the proposed SGDA lever-
aging a neural engine to predict energy consumption patterns, as shown in Figure 5. We
assumed subscribers/customers at GENCOs/TCN/DISCOs. MATLAB R2022a was used to
integrate preprocessing, feature selection, clustering, and a supervised learning algorithm
for dynamic load management.

Figure 5. Computation of neural controller architecture for SG architecture.

4.4.1. Network Architecture

The core predictive model is based on a radial basis function network. In our imple-
mentation, the network consists of an input layer, a hidden layer, and an output layer.

In the hidden layer, the input vector is linearly mapped to a set of basis functions
using weights 𝑤. The network’s output is then defined as: 𝑦 = 𝑓(𝑥) − 𝑊(𝑥) = ∑ 𝑤ୀଵ 𝜑(𝑥) (7)

Specifically, each subscriber’s data are represented as an input vector:

Figure 5. Computation of neural controller architecture for SG architecture.

4.4.1. Network Architecture

The core predictive model is based on a radial basis function network. In our imple-
mentation, the network consists of an input layer, a hidden layer, and an output layer.

In the hidden layer, the input vector is linearly mapped to a set of basis functions
using weights wi. The network’s output is then defined as:

y = f (x)−W(x) = ∑n
i=1 wi φi(x) (7)

Specifically, each subscriber’s data are represented as an input vector:

u = (u1, u2u3. . . un)
T ∈ Rn (8)

where
φi(x) = output of the i-th basis function
wi = corresponding weight of node i
h = number of hidden nodes.
For classification, the network’s output is constrained within the interval (0,1) and is

further transformed by:

y = w(x) =

{
1 i f subscriber′s load is at peak

0 i f subscriber′s load Non− peak
(9)

4.4.2. Preprocessing and Learning Algorithm

Before training, the data undergo several preprocessing steps, such as the following:

Technologies 2025, 13, 105 17 of 33

• Dimensionality Reduction: To eliminate redundant features.
• Data Normalization: Scaling all input features to lie between 0 and 1, forming a

consistent input-target matrix.
• Clustering: Pre-filtering the data into clusters helps in detecting anomalies such as

faulty demand meters or abnormal customer behavior.

Following preprocessing, the learning algorithm employs the Stochastic Gradient
Neural Process Controller (SG-NNPC), combined with an integrated forecasting engine to
predict future energy demand. The dataset is randomly partitioned into training and testing
sets, and model parameters are optimized to minimize the mean squared error (MSE).
During training, the model iteratively computes hidden cluster centers—adjusting for
inter-sample similarity—to refine its predictions. The overall performance is benchmarked
using MSE, which for each hidden layer is calculated as:

ϑ̂h =
1

s× nT

S

∑
r=1

nT

∑
i=1

I(yr
i ̸= ŷr

l) (10)

where
s = number of cross-validation runs;
nT = the total number of test samples;
I(·) = Indicator function that returns 1 when the predicted value differs from the true

value, and 0 otherwise;
h = number of hidden nodes.

4.4.3. Experimental Setup and Performance Evaluation

The SGDA system was evaluated using data samples collected from a DISCO in a
simulated SG environment. In our experimental configuration (see Table 2), the neural
network was set up with the following parameters:

Table 2. Parameters of SG neural network.

Generator Discriminator Values

Input units 4

Output units 1

Activation Levenberg_Marquardt

Hidden layers 10

Optimization goal MSE (minimum square error)

Training epoch 56

Classifier output 25

Training was further validated using a 3-fold cross-validation process. As the number
of AMI node samples increased, the model demonstrated improved learning, achieving
the best validation performance at the 50th epoch with an MSE of 2.7359 × 10−11. This
low error margin indicates robust performance and a prediction accuracy of nearly 100%.
Figure 5 illustrates the overall neural controller architecture, while Figure 6 presents the
MSE plot for the SG edge neural network model.

Technologies 2025, 13, 105 18 of 33

Technologies 2025, 13, x FOR PEER REVIEW 18 of 34

Training was further validated using a 3-fold cross-validation process. As the num-

ber of AMI node samples increased, the model demonstrated improved learning, achiev-

ing the best validation performance at the 50th epoch with an MSE of 2.7359 × 10−11. This

low error margin indicates robust performance and a prediction accuracy of nearly 100%.

Figure 5 illustrates the overall neural controller architecture, while Figure 6 presents the

MSE plot for the SG edge neural network model.

4.4.4. Data Aggregation via AMI Local Concentrator

In addition to prediction, the SGDA incorporates a data aggregation mechanism using an

AMI local concentrator. Algorithm 2 outlines the procedural steps for the following:

• Executing batches of conjugate gradient updates concurrently across AMI nodes.

• Aggregating the data by averaging values computed for each iteration 𝜂(k+1).

• Synchronizing node operations to ensure efficient data flow and scalability.

The AMI local concentrator not only reduces computational overhead but also en-

sures that data streams—regardless of queue length—are effectively managed. This coor-

dinated aggregation supports the dynamic load management required in smart grid en-

vironments.

Figure 6. Mean square error plot for SG edge neural network model.

4.5. Computational Complexity Analysis

The time complexity analysis of the CTSM involves mapping between the AMI user

layer and the related service orchestrations for temporal data stream provisioning. The

key components are as follows:

Let

𝑵𝒖 represent the port of the SDN user network feature, matching the number of

CTSM services;

Figure 6. Mean square error plot for SG edge neural network model.

4.4.4. Data Aggregation via AMI Local Concentrator

In addition to prediction, the SGDA incorporates a data aggregation mechanism using
an AMI local concentrator. Algorithm 2 outlines the procedural steps for the following:

• Executing batches of conjugate gradient updates concurrently across AMI nodes.
• Aggregating the data by averaging values computed for each iteration η(k+1).
• Synchronizing node operations to ensure efficient data flow and scalability.

The AMI local concentrator not only reduces computational overhead but also ensures
that data streams—regardless of queue length—are effectively managed. This coordinated
aggregation supports the dynamic load management required in smart grid environments.

4.5. Computational Complexity Analysis

The time complexity analysis of the CTSM involves mapping between the AMI user
layer and the related service orchestrations for temporal data stream provisioning. The key
components are as follows:

Let
Nu represent the port of the SDN user network feature, matching the number of

CTSM services;
Ni represent the scope of service concurrent attributes, which matches the number of

instantiating nodes;
Eu represent the scope of embedded security attributes;
Ei represent the complexity of SDN OpenFlow entries;

Nmax = Maxj(Nu, Ni), and EMax = Maxk(Eu, Ei). (11)

Using Equation (11), the time complexity of the CTSM-connected layered algorithms
(Algorithms 1–7) for temporal complexity embedding is O(NuEu + NiEi) = O

(
NMaxj, EMax

)
.

Technologies 2025, 13, 105 19 of 33

Let d denote the size of the SDN hidden databases/tables, ϑ denote the size of the QoS
parameters, and the time complexity of CTSM become O

((
d2 + EMaxd

)
∗ ϑ)).

The time complexity analysis (TCA) is given by

TCA =
(

ϑd2 + ϑdEMax + NMaxEMax

)
(12)

Given that the SDN identification of d and EMax is proportional to NMax, the TCA can
be simplified to

O
(

ϑN2
Max

)
(13)

In the production environment, this analysis intrinsically justifies the importance of
minimizing QoS metrics to reduce computational workload.

Algorithm 2: AMI Local Concentrator/Local Aggregator

1: Input: local ID, destination ID, queue size, link Information
2: Output: Infinite queue dispatched to the Global sink

Procedure:
3: Draw AM local Connection;
4: AMI_Global Connection j
5: Initialise i iterations T, ϑˆk←0; ϑˆk (CIU and AMI)
6: Map smart meter data of the individual nodes
7: While all data(i) that hasn’t been converged, do
8: For all i (AMI) ∈ {0, . . . j + 1} do read (i);
9: For i := 0 to N− 1 do read (φ [i]);
10: For i := 0 to N− 1 do read (∂ [i]);
11: For i := 0 to N− 1 do read (nk+1 [i]);
12: For j: = 0 to N − 1 do read ϑr[i]: = φ([i]);+ ∂([i]);+ . . . (nk+1[i]);
13: For i: = 0 to N − 1 do Write (j[i]);

ηk+1(CIU and AMI) = 1
N ∑N

i=1 ηk

14: End

Algorithm 3: Container logical instantiation/Global Grid Concentrator

1: Input: grid workload sources
2. Output: autoscaling group instances
3. Create an Object instance:

Instantiate an object from a map.
4: For node Iteration

For each node i from I to Nk+1

5: Call Open Firewall Function to add
F(I 0, J1,K1, Nk+1:sg-link: sg-link)

sg-link
6: load container balancer

Load balancer self-connection
7: Recycle loop ().

execute recycle loop ()
8: Direct control

directly control the container resources
9: End

Technologies 2025, 13, 105 20 of 33

Algorithm 4: SDN OpenFlow Firewall Services

1: Input: Call Schedule (), OpenFlow firewall services (), services bundling (), Source
address, a destination

address, 2 queue size, link, link Information
2: Output: OpenFlow Destination (Load balancer ports)
3: Parameters: OpenFlow _weight← Empty, weight← o; weighted Moving← 0;
totalWeight← 0,
4: OpenFlow_weight_ Container_history_queue← null;
5: i← 0;
6: While < OpenFlow monitor Call Schedule do
7: queue← (HistoryListSize—OpenFlow_monitor Call − i)
8: OpenFlow _weight← fiboA1 + fiboB2;
9: OpenFlow weighted Moving← weighted Moving+ (Container
historyItem * weight);
10: Recycle loop;
11: end while
12: Calculate event filtering () & execute dynamic network balancing:
13: Legitimate initial Value←(OpenFlow weight) * (pastInitialValue +
trendPosteriorValue);
14: illegitimateTrendPosteriorValue← (initialValue–pastInitialValue)+ (PosteriorValue)
15: If (Sensed event = 1), then,
16: Set services (),
17: Create another instance of the virtual node on OpenFlow;
18: Optimise flow table;
19: Do list control ();
End

Algorithms 3 and 4 were used to drop the impacts of data availability threats against
the SGDA AMI.

Edge Streaming Algorithm

In Algorithm 5, once a smart meter joins a subnet group, binomial distribution is
activated to optimize node placement. If a sink node is within range, the smart meter
receives a TCP data stream message from the AMI base hub and assigns the sink node
as the cluster parent. Nodes validate messages based on their level: higher-level nodes
connect with different clusters, while lower-level nodes only interact within their cluster
and with the parent node. Edge computing is utilized to enhance real-time processing,
enabling each node to locally manage and detect associated AMI nodes. Cluster parent
nodes use this edge-enabled infrastructure to create secure network data across all anchor
nodes in the AMI subnet clusters.

Algorithm 7 begins by receiving an AMI network message and its type, then sends the
output to the sink AMI local concentrator. For each iteration from 1 to Kn+1, it processes
encrypted data by gathering a random neighbor, waiting for a response from the AMI
cluster node, and computing a new encryption key. It then sets the direction and curve
level, applies homomorphic encryption, and packs the encrypted data. After waiting and
preparing to send the data to the local aggregator, it checks if the construction is complete
and, if so, sends the final data to the local concentrator.

Technologies 2025, 13, 105 21 of 33

Algorithm 5: CTSM Secured Network Construction

1: Input: AMI Network design message
2: Output: output in the Sink placed in the Cluster Servers
Procedure:
3: Set CTSM VPC Encryption = 1
4: If (a node is a source node) then
5: Exit Call (AMI base hub)
6: Perform Flooding (initial Level, base stationID)
7: Wait for the TCP HELLO message to arrive
8: If (a Smart Meter sensor node sends a message to the AMI node) then
9: Set the message’s parentID, recHopCnt, and recLevel
10: Increment Net Information curEntry
11: If (current hop count > recHopCnt + 1) then
12: Set current hop count = recHopCnt + 1
13: If (current hop count > recHopCnt + 1) then
14: Break
15: If (TOS LOCAL ADDRESS is not a leaf node) then
16: Perform Inundation (current Level, current Node ID)
17: If (message Type is Encrypted) then
18: JOIN
19: If (the maximum number of child nodes is not exceeded by the parent node) then
20: Set parent = parentID
21: Else
22: Send message (RESET) to a node
23: End If
24: End If
25: End If
26: End If
27: End If
28: End

Algorithm 6: CTSM Encrypted Data Construction

1: Input: Network Message, Message type
2: Output: output Sent to Sink AMI local concentrator
Procedure:
3: For i = 1 to Kn+1 do
4: Obtain Data that Has Been Encrypted
5: AggregateNode = gather neighbor(random)
6: Wait for the AMI cluster Node to provide a response message
7: newValue = ComputeKey(AMI cluster Node, KeySeed data, Received_KeySeed data)
8: make Direction = directionValue(newValue)
9: current CurveLevel = setCurveLevel
10: Homomorphic Curve = encryptedData(direction, curveLevel, newUpdate)
11: Packing(encryptedData)
12: Wait
13: Ready to send to the local aggregator
14: If (the construction is complete) then
15: Send to Local concentrator
16: End If
17: End For
End

Technologies 2025, 13, 105 22 of 33

In Algorithm 7, TCP energy data flooding secures data aggregation from the AMI
nodes to the SDN controller. The process begins with the AMI nodes. In smart grid mode,
data from the CIUs are received by an AMI base node, which re-encrypts them along
with its own data. The encrypted data are then sent from the source nodes to the global
concentrator, enforcing encryption with specific key lengths during the transfer to the
master AMI nodes. Before encrypted communication is sent to the sink node, the AMI
nodes must be activated. To transmit upstream and downstream messages to the sink,
both local and global concentrators must meet the encryption and decryption requirements.
Upon receiving the event message, the sink node triggers the local concentrator function.
Data from the edge nodes, collected by the local concentrator, are fully encrypted before
being transmitted to the grid via the OpenFlow SL-VPC. Anomaly detection is confirmed
using the TCP encryption filtering technique. Legitimate traffic arriving at the user AMI
master nodes is decrypted while any illegitimate traffic is rejected.

Algorithm 7: CTSM Aggregated Data Security

1. Receive Input:

• Get AMI Network Message and Message Type as input.

2. Send to Sink AMI:
• Send the Message and Message Type to the Sink AMI Node (AMI meters).

3. Iterate through Nodes:

• For each node N(i), where i = 1 to Kn+1 (Kn is the number of AMI nodes):

1. Apply the Data Aggregation function to the Message and msgType.
2. If a metering node is set:

■ Send the encrypted message to the Sink AMI Node.

3. Else:

■ If an AMI node receives an update message from the receiver sensor node:
1. Connect to the local concentrator (DMF).
2. If an event message is encoded and received by the local concentrator:

■ Store the encrypted data (using Homomorphic encryption).

4. Decryption and Data Aggregation:

• Apply the Decryption function to the encrypted data:
decryptedData = Decrypt(encData)

• Add the decryptedData to the aggregatedData:
aggregatedData += decryptedData

5. Global Concentrator Interaction:

• Retrieve data from the Global Concentrator.
• Apply the homomorphic encryption curve:

HomomorphicCurve = newEncData(direction, curveLevel, aggregatedData)

6. Local Concentrator Completion:

• If all data is received from the local concentrator child nodes:

1. Send an encrypted message to the Grid OpenFlow Firewall ParentNode.

7. Sink Node Actions:

• If the node is a Sink Node:

1. Filter for TCP encryption abnormalities.
2. Store the encrypted data from the message.

8. Final Decryption:

• Decrypt the encData:
decryptedData = Decrypt(encData)

9. Send to Master Station:

• Send the decryptedData to the Customer Smart Meter Master Stations.

10. End.

Technologies 2025, 13, 105 23 of 33

4.6. Performance Evaluation
4.6.1. DCN Description

Given the edge-to-cloud integration, the performance of SG data aggregation (SGDA)
was evaluated using a lightweight, container-based, time-synchronized spine–leaf data
center deployed with AWS CloudFormation stack infrastructure. The assessment compared
five traditional DCN topologies with the proposed SGDA, considering performance under
stochastic gradient descent dependencies. Six DCN topologies—CTSM SL-VPC, DCell,
Mesh, Skywalk, Dahu, and Ficonn—were subjected to performance benchmarking, as
shown in Figure 7. To simulate real-world SGDCN traffic, Mininet was customized to
replay pcap packet capture files, modeling SL-VPC traffic variations with SDN-CFS.

Technologies 2025, 13, x FOR PEER REVIEW 23 of 34

7. Sink Node Actions:
• If the node is a Sink Node:

1. Filter for TCP encryption abnormalities.
2. Store the encrypted data from the message.

8. Final Decryption:
• Decrypt the encData:

decryptedData = Decrypt(encData)
9. Send to Master Station:

• Send the decryptedData to the Customer Smart Meter Master Stations.
10. End.

4.6. Performance Evaluation

4.6.1. DCN Description

Given the edge-to-cloud integration, the performance of SG data aggregation (SGDA)
was evaluated using a lightweight, container-based, time-synchronized spine–leaf data
center deployed with AWS CloudFormation stack infrastructure. The assessment com-
pared five traditional DCN topologies with the proposed SGDA, considering performance
under stochastic gradient descent dependencies. Six DCN topologies—CTSM SL-VPC,
DCell, Mesh, Skywalk, Dahu, and Ficonn—were subjected to performance benchmarking,
as shown in Figure 7. To simulate real-world SGDCN traffic, Mininet was customized to
replay pcap packet capture files, modeling SL-VPC traffic variations with SDN-CFS.

Performance analysis was conducted on Amazon EC2 HPC instances, running a ker-
nel-level SDN switch and application code execution. For AMI sensor and field device
integration, CISCO 7705 SAR-HC and SAR-We devices were used, enabling remote mon-
itoring, control, and SG data aggregation. The SDN controller dynamically recalculated
routes using reinforcement learning, optimizing data streams based on experiential pat-
terns. Key SGDA performance indicators included service delays, throughput, energy
data reception, cryptographic overhead, and service traffic availability.

Figure 7. Simulated SGDA implementation. The edge-to-cloud AMI experiments were conducted
on an EC2 HPC testbed featuring Intel Xeon Gold 6132 CPUs, NVIDIA GeForce GTX 1080Ti GPUs,
and 192GB of RAM. We used Python 3.7.4 and PyTorch 1.1.0 to implement the CTSM modules on
the EC2 HPC infrastructure. A Cisco Nexus 7700 core switch with 18 slots managed network con-
nectivity, supporting up to 768 × 1 and 10 Gigabit Ethernet ports, 384 x 40 Gigabit Ethernet ports,

Figure 7. Simulated SGDA implementation. The edge-to-cloud AMI experiments were conducted on
an EC2 HPC testbed featuring Intel Xeon Gold 6132 CPUs, NVIDIA GeForce GTX 1080Ti GPUs, and
192GB of RAM. We used Python 3.7.4 and PyTorch 1.1.0 to implement the CTSM modules on the EC2
HPC infrastructure. A Cisco Nexus 7700 core switch with 18 slots managed network connectivity, sup-
porting up to 768 × 1 and 10 Gigabit Ethernet ports, 384 × 40 Gigabit Ethernet ports, and 192 × 100
Gigabit Ethernet ports, which efficiently handled the SG workloads and automation processes.

Performance analysis was conducted on Amazon EC2 HPC instances, running a
kernel-level SDN switch and application code execution. For AMI sensor and field device
integration, CISCO 7705 SAR-HC and SAR-We devices were used, enabling remote monitor-
ing, control, and SG data aggregation. The SDN controller dynamically recalculated routes
using reinforcement learning, optimizing data streams based on experiential patterns. Key
SGDA performance indicators included service delays, throughput, energy data reception,
cryptographic overhead, and service traffic availability.

4.6.2. Evaluation Results

The CTSM SL-VPN architecture utilized the shortest path routing protocol with an
SDN controller, as shown in Figure 8. Our results indicate that the SGDA collects energy
data efficiently from the AMIs. The data transmission to the cloud data center network
is consistent at both peak and off-peak load periods, supporting analytics tasks like load
management, billing, and auditing. The observed data transmission process is highly
reliable, nearing 100%, due to robust mechanisms such as full-duplex synchronization and

Technologies 2025, 13, 105 24 of 33

beacon collision avoidance among AMI nodes, local concentrators, and the cloud OpenFlow
gateway. Load scheduling within the SGDA distributes load in varying percentages across
various network architectures. The CTSM SL-VPN architecture achieved the highest
reliability at 29.87%, followed by DCell at 19.48%, Mesh at 22.08%, Skywalk at 5.19%, Dahu
at 15.58%, and Ficonn at 7.8%. This indicates that the CTSM SL-VPN architecture performs
better than other DCN schemes in terms of reliable data stream reception and stability
at the cloud, especially during load shifts from peak to off-peak periods. This improved
reliability and stability are promising for effectively reducing utility bills and managing
peak loads.

Technologies 2025, 13, x FOR PEER REVIEW 24 of 34

and 192 × 100 Gigabit Ethernet ports, which efficiently handled the SG workloads and automation

processes.

4.6.2. Evaluation Results

The CTSM SL-VPN architecture utilized the shortest path routing protocol with an

SDN controller, as shown in Figure 8. Our results indicate that the SGDA collects energy

data efficiently from the AMIs. The data transmission to the cloud data center network is

consistent at both peak and off-peak load periods, supporting analytics tasks like load

management, billing, and auditing. The observed data transmission process is highly re-

liable, nearing 100%, due to robust mechanisms such as full-duplex synchronization and

beacon collision avoidance among AMI nodes, local concentrators, and the cloud Open-

Flow gateway. Load scheduling within the SGDA distributes load in varying percentages

across various network architectures. The CTSM SL-VPN architecture achieved the high-

est reliability at 29.87%, followed by DCell at 19.48%, Mesh at 22.08%, Skywalk at 5.19%,

Dahu at 15.58%, and Ficonn at 7.8%. This indicates that the CTSM SL-VPN architecture

performs better than other DCN schemes in terms of reliable data stream reception and

stability at the cloud, especially during load shifts from peak to off-peak periods. This

improved reliability and stability are promising for effectively reducing utility bills and

managing peak loads.

Figure 8. SGDA energy data received response.

Figure 9 shows the packetization service delays for energy data streams in the SGDA.

This measures the total time needed to transmit data from the AMI to the cloud. These

delays are crucial as they affect SG communication performance. Analysis using the plat-

form statistics engine revealed the following packetization service delays for different

SGDAs: CTSM SL-VPC had a delay of 13.11%, DCell 21.31%, Mesh 19.67%, Skywalk

18.03%, Dahu 16.39%, and Ficonn 11.49% during load scheduling on the SGDA. These

Figure 8. SGDA energy data received response.

Figure 9 shows the packetization service delays for energy data streams in the SGDA.
This measures the total time needed to transmit data from the AMI to the cloud. These
delays are crucial as they affect SG communication performance. Analysis using the
platform statistics engine revealed the following packetization service delays for different
SGDAs: CTSM SL-VPC had a delay of 13.11%, DCell 21.31%, Mesh 19.67%, Skywalk
18.03%, Dahu 16.39%, and Ficonn 11.49% during load scheduling on the SGDA. These
results indicate that the CTSM SL-VPC architecture exhibits lower packetization service
delays compared to other SGDA schemes, especially as energy demands transition from
peak to off-peak periods. This performance improvement is promising for reducing utility
bills and easing peak loads in the grid network.

Technologies 2025, 13, 105 25 of 33

Technologies 2025, 13, x FOR PEER REVIEW 25 of 34

results indicate that the CTSM SL-VPC architecture exhibits lower packetization service

delays compared to other SGDA schemes, especially as energy demands transition from

peak to off-peak periods. This performance improvement is promising for reducing utility

bills and easing peak loads in the grid network.

Figure 9. SGDA service delay response.

Figure 10 highlights the SGDA media access delays on DCN engine switching inter-

faces. It provides the time-frame between two successive resource allocations to likely re-

lated users during grid load management. With the daemon API, the Swarm orchestrator

can update services using service parameters. During load scheduling on the SGDA, it

was observed from the riverbed statistics engine that the CTSMs SL-VPN, DCell, Mesh,

Skywalk, Dahu, and Ficonn gave 10.99%, 27.47%, 24.91%, 18.32%, 14.65%, and 3.66%, re-

spectively. This implies that container isolation offers a reliable workload. Figure 8 indi-

cates that due to the stateless container engine operated by the PLC, the proposed CTSM

spine–leaf utilized optimum resources on the grid network as compared to other schemes

as load demands in peak periods were moved to off-peak periods. This will make the

objective of reducing administrative overhead feasible in the cloud.

Figure 9. SGDA service delay response.

Figure 10 highlights the SGDA media access delays on DCN engine switching inter-
faces. It provides the time-frame between two successive resource allocations to likely
related users during grid load management. With the daemon API, the Swarm orchestrator
can update services using service parameters. During load scheduling on the SGDA, it
was observed from the riverbed statistics engine that the CTSMs SL-VPN, DCell, Mesh,
Skywalk, Dahu, and Ficonn gave 10.99%, 27.47%, 24.91%, 18.32%, 14.65%, and 3.66%,
respectively. This implies that container isolation offers a reliable workload. Figure 8
indicates that due to the stateless container engine operated by the PLC, the proposed
CTSM spine–leaf utilized optimum resources on the grid network as compared to other
schemes as load demands in peak periods were moved to off-peak periods. This will make
the objective of reducing administrative overhead feasible in the cloud.

Figure 11 shows the SGDA service throughput response under the PLC scheme.
Regardless of SGDA DCN service limitations such as physical medium, assaults, computing
power, and traffic protocols, the highest possible throughput is always chosen. When using
SGDA in load scheduling mode, it was observed from the riverbed statistics engine that
the CTSMs SL-VPN, DCell, Mesh, Skywalk, Dahu, and Ficonn offered 27.27%, 21.21%,
19.70%, 16.67%, 9.15%, and 3.33%, respectively. This means that when load demands at
peak times were shifted to off-peak times, the proposed CTSM SL-VPN utilized optimum
resources at scale while predictively managing the grid network when compared to other
SGDA topologies.

Technologies 2025, 13, 105 26 of 33

Technologies 2025, 13, x FOR PEER REVIEW 26 of 34

Figure 10. SGDA media access delay response.

Figure 11 shows the SGDA service throughput response under the PLC scheme. Re-

gardless of SGDA DCN service limitations such as physical medium, assaults, computing

power, and traffic protocols, the highest possible throughput is always chosen. When us-

ing SGDA in load scheduling mode, it was observed from the riverbed statistics engine

that the CTSMs SL-VPN, DCell, Mesh, Skywalk, Dahu, and Ficonn offered 27.27%, 21.21%,

19.70%, 16.67%, 9.15%, and 3.33%, respectively. This means that when load demands at

peak times were shifted to off-peak times, the proposed CTSM SL-VPN utilized optimum

resources at scale while predictively managing the grid network when compared to other

SGDA topologies.

Figure 10. SGDA media access delay response.

Technologies 2025, 13, x FOR PEER REVIEW 27 of 34

Figure 11. SGDA service throughput response.

Figure 12 highlights the SGDA availability from a fault-failure injection mode per-

spective. Since the system is autonomous, at full-scale subscription, three major SG secu-

rity schemes were used to test for availability. In context, availability is the most important

security objective in SGDA service provisioning. Therefore, establishing that availability

in SGDA communications deals with various security types for network availability, a

secured fault injection scheme is needed. Owing to the importance of providing seamless

service from SGDA AMI power systems, protection against various attacks on the CTSM

SL-VPN algorithm was explored. The CTSM scheme continuously monitors the state of

the grid; for example, disruption, instability, etc. During load scheduling on the SG net-

work, it was observed from the riverbed statistics engine that the proposed CTSM, SGDA

IPv6 gateway, and CTSM SL-VPN access had 70.85%, 20.17%, and 8.98%, respectively.

This implies that as load demands in the peak periods were shifted to the off-peak periods,

the proposed CTSM provided optimum availability when compared to other SGDA

schemes.

Figure 11. SGDA service throughput response.

Technologies 2025, 13, 105 27 of 33

Figure 12 highlights the SGDA availability from a fault-failure injection mode perspec-
tive. Since the system is autonomous, at full-scale subscription, three major SG security
schemes were used to test for availability. In context, availability is the most important
security objective in SGDA service provisioning. Therefore, establishing that availability in
SGDA communications deals with various security types for network availability, a secured
fault injection scheme is needed. Owing to the importance of providing seamless service
from SGDA AMI power systems, protection against various attacks on the CTSM SL-VPN
algorithm was explored. The CTSM scheme continuously monitors the state of the grid;
for example, disruption, instability, etc. During load scheduling on the SG network, it was
observed from the riverbed statistics engine that the proposed CTSM, SGDA IPv6 gateway,
and CTSM SL-VPN access had 70.85%, 20.17%, and 8.98%, respectively. This implies that
as load demands in the peak periods were shifted to the off-peak periods, the proposed
CTSM provided optimum availability when compared to other SGDA schemes.

Technologies 2025, 13, x FOR PEER REVIEW 28 of 34

Figure 12. SGDA traffic availability response.

Figure 13 shows the SGDA encryption–decryption overhead subscription under the

influence of these security schemes, viz. proposed CTSM, SGDA IPv6 gateway, and

SGDA-VPC access. The proposed CTSM SL-VPN, SGDA IPv6 gateway, and SGDA-VPC

access had 28.13%, 37.5%, and 34.37%, respectively, during load scheduling on the SGDA

network, according to the riverbed statistics engine observation.

The implication is that as load demands in peak hours were transferred to off-peak

periods, the projected CTSM SL-VPN offered the least overhead when compared to alter-

native schemes. This makes the goal of protecting the grid from attack vectors and pay-

loads a lot more realistic.

Figure 12. SGDA traffic availability response.

Figure 13 shows the SGDA encryption–decryption overhead subscription under the
influence of these security schemes, viz. proposed CTSM, SGDA IPv6 gateway, and SGDA-
VPC access. The proposed CTSM SL-VPN, SGDA IPv6 gateway, and SGDA-VPC access
had 28.13%, 37.5%, and 34.37%, respectively, during load scheduling on the SGDA network,
according to the riverbed statistics engine observation.

The implication is that as load demands in peak hours were transferred to off-peak
periods, the projected CTSM SL-VPN offered the least overhead when compared to alterna-
tive schemes. This makes the goal of protecting the grid from attack vectors and payloads a
lot more realistic.

Technologies 2025, 13, 105 28 of 33

Technologies 2025, 13, x FOR PEER REVIEW 29 of 34

Figure 13. SGDA security overhead response.

Table 3 shows how load scheduling impacts SGDCN infrastructure. The sensitivity

analysis interpretation is discussed below:

1. Received Energy Data: The CTSM SL-VPN architecture exhibits the highest percent-

age of received energy data (29.87%), indicating better energy consumption and effi-

ciency compared to the other architectures. Sensitivity in context suggests that opti-

mizing energy data reception is crucial for system performance, especially in high-

demand SG systems.

2. Packetization Service Delays: The CTSM SL-VPN shows the lowest packetization de-

lay (13.11%), making it the most sensitive to minimizing delays in packetization.

Lower packetization delays result in a more responsive system, which is needed for

AMI edge data processing.

3. Load Balancer Access Delays: The Ficonn architecture has the lowest load balancer

access delay (3.66%), while the DCell architecture exhibits the highest (27.47%). This

indicates that architectures with lower access delays can better handle dynamic traffic

and high-volume requests, making them more sensitive to load balancing efficiency.

4. Service Throughput: CTSM SL-VPN leads with the highest service throughput

(27.27%), which is significant for ensuring the efficient delivery of high-bandwidth

services. Sensitivity in service throughput highlights the importance of network ar-

chitectures with a high capacity to maintain performance under heavy loads.

5. Traffic Availability: CTSM SL-VPN also demonstrates high traffic availability

(70.85%), which ensures stable network connections. Sensitivity in traffic availability

means that architectures supporting greater availability are more resilient to disrup-

tions, contributing to continuous edge-to-cloud service delivery.

6. Encryption–Decryption Overhead: SGDA IPv6 Gateway and SGDA-SL-VPC have

the highest encryption–decryption overheads (37.50% and 34.37%), indicating these

architectures are more sensitive to security-related processing costs. Minimizing

Figure 13. SGDA security overhead response.

Table 3 shows how load scheduling impacts SGDCN infrastructure. The sensitivity
analysis interpretation is discussed below:

1. Received Energy Data: The CTSM SL-VPN architecture exhibits the highest percentage
of received energy data (29.87%), indicating better energy consumption and efficiency
compared to the other architectures. Sensitivity in context suggests that optimizing
energy data reception is crucial for system performance, especially in high-demand
SG systems.

2. Packetization Service Delays: The CTSM SL-VPN shows the lowest packetization
delay (13.11%), making it the most sensitive to minimizing delays in packetization.
Lower packetization delays result in a more responsive system, which is needed for
AMI edge data processing.

3. Load Balancer Access Delays: The Ficonn architecture has the lowest load balancer
access delay (3.66%), while the DCell architecture exhibits the highest (27.47%). This
indicates that architectures with lower access delays can better handle dynamic traffic
and high-volume requests, making them more sensitive to load balancing efficiency.

4. Service Throughput: CTSM SL-VPN leads with the highest service throughput
(27.27%), which is significant for ensuring the efficient delivery of high-bandwidth
services. Sensitivity in service throughput highlights the importance of network
architectures with a high capacity to maintain performance under heavy loads.

5. Traffic Availability: CTSM SL-VPN also demonstrates high traffic availability (70.85%),
which ensures stable network connections. Sensitivity in traffic availability means
that architectures supporting greater availability are more resilient to disruptions,
contributing to continuous edge-to-cloud service delivery.

6. Encryption–Decryption Overhead: SGDA IPv6 Gateway and SGDA-SL-VPC have
the highest encryption–decryption overheads (37.50% and 34.37%), indicating these
architectures are more sensitive to security-related processing costs. Minimizing

Technologies 2025, 13, 105 29 of 33

encryption overhead is crucial for optimizing performance, especially in our edge-to-
cloud ecosystem (see Figure 2).

Table 3. Performance comparison of network architectures in SG systems.

Metrics
CTSM

Spine-Leaf
(%)

Dcell
(%)

Mesh
(%)

Skywalk
(%)

Dahu
(%)

Ficonn
(%)

SGDA IPv6
Gateway (%)

SGDA-
SL-VPC (%)

Received Energy Data
kilowatt-hours (kWh) 29.87 19.48 22.08 5.19 15.58 7.8 17.07 11.69

Packetization Service
Delays (µs) 13.11 21.31 19.67 18.03 16.39 11.49 15.75 14.35

Load Balancer Access
Delays (ms) 10.99 27.47 24.91 18.32 14.65 3.66 20.18 16.49

Service Throughput
(Mbps) 27.27 21.21 19.70 16.67 9.15 3.33 14.92 11.24

Traffic Availability (Mbps) 70.85 37.19 30.45 25.81 18.34 10.91 20.17 8.98

Encryption–Decryption
Overhead (Mbps) 28.13 33.44 30.93 26.19 22.91 12.78 37.50 34.37

The results show that the proposed CTSM SL-VPN architecture outperforms others
in several selected key metrics. From the sensitivity analysis, our proposal is particularly
effective in high-density SG environments due to its balance in energy efficiency and low
latency. Conversely, architectures like Ficonn are more sensitive to load balancing. We
argue that the proposed design shows higher sensitivity to encryption overhead, suggesting
areas for optimization in future design.

5. Conclusions
This paper presented a container-based time synchronization spine–leaf data center

network (DCN) for smart grid infrastructure, utilizing container stack technology. An
efficient container time synchronization model (CTSM) for optimizing service provisioning
in the SGDA was introduced. The design addresses key challenges in big data queuing
management, and automation concerns. Furthermore, an adaptable stochastic gradient de-
scent (SGD) computational model for the workload SL-VPC was created and experimented
and found to be adaptable across multiple tiers. This paper has used an SDN-driven SGD
approach to tackle issues inherent in both switch-centric and server-centric DCN designs for
SGDCNs. Through a comparative study of five different topologies, the proposed approach
was validated. The results demonstrate that the architecture proposed outperforms existing
designs such as DCell, Mesh, Skywalk, Dahu, and Ficonn. Our results showcase the effi-
ciency of the proposed design in the management of traffic workflows while maintaining
satisfactory quality of service (QoS) metrics from edge to cloud.

Author Contributions: K.C.O.: writing—review and editing, conceptualization, formal analysis,
validation, supervision, methodology, and funding acquisition. W.O.O.: writing—review and edit-
ing. O.M.L.: writing—review and editing, supervision. I.I.A.: writing—review and editing. K.A.:
writing—review and editing, supervision, funding acquisition. B.A.: writing—review and editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Federal Government of Nigeria through TETFUND
(Tertiary Education Trust Fund), project award TETF/ES/UNIV/IMO STATE/TSAS/2021, issued in
February 2022.

Institutional Review Board Statement: Not applicable.

Technologies 2025, 13, 105 30 of 33

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed in this study are included in this
manuscript, except the programming codes, which can be released upon reasonable request to the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

SGDA Smart Grid Distributed Architecture
DCN Data Center Network
SDN Software-Defined Network
SDN-CFS Software-Defined CloudFormation Stack
CTSM Container-based Time Synchronization Model
SL-VPC Spine–Leaf Virtual Private Cloud
MQM Multi-Queuing Model
LaScaDa Layered Scalable Data Center
OSPF Open Shortest Path First
ECMP Equal-Cost Multipath Routing
BGP Border Gateway Protocol
TRILL Transparent Interconnection of Lots of Links
SPB Shortest Path Bridging
IFT Implicit Function Theorem
AMI Advanced Metering Infrastructure
GENCOs Generation Companies
ITSF Implicit Transparent Failover Service
ALB Application Load Balancers
NLB Network Load Balancer
CTMC Continuous Time Markov Chain
QBD Quasi-Birth-and-Death Process
IPP Independent Power Plants
DISCOs Distribution Companies
ECMP Equal-Cost Multipath
VBB Volume Bulk Balancer
VBC Volume Billing Container
AWS Amazon Web Services
IaC Infrastructure as Code
ALB Application Load Balancers
DSM Demand-Side Management
CIU Customer Interface Unit
SRBNF Subscriber Radial Basis Neural Network Function
SGRBNF Stochastic Gradient Radial Basis Neural Function
SG-NNPC Stochastic Gradient Neural Network Process Controller
AMI-SGDA AMI Intelligent Stochastic Gradient Descent Algorithm

References
1. Zhao, L.; Li, Q.; Ding, G. An Intelligent Web-Based Energy Management System for Distributed Energy Resources Integration

and Optimization. J. Web Eng. 2024, 23, 165–195. [CrossRef]
2. Liu, S.; Chen, L.; Lai, J. Integrated and Accountable Data Sharing for Smart Grids with Fog and Dual-Blockchain Assistance. IEEE

Trans. Ind. Inform. 2024, 20, 4940–4952. [CrossRef]
3. Zhao, S.; Xu, S.; Han, S.; Ren, S.; Wang, Y.; Chen, Z.; Chen, X.; Lin, J.; Liu, W. PPMM-DA: Privacy-Preserving Multidimensional

and Multisubset Data Aggregation with Differential Privacy for Fog-Based Smart Grids. IEEE Internet Things J. 2024, 11, 6096–6110.
[CrossRef]

https://doi.org/10.13052/jwe1540-9589.2316
https://doi.org/10.1109/TII.2023.3328831
https://doi.org/10.1109/JIOT.2023.3309132

Technologies 2025, 13, 105 31 of 33

4. Zhang, Z.; Ma, J.; Mao, S.; Liang, P.; Liu, Q. A Low-Overhead and Real-Time Service Recovery Mechanism for Data Center
Networks with SDN. In Proceedings of the 2024 International Conference on Networking and Network Applications (NaNA),
Yinchuan, China, 9–12 August 2024; pp. 184–189.

5. Jie, X.; Han, J.; Chen, G.; Wang, H.; Hong, P.; Xue, K. CACC: A Congestion-Aware Control Mechanism to Reduce INT Overhead
and PFC Pause Delay. IEEE Trans. Netw. Serv. Manag. 2024, 21, 6382–6397. [CrossRef]

6. Kathiravelu, P.; Zaiman, Z.; Gichoya, J.; Veiga, L.; Banerjee, I. Towards an internet-scale overlay network for latency-aware
decentralized workflows at the edge. Comput. Netw. 2022, 203, 108654, ISSN 1389-1286. [CrossRef] [PubMed]

7. Jiang, W.; Ren, F.; Wu, Y.; Lin, C.; Stojmenovic, I. Analysis of Backward Congestion Notification with Delay for Enhanced Ethernet
Networks. IEEE Trans. Comput. 2014, 63, 2674–2684. [CrossRef]

8. Welzl, M.; Islam, S.; von Stephanides, M. Real-Time TCP Packet Loss Prediction Using Machine Learning. IEEE Access 2024, 12,
159622–159634. [CrossRef]

9. Meng, Q.; Zhang, Y.; Zhang, S.; Wang, Z.; Zhang, T.; Luo, H.; Ren, F. Switch-Assistant Loss Recovery for RDMA Transport Control.
IEEE/ACM Trans. Netw. 2024, 32, 2069–2084. [CrossRef]

10. Chouikhi, S.; Esseghir, M.; Meerghem-Boulahia, L. Energy Consumption Scheduling as a Fog Computing Service in Smart Grid.
IEEE Trans. Serv. Comput. 2023, 16, 1144–1157. [CrossRef]

11. Bi, J.; Zhang, K.; Yuan, H.; Zhang, J. Energy-Efficient Computation Offloading for Static and Dynamic Applications in Hybrid
Mobile Edge Cloud System. IEEE Trans. Sustain. Comput. 2023, 8, 232–244. [CrossRef]

12. Vahdat, A.; Al-Fares, M.; Farrington, N.; Mysore, R.N.; Porter, G.; Radhakrishnan, S. Scale-Out Networking in the Data Center.
IEEE Micro 2010, 30, 29–41. [CrossRef]

13. Radhakrishnan, S.; Tewari, M.; Kapoor, R.; Porter, G.; Vahdat, A. Dahu: Commodity switches for direct connect data center
networks. In Proceedings of the Architectures for Networking and Communications Systems, San Jose, CA, USA, 21–22 October
2013; pp. 59–70. [CrossRef]

14. Alqahtani, J.; Hamdaoui, B. Rethinking Fat-Tree Topology Design for Cloud Data Centers. In Proceedings of the 2018 IEEE Global
Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [CrossRef]

15. Misra, S.; Mondal, A.; Khajjayam, S. Dynamic Big-Data Broadcast in Fat-Tree Data Center Networks with Mobile IoT Devices.
IEEE Syst. J. 2019, 13, 2898–2905. [CrossRef]

16. Jiang, W.; Qi, J.; Yu, J.X.; Huang, J.; Zhang, R. HyperX: A Scalable Hypergraph Framework. IEEE Trans. Knowl. Data Eng. 2019, 31,
909–922. [CrossRef]

17. Al-Fares, M.; Loukissas, A.; Vahdat, A. A Scalable, Commodity Data Center Network Architecture. ACM SIGCOMM Comput.
Commun. Rev. 2008, 38, 63–74. [CrossRef]

18. Greenberg, A.; Hamilton, J.R.; Jain, N.; Kandula, S.; Kim, C.; Lahiri, P.; Maltz, D.A.; Patel, P.; Sengupta, S. VL2: A Scalable and
Flexible Data Center Network. In Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication, Barcelona,
Spain, 16–21 August 2009.

19. Xia, Y.; Hamdi, M.; Chao, H.J. A Practical Large-Capacity Three-Stage Buffered Clos-Network Switch Architecture. IEEE Trans.
Parallel Distrib. Syst. 2016, 27, 317–328. [CrossRef]

20. Singla, A.; Hong, C.-Y.; Popa, L.; Godfrey, P.B. Jellyfish: Networking Data Centers Randomly. arXiv 2012, arXiv:1110.1687v3.
21. Ye, X.; Mejia, P.; Yin, Y.; Proietti, R.; Yoo, S.J.B.; Akella, V. DOS—A scalable optical switch for datacenters. In Proceedings of the

2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), La Jolla, CA, USA, 25–26
October 2010; pp. 1–12.

22. Guo, Z.; Yang, Y. Collaborative Network Configuration in Hybrid Electrical/Optical Data Center Networks. In Proceedings of
the IEEE 28th International Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, 19–23 May 2014; pp. 852–861.
[CrossRef]

23. Guo, D.; Xie, J.; Zhou, X.; Zhu, X.; Wei, W.; Luo, X. Exploiting Efficient and Scalable Shuffle Transfers in Future Data Center
Networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 997–1009. [CrossRef]

24. Li, X.; Lung, C.-H.; Majumdar, S. Energy aware green spine switch management for Spine-Leaf datacenter networks. In
Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 116–121.
[CrossRef]

25. Wang, G.; Zhang, Y.; Yu, J.; Ma, M.; Hu, C.; Fan, J.; Zhang, L. HS-DCell: A Highly Scalable DCell-Based Server-Centric Topology
for Data Center Networks. IEEE/ACM Trans. Netw. 2024, 32, 3808–3823. [CrossRef]

26. Udeze, C.C.; Okafor, K.C.; Okezie, C.C.; Okeke, I.O.; Ezekwe, C.G. Performance Analysis of R-DCN Architecture for Next
Generation Web Application Integration. In Proceedings of the 2014 IEEE 6th International Conference on Adaptive Science &
Technology (ICAST), Ota, Nigeria, 29–31 October 2014; pp. 1–12.

27. Lv, M.; Fan, J.; Fan, W.; Jia, X. A High-Performantal and Server-Centric Based Data Center Network. IEEE Trans. Netw. Sci. Eng.
2023, 10, 592–605. [CrossRef]

https://doi.org/10.1109/TNSM.2024.3449699
https://doi.org/10.1016/j.comnet.2021.108654
https://www.ncbi.nlm.nih.gov/pubmed/35082552
https://doi.org/10.1109/TC.2013.157
https://doi.org/10.1109/ACCESS.2024.3488511
https://doi.org/10.1109/TNET.2023.3336661
https://doi.org/10.1109/TSC.2022.3174698
https://doi.org/10.1109/TSUSC.2022.3216461
https://doi.org/10.1109/MM.2010.72
https://doi.org/10.1109/ANCS.2013.6665176
https://doi.org/10.1109/GLOCOM.2018.8647774
https://doi.org/10.1109/JSYST.2019.2899754
https://doi.org/10.1109/TKDE.2018.2848257
https://doi.org/10.1145/1402946.1402967
https://doi.org/10.1109/TPDS.2015.2408614
https://doi.org/10.1109/IPDPS.2014.92
https://doi.org/10.1109/TPDS.2014.2316829
https://doi.org/10.1109/ICC.2015.7248308
https://doi.org/10.1109/TNET.2024.3398628
https://doi.org/10.1109/TNSE.2022.3205706

Technologies 2025, 13, 105 32 of 33

28. Guo, C.; Lu, G.; Li, D.; Wu, H.; Zhang, X.; Shi, Y.; Tian, C.; Zhang, Y.; Lu, S. BCube: A high performance, server-centric
network architecture for modular data centers. In Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication,
Barcelona, Spain, 16–21 August 2009; pp. 63–74.

29. Lu, Y.; Gu, H.; Yu, X.; Li, P. X-NEST: A Scalable, Flexible, and High-Performance Network Architecture for Distributed Machine
Learning. J. Light. Technol. 2021, 39, 4247–4254. [CrossRef]

30. Taubenblatt, M.; Maniotis, P.; Tantawi, A. Optics enabled networks and architectures for data center cost and power efficiency. J.
Opt. Commun. Netw. 2022, 14, A41–A49. [CrossRef]

31. Emara, T.Z.; Huang, J.Z. Distributed Data Strategies to Support Large-Scale Data Analysis Across Geo-Distributed Data Centers.
IEEE Access 2020, 8, 178526–178538. [CrossRef]

32. Xu, C.; Wang, K.; Li, P.; Xia, R.; Guo, S.; Guo, M. Renewable Energy-Aware Big Data Analytics in Geo-Distributed Data Centers
with Reinforcement Learning. IEEE Trans. Netw. Sci. Eng. 2020, 7, 205–215. [CrossRef]

33. Das, S.; Sahni, S. Two-Aggregator Topology Optimization Using Single Paths in Data Center Networks. IEEE Trans. Cloud Comput.
2021, 9, 807–820. [CrossRef]

34. Marahatta, A.; Xin, Q.; Chi, C.; Zhang, F.; Liu, Z. PEFS: AI-Driven Prediction Based Energy-Aware Fault-Tolerant Scheduling
Scheme for Cloud Data Center. IEEE Trans. Sustain. Comput. 2020, 6, 655–666. [CrossRef]

35. Lo, H.-Y.; Liao, W. CALM: Survivable Virtual Data Center Allocation in Cloud Networks. IEEE Trans. Serv. Comput. 2021, 14,
47–57. [CrossRef]

36. Wang, X.; Erickson, A.; Fan, J.; Jia, X. Hamiltonian Properties of DCell Networks. Comput. J. 2015, 58, 2944–2955. [CrossRef]
37. Fujiwara, I.; Koibuchi, M.; Matsutani, H.; Casanova, H. Skywalk: A Topology for HPC Networks with Low-Delay Switches. In

Proceedings of the IEEE 28th International Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, 19–23 May 2014;
pp. 263–272. [CrossRef]

38. Wang, S.; Li, D.; Cheng, Y.; Geng, J.; Wang, Y.; Wang, S.; Xia, S.; Wu, J. A Scalable, High-Performance, and Fault-Tolerant Network
Architecture for Distributed Machine Learning. IEEE/ACM Trans. Netw. 2020, 28, 1752–1764. [CrossRef]

39. Wang, G.; Lin, C.-K.; Fan, J.; Cheng, B.; Jia, X. A Novel Low-Cost Interconnection Architecture Based on the Generalized
Hypercube. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 647–662. [CrossRef]

40. Li, Z.; Yang, Y. RRect: A Novel Server-Centric Data Center Network with High Power Efficiency and Availability. IEEE Trans.
Cloud Comput. 2020, 8, 914–927. [CrossRef]

41. Zhang, Z.; Deng, Y.; Min, G.; Xie, J.; Yang, L.T.; Zhou, Y. HSDC: A Highly Scalable Data Center Network Architecture for Greater
Incremental Scalability. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 1105–1119. [CrossRef]

42. Chen, K.; Wen, X.; Ma, X.; Chen, Y.; Xia, Y.; Hu, C.; Dong, Q.; Liu, Y. Toward A Scalable, Fault-Tolerant, High-Performance Optical
Data Center Architecture. IEEE/ACM Trans. Netw. 2017, 25, 2281–2294. [CrossRef]

43. Li, Z.; Guo, Z.; Yang, Y. BCCC: An Expandable Network for Data Centers. IEEE/ACM Trans. Netw. 2016, 24, 3740–3755. [CrossRef]
44. Li, Z.; Yang, Y. GBC3: A Versatile Cube-Based Server-Centric Network for Data Centers. IEEE Trans. Parallel Distrib. Syst. 2016, 27,

2895–2910. [CrossRef]
45. Chkirbene, Z.; Hadjidj, R.; Foufou, S.; Hamila, R. LaScaDa: A Novel Scalable Topology for Data Center Network. IEEE/ACM

Trans. Netw. 2020, 28, 2051–2064. [CrossRef]
46. Jia, Z.; Sun, Y.; Liu, Q.; Dai, S.; Liu, C. cRetor: An SDN-Based Routing Scheme for Data Centers with Regular Topologies. IEEE

Access 2020, 8, 116866–116880. [CrossRef]
47. Zhang, C.; Wang, X.; Dong, A.; Zhao, Y.; Huang, M.; Li, F. Dynamic network service deployment across multiple SDN domains.

Trans. Emerg. Telecommun. Technol. 2020, 31, e3709. [CrossRef]
48. Montero, R.; Agraz, F.; Pagès, A.; Perelló, J.; Spadaro, S. SDN-based parallel link discovery in optical transport networks. Trans.

Emerg. Telecommun. Technol. 2019, 30, e3512. [CrossRef]
49. Mahmood, A.; Casetti, C.; Chiasserini, C.F.; Giaccone, P.; Härri, J. Efficient caching through stateful SDN in named data

networking. Trans. Emerg. Telecommun. Technol. 2018, 29, e3271. [CrossRef]
50. He, Q.; Wang, X.; Huang, M. OpenFlow-based low-overhead and high-accuracy SDN measurement framework. Trans. Emerg.

Telecommun. Technol. 2018, 29, e3263. [CrossRef]
51. Singh, A.K.; Maurya, S.; Kumar, N.; Srivastava, S. Heuristic approaches for the reliable SDN controller placement problem. Trans.

Emerg. Telecommun. Technol. 2020, 31, e3761. [CrossRef]
52. Bonnabel, S. Stochastic Gradient Descent on Riemannian Manifolds. IEEE Trans. Autom. Control. 2013, 58, 2217–2229. [CrossRef]
53. Costilla-Enriquez, N.; Weng, Y.; Zhang, B. Combining Newton-Raphson and Stochastic Gradient Descent for Power Flow Analysis.

IEEE Trans. Power Syst. 2021, 36, 514–517. [CrossRef]
54. Liu, Y.; Huangfu, W.; Zhang, H.; Long, K. An Efficient Stochastic Gradient Descent Algorithm to Maximize the Coverage of

Cellular Networks. IEEE Trans. Wirel. Commun. 2019, 18, 3424–3436. [CrossRef]
55. Lei, Y.; Hu, T.; Li, G.; Tang, K. Stochastic Gradient Descent for Nonconvex Learning Without Bounded Gradient Assumptions.

IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4394–4400. [CrossRef]

https://doi.org/10.1109/JLT.2021.3073277
https://doi.org/10.1364/JOCN.440205
https://doi.org/10.1109/ACCESS.2020.3027675
https://doi.org/10.1109/TNSE.2018.2813333
https://doi.org/10.1109/TCC.2018.2885053
https://doi.org/10.1109/TSUSC.2020.3015559
https://doi.org/10.1109/TSC.2017.2777979
https://doi.org/10.1093/comjnl/bxv019
https://doi.org/10.1109/IPDPS.2014.37
https://doi.org/10.1109/TNET.2020.2999377
https://doi.org/10.1109/TPDS.2019.2941207
https://doi.org/10.1109/TCC.2018.2816650
https://doi.org/10.1109/TPDS.2018.2874659
https://doi.org/10.1109/TNET.2017.2688376
https://doi.org/10.1109/TNET.2016.2547438
https://doi.org/10.1109/TPDS.2015.2511725
https://doi.org/10.1109/TNET.2020.3008512
https://doi.org/10.1109/ACCESS.2020.3004609
https://doi.org/10.1002/ett.3709
https://doi.org/10.1002/ett.3512
https://doi.org/10.1002/ett.3271
https://doi.org/10.1002/ett.3263
https://doi.org/10.1002/ett.3761
https://doi.org/10.1109/TAC.2013.2254619
https://doi.org/10.1109/TPWRS.2020.3029449
https://doi.org/10.1109/TWC.2019.2914040
https://doi.org/10.1109/TNNLS.2019.2952219

Technologies 2025, 13, 105 33 of 33

56. Pu, S.; Olshevsky, A.; Paschalidis, I.C. A Sharp Estimate on the Transient Time of Distributed Stochastic Gradient Descent. IEEE
Trans. Autom. Control 2021, 67, 5900–5915. [CrossRef]

57. Peng, X.; Li, L.; Wang, F.-Y. Accelerating Minibatch Stochastic Gradient Descent Using Typicality Sampling. IEEE Trans. Neural
Netw. Learn. Syst. 2019, 31, 4649–4659. [CrossRef]

58. Luo, X.; Qin, W.; Dong, A.; Sedraoui, K.; Zhou, M. Efficient and High-Quality Recommendations via Momentum-Incorporated
Parallel Stochastic Gradient Descent-Based Learning. IEEE/CAA J. Autom. Sin. 2021, 8, 402–411. [CrossRef]

59. Lin, L.; Cao, J.; Lam, J.; Rutkowski, L.; Dimirovski, G.M.; Zhu, S. A Bisimulation-Based Foundation for Scale Reductions of
Continuous-Time Markov Chains. IEEE Trans. Autom. Control 2024, 69, 5743–5758. [CrossRef]

60. Perez, J.F.; Van Houdt, B. Exploiting Restricted Transitions in Quasi-Birth-and-Death Processes. In Proceedings of the IEEE 2009
Sixth International Conference on the Quantitative Evaluation of Systems, Budapest, Hungary, 13–16 September 2009; pp. 123–132.
[CrossRef]

61. Maurya, V.N. Mathematical Modelling and Steady State Performance Analysis of a Markovian Queue with Heterogeneous
Servers and Working Vacation. Am. J. Theor. Appl. Stat. 2015, 4, 1–10. Available online: https://sciencepublishinggroup.com/
article/10.11648/j.ajtas.s.2015040201.11 (accessed on 16 February 2025).

62. Okafor, K.C.; Anoh, K.; Chinebu, T.I.; Adebisi, B.; Chukwudebe, G.A. Mitigating COVID-19 Spread in Closed Populations Using
Networked Robots and Internet of Things. IEEE Internet Things J. 2024, 11, 39424–39434. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TAC.2021.3126253
https://doi.org/10.1109/TNNLS.2019.2957003
https://doi.org/10.1109/JAS.2020.1003396
https://doi.org/10.1109/TAC.2024.3354212
https://doi.org/10.1109/QEST.2009.18
https://sciencepublishinggroup.com/article/10.11648/j.ajtas.s.2015040201.11
https://sciencepublishinggroup.com/article/10.11648/j.ajtas.s.2015040201.11
https://doi.org/10.1109/JIOT.2024.3431874

	Introduction
	Relevant Literature Review
	Topological Models
	Research Gaps in SG DCNs

	System Model
	Analytical Framework-Scalable CTSM-SGDCN
	Problem Definition and Optimization Formulation
	Implicit Function Theorem for Load Balancing

	Mathematical Model of Traffic and Stability
	CTSM Traffic Stability Model
	CTSM Auto-Scaling and Traffic Optimization
	CTSM Multi-Queue System

	SGDA Ecosystem
	System Components
	Edge Layer
	Fog Layer
	Consolidation Domain (DC)
	Mininet CloudFormation IaC
	Security Group Firewalling

	SGDA AMI Hardware Architecture and System Components
	Hardware Implementation
	Neural Edge Network Design
	Network Architecture
	Preprocessing and Learning Algorithm
	Experimental Setup and Performance Evaluation
	Data Aggregation via AMI Local Concentrator

	Computational Complexity Analysis
	Performance Evaluation
	DCN Description
	Evaluation Results

	Conclusions
	References

