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Abstract 

The performance of neural network is largely dependent on their capability to extract very discriminant features 

supporting the characterization of abnormalities in the medical image. Several benchmark architectures have been 

proposed and the use of transfer learning has further made these architectures return good performances. Study has 

shown that the use of optimization algorithms for selection of relevant features has improved classifiers. However 

continuous optimization algorithms have mostly been used though it allows variables to take value within a range of 

values. The advantage of binary optimization algorithms is that it allows variables to be assigned only two states, and 

this have been sparsely applied to medical image feature optimization. This study therefore proposes hybrid binary 

optimization algorithms to efficiently identify optimal features subset in medical image feature sets. The binary dwarf 

mongoose optimizer (BDMO) and the particle swarm optimizer (PSO) were hybridized with the binary Ebola 

optimization search algorithm (BEOSA) on new nested transfer functions. Medical images passed through 

convolutional neural networks (CNN) returns extracted features into a continuous space which are piped through these 

new hybrid binary optimizers. Features in continuous space a mapped into binary space for optimization, and then 

mapped back into the continuous space for classification. Experimentation was conducted on medical image samples 

using the Curated Breast Imaging Subset of Digital Database for Screening Mammography (DDSM+CBIS). Results 

obtained from the evaluation of the hybrid binary optimization methods showed that they yielded outstanding 

classification accuracy, fitness, and cost function values of 0.965, 0.021 and 0.943. To investigate the statistical 

significance of the hybrid binary methods, the analysis of variance (ANOVA) test was conducted based on the two-

factor analysis on the classification accuracy, fitness, and cost metrics. Furthermore, results returned from application 

of the binary hybrid methods medical image analysis showed classification accuracy of 0.8286, precision of 0.97, 

recall of 0.83, and F1-score of 0.99, AUC of 0.8291. Findings from the study showed that contrary to the popular 

approach of using continuous metaheuristic algorithms for feature selection problem, the binary metaheuristic 

algorithms are well suitable for handling the challenge. Complete source code can be accessed from: 

https://github.com/NathanielOy/hybridBinaryAlgorithm4FeatureSelection 
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1. Introduction 
In recent times, medical imaging has continuously played a significant role because it has been applied to different 

clinical purposes. The medical imaging procedures include computed tomography, ultrasound, magnetic resonance 

imaging, X-ray, and positron emission tomography. These imaging helps to make evaluate or diagnose certain organs. 

For instance, mammography is useful for breast cancer diagnosis, colonoscopy for bowel entrails checking, and 

magnetic resonance imaging (MRI) for almost every internal structure in the human body. These helps to mirror 

variations because of medical situations from the structural, functional, or metabolic levels of the organs [1]. 

Computer-aided approaches for supporting the processing of these imaging have demonstrated impressive 

performance. Research development in the use of neural network models is top on this list of computational solutions. 

These have significantly contributed to the improvement of medical image analysis in terms of diagnosis, treatment 

https://github.com/NathanielOy/hybridBinaryAlgorithm4FeatureSelection


planning, or characterization of abnormalities [2]. Typical examples include the CNNs, which have been employed 

severally in the aspect of analysis of medical images datasets [3]. This use of CNN have addressed the limitations of 

other feature maps approaches [4], so that benchmark CNN architectures (such as VGGNet, GoogleNet and ResNet) 

have now been trained on different medical image modalities (X-Ray and CT-Scan) [5] and are available for 

knowledge distillation and transfer learning. However, not without pitfalls such as its effectiveness in handling the 

issue of noise, the volume and complex natured of data input required [6]. To address some of these drawbacks, quite 

a few neural network architectures have been suggested and experimented with, even the reuse of pre-trained models 

otherwise known as transfer learning. Similarly, transformer neural network equally assists in diagnosis of disease 

and other clinical objectives [7] and have been successful in image classification and segmentation tasks [8]. In some 

studies, researchers developed autonomous learning strategies to carefully analyze medical images [9]. However, these 

are not still without human intervention owing to the complex nature of medical data [10]. More so, because of 

inadequate availability of annotated data, training segmentation models for medical images have become difficult 

[11]. Regardless of all these techniques and methodologies, accuracy of expected results is always reduced attention 

is not given to feature optimization strategy. The focus of the application optimization strategy is diverse. This might 

include neural network parameters, and even the image data itself. Optimization strategies help to eliminate 

bottlenecks which clamp down on classifier. The difficulty of identifying even subtle abnormalities in digital 

mammography is challenging due to their complex nature and high dimensionality. As a result of this, efforts are 

consistently aimed at improving analysis of digital mammography images for characterization of abnormalities 

possibly for diagnosis of breast cancer. 

The main goal of most deep learning models applied to medical image analysis is to increase classification accuracy, 

reduce false positive rates and false negatives rates. Recent efforts have extended this goal to localizing the 

abnormalities and as well staging the disease. In this instance, the classification of breast imaging into benign, 

malignant, or normal, largely depends on the existence of abnormalities such as architectural distortions, asymmetries, 

masses, and micro calcifications [12]. Over time, the use of optimization algorithms has been focused on continuous 

metaheuristic algorithms with little or no research consideration to ascertain the viability of binary optimization 

algorithms to addressing this challenge in medical image analysis. Although several works [13], [14] have investigated 

the use of binary optimization algorithms to the task of feature selection in text-based datasets, we found no attempt 

at applying this to medical image samples. Advances in the use of the hybrid binary optimizer algorithm on text-based 

datasets has evolved also as the future [15]. This position is affirmed by [16] which stated that the fundamental deficit 

of the single binary optimization algorithm would limit the optimal performance of coherent feature subset thereby 

leads to distortion of classification accuracy. Similarly, [17] reaffirmed that the basic inherent deficit of single binary 

optimizer can potentially affects the best optimal search solution.  Therefore, it is important to note that the binary 

optimization algorithm, and the its corresponding hybrid variants have proven useful for better classification accuracy. 

This notwithstanding, there is little in literature to demonstrate any attempt for the adaptation of binary or hybrid 

metaheuristic optimizers for medical image feature selection for improving classification accuracy with CNNs. 

Metaheuristic algorithms work by normally depending on several instances in a population such as agents  in particles 

for particle swarm optimization (PSO), chromosomes in genetic algorithm (GA), individuals in Ebola optimization 

search algorithm (EOSA) [18], and red deers for red deers algorithm (RDA), which heavily engage on searching for 

near-global or global optimum solution [19]. Different variants of hybridized or adaptive metaheuristic have been 

equally proposed [20]. Notwithstanding, the binary optimizers which leverages a binary solution space has the 

potential to optimize the weights and structure of netural network models, and as well find descriminant features [21].     

The challenge of finding the most suitable and optimal feature subsets useful to help neural classifiers achieve optimal 

accruacy have motivated the use of continouse metaheuristic algorithms for reduction of search space with neural 

networks. For instance, the works of [22] demonstrates the possibility of using continuous optimization algorithm 

namely Q-Learning Embedded Sine Cosine Algorithm (QLESCA) for extraction of optimal feature. In a similar 

application of the COVID-19 samples, [23] investigated the role of Manta Ray Foraging based Golden Ratio Optimizer 

(MRFGRO) a continuous metaheuristic algorithm for feature selection. To emphasize the wide application of 

continuous optimization algorithms to feature selection in medical imaging, [24] and [25] have reported the impressive 

performance of particle swarm optimization (PSO), cuckoo search optimization (CSO), the firefly algorithm (FFA), 

the bat algorithm (BA), flower pollination optimization (FPO), whale optimization algorithm (WOA), marine predator 

algorithm, atom search optimization algorithm (ASOA), Harris hawks optimization algorithm (HHOA), butterfly 



optimization algorithm (BOA), and grey wolf optimization (GWO). Also, [27] have demonstrated that an immunity 

based EOSA continuous metaheuristic algorithm can aid in the finding of the best feature subsets of digital 

mammography. Still on image feature selection, the Fitness-based Memory updated-Crow Search Algorithm 

(FMCSA) have been used with CNN in [28]. In [29], authors combined the Modified Cosine Similarity (MCS) 

algorithm with CNN for a Content-Based Medical Image Retrieval (CBMIR) for feature selection. On the other hand, 

[30] have shown that even the difficult challenge of medical image segmentation can be improved using Kepler 

optimization algorithm (KOA) and neural network. These works can be extended to even recent continuous 

optimization algorithms such Coati optimization algorithm (COA) and susceptible-infected-removed optimizer 

(SIRO) [26]. The use of continuous metaheuristic algorithm has proven useful in feature selection and in formulation 

optimal combination of hyper-parameter. Furthermore, this is also useful for optimizing weights, number of layers, 

number of neurons, multimodal image fusion [31] [32] [33] [34] [35] [36], image enhancement [37], and learning rate 

[38]. Reformulation of the optimizer in the binary metaheuristic algorithm nature can effectively support the task of 

feature selection for enhanced performance leading to high classification rate [24]. This reformulation of the 

continuous problem space into a binary search space for medical image feature optimization remains unaddressed.  

What then is the best approach to formulate the problem of medical image feature selection from continouse space to 

binary space for improved classfication accuracy? To address this research gap, this study is aimed at adapting a new 

hybrid binary metaheuristic algortihm namely the EOSA to reforumulate the problem defintion for feature selection 

from the continouse search space to bianry search space. Continuous optimization algorithms have mostly been used 

though it allows variables to take value within a range of values. The advantage of binary optimization algorithms is 

that it allows variables to be assigned only two states, and this have been sparsely applied to medical image feature 

optimization. This study therefore proposes hybrid binary optimization algorithms to efficiently identify optimal 

medical features subset from CNN detected features. The methodology is focused on the removal of irrelevant features 

subsets which have been reported to potentially impede the accuracy of the learning model and prevent information 

loss as well [14]. To achieve this, a new nested transform function is defined to transform the search space of the 

feature set into a binary search space for flagging candidate features that requre selection. Secondly, a hybrid of three 

binary optimzers were proposed with the binary Ebola optimization search algorithm (BEOSA) being the base method 

of binary dwarf mongoose optimizer (BDMO), and the binary particle swarm optimizer (BPSO). These resulted in 

two new binary hybrid methods namely HBEOSA-DMO-NT and HBEOSA-PSO-NT which used the new transform 

function for optimizing a binary search space. Moreover, binary optimizer using the traditional transform functions 

were also proposed in the study and named HBEOSA-DMO and HBEOSA-PSO. Thirdly, a novel technique is 

proposed which sits between the fully connected layer of the neural network and the hybrid binary optimizers to 

transform the feature set into a binary search space with no loss of real-life representation of the medical image. 

Experiments are applied to check the potential and limitation of the method proposed [39].  

The following highlights the contribution of this study: 

a. Designed a novel adaptation of the medical image feature representation in continuous space to a binary 

search space for the hybrid binary optimization strategies. 

b. Proposed two hybrid binary optimization algorithms namely HBEOSA-DMO and HBEOSA-PSO. 

c. Investigated the influence of the new nested function on the two proposed hybrid methods so that four 

variants were derived namely HBEOSA-DMO HBEOSA-DMO-NT HBEOSA-PSO and HBEOSA-PSO-

NT. 

d. Comparatively investigated the capability of the four binary optimizers with other recent binary methods. 

e. Experimentally studied the impact of the new hybrid binary optimizers on improving classification accuracy 

of applying CNN to digital mammography. 

         

The remainder of this paper is organized as follows. Section 2 accounted for literature related of both continuous and 

binary optimization algorithms specifically. Section 3 presents the proposed methodology, which includes the novel 

mathematical model and algorithmic representation, the hybrid binary optimization algorithm, and the mapping 

mechanism from continuous to binary search space. The discussion for the experimentation setup and datasets was 

accounted for in Section 4. While section 5 presents the extensive results and discussion, Section 6 highlights the 

summary and conclusion of the work.   



2. Related Works 

It has been established that high dimensionality datasets potentially affect the accuracy of the learning algorithms. To 

proffer solution to this shortcoming, feature selection approaches have been identified as promising. To this end, [40] 

proposed a wrapper technique premised on the iterative enhancement capacity of the weighted superposition attraction 

(WSA) algorithm. It was reported that the WSA algorithm claimed superiority over seven other famous approximate 

algorithms; therefore, concluded to be efficient FS approach. However, the authors concluded that the proposed 

algorithm could not efficiently handle the problem high dimensional data hence requires improvement.    

Furthermore, the research of [15] proposed a new binary coronavirus disease optimization algorithm to tackle the 

challenge of feature selection in a high dimensional data. The proposed FS algorithm was validated on 26 benchmark 

datasets; and the results obtained were compared with nine wrapper-based methods. From the experiment, the 

proposed algorithm shows superiority over the recent nine FS methods. The proposed algorithm used k-nearest 

neighbor (KNN) classifier although the authors suggested that to further proof the reliability of the algorithm; other 

classifier(s) is/are encouraged. Moreover, as part of their measure to further improve on the algorithm, they suggested 

hybridization with other optimizers such as simulated annealing algorithm. Therefore, most literature established that 

hybridized multi staged binary wrapper-based FS strategy could be a robust pathway to deal with the problem of FS 

especially among high dimensionality datasets in future. Generally, metaheuristic algorithms (MA) have demonstrated 

capacity to solve the problem of FS. However, based on the survey carried out by [41]swarm intelligent based MA 

have consistently received the most substantial attentions by researchers from 2000 to 2022 at the expense of others. 

In fact, the survey work of  [42]  unequivocally suggested that interested researchers in this field could advance 

research to develop new or improve metaheuristic algorithm for evolution and human inspired based algorithms. Thus, 

the need to advance work on binary FS but using one of the human inspired algorithms that is adaptive Ebola 

optimization search algorithm. In as much as the existing optimization algorithms have achieved some positive results 

in high dimensional data space, there is always room for improvement to obtain the best optimal solution within the 

given search space. In view of this development, the work of [43] proposed an enhancement to a physics-based 

optimization method called Archimedes optimization algorithm by adding a novel variable depends on the step 

distance of each individual population. The variable is for the upper and lower limit of a given search space.  

The research of [44] employed a two-stage hybridized feature selection algorithm to detect in advance the associated 

defects of software module. The first stage of the FS was complementing the unique attributes of whale optimization 

algorithm with annealing simulated algorithm. A reduction in features was achieved however, there are overlapping 

features among the feature subset; hence the need for the second stage of FS. This stage equally employed the hybrid 

of kernel extreme learning machine and convolutional neural network. The multi hybrid FS algorithm is indeed 

promising considering the reported results; however, computational costs are incurred.  

The need to improve the existing FS algorithms for high dimensional data is indispensable. To this effect, [45] 

proposed a two-stage hybrid ant colony FS algorithm capable to deal with high dimensional dataset. Results obtained 

that the proposed advanced algorithm reported a reduction of the algorithm from falling into a local optimum and 

execution time considering the 11 high dimensional datasets. However, some redundant and non-redundant features 

were still found on the training and testing set of the data respectively. Consequently, the performance of some selected 

feature subsets of the dataset decreases. Therefore, the authors anticipate a solution to this deficiency by considering 

reviewing the fitness function. Similarly, the research of [46] improved the particle swarm optimization (PSO) 

algorithm. The improvement leverages on three new approaches considering the new proposed binary PSO variant, 

sticky binary PSO to increase the evolutionary result. The three approaches include feature ranking information and 

is proposed for a novel initialization technique. Decreasing the search space by using a dynamic bit’s masking scheme 

is proposed as the second approach. Lastly, to reduce the sudden convergence issue, a modification process showing 

genetic operations on the optimal location of the improved sticky binary PSO is deployed. The improved PSO 

significantly decreases the computational time compared with the benchmark PSO based methods considering the 

results obtained from 12 datasets gotten from University of California Irvine (UCI) repository. However, computation 

time is still an issue to contend with. This is because the framework assumed by the proposed algorithm demands a 

huge chunk of time for fitness function estimation.  



Furthermore, [16] proposed a novel binary alternate of grasshopper optimization algorithm for selection of features 

subset. The enhancement lies on sets the locations of grasshoppers with binary values (0 and 1) and uses modest 

operators to keep abreast the location. Based on twenty datasets of various sizes from UCI repository, the algorithm 

is tested along with other five popular optimization algorithms for FS problem; and the result is promising. However, 

the fundamental deficit of the single binary optimization algorithm would limit the optimal performance of coherent 

feature subset thereby leading to distortion of classification accuracy. To solve the consistent optimization problem in 

data mining because of exponential growth of data, interested researchers in the field of FS have proposed several 

hybrid FS techniques; but mostly deficient to handle high dimensional type of data. Hence, [47] proposed a hybrid 

sine cosine Harris hawk optimization (HHO) algorithm to solve the deficiency of exploration and exploitation 

associated with the traditional HHO. The proposed algorithm based on numerical optimization test case, and low and 

high dimensions of 16 datasets outperformed the individual algorithm of sine-cosine, HHO, and other remarkable FS 

hybrid algorithms. However, one of the possible areas of interventions as rightly suggested by the literature is the 

extension of the proposed hybrid algorithm by adding evolutionary operators or other viable strategies for extensive 

optimization activities. Similarly, [48] equally proposed the hybridization of sine-cosine (SCA) and GA algorithms as 

another viable approach to solve the challenge of FS among various degree of dimensional datasets. The rationale 

behind the proposed method is to implant GA into SCA to serve as an internal function to enhance the exploration 

capability of SCA. The proposed method was evaluated by considering the standard metrics. The result was compared 

with the traditional sine cosine algorithm, ant lion, and particle swarm optimization algorithms based on the 16-dataset 

obtained from UCI repository where the proposed method outperformed the other methods. However, the inherent 

challenge of the fitness function to examine each feature subset in the SCA’s search space is still an issue to contend 

with.   

In the research work of [42] a population decreasing strategy is invoked to the new binary gaining-sharing knowledge 

human based feature selection algorithm that keeps the algorithm from falling into local optima and early convergence. 

Experiment for the proposed method was carried out on 22 UCI benchmark datasets, and the results were compared 

with some of the literature verified metaheuristic algorithms. Even though the results obtained were promising, the 

literature further noted an area of improvement in the FS algorithm by employing chaotic maps. [49] deployed hybrid 

approach of FS to classified micro-array data. Technique for order preference by similarity to ideal solution as filter-

based approach was used, while binary Jaya algorithm with time-changing transfer function was deployed as the 

wrapper-based method. The hybrid approach was experimented against four other existing popular hybrid FS methods 

on 10 benchmark datasets of the domain; and the results in terms of classification accuracy and computational speed 

outweigh the compared four methods. To solve the problem of feature selection for high dimensional data 

[17]proposed a novel method by transforming the initial dataset through principal component analysis and fast 

independent component analysis as hybrid data transformation approach. The authors further employed the binary 

salp swarm algorithm on the transformed dataset to find the optimal features subset. The proposed method was 

validated on 15 benchmark datasets; and the results obtained were compared with five other binary-based optimizers. 

From the experiment, an outstanding performance was recorded by the proposed method. However, the basic inherent 

deficit of single binary optimizer can potentially affect the best optimal search solution. Therefore, as part of the future 

works, the authors recommended a multi-label feature selection strategy.           

The problem associated with most metaheuristic algorithms trapping into local optimal and slow or premature 

convergence rate when apply for feature selection among high dimensionality data is equally attracting research 

attentions. This is why the literature of [50] employed a strategy known as chaos scheme added to the search space of 

vortex search algorithm to attain the global optimal solution and fast convergence rate for feature selection process. 

The proposed FS method, which is based on chaos (tent) map, was validated on 24 standard datasets; and the results 

obtained were compared with eight other existing optimizers. From the experiment, the enhanced algorithm claimed 

superiority over others. However, the literature suggested further improvement on the algorithm by considering 

integrating it into metaheuristic algorithms.  For discrete FS challenges that have discrete search space, most of the 

conventional metaheuristic algorithms are deficient to handle it; thus, the need for binary based optimizers. This is 

what led to the motivation for the work of [51] who proposed an enhancement on the binary-based emperor penguin 

optimizer. Transfer function and position updating strategy are the two-cardinal focus of the improvement. The 

proposed method was evaluated against seven newly designed optimization algorithms on 25 popular datasets. The 

results are promising as it showed superiority over the tested seven binary optimizers, however, it recorded poor 



performances on some of the multimodal functions. The research of [52] argued that most of the genetic based FS 

algorithms requires tuning parameters for optimal performance; however, tuning the values of the parameters is a 

tedious task in FS process. To avert this challenge, the authors proposed a new wrapper-based FS method, which only 

requires population size, and an amount of generation as controlling parameters to obtain a better feature subset from 

the given dataset. The new method is christened binary teaching learning-based optimization algorithm. The method 

produced higher accuracy against the initial features based on the given breast cancer dataset. Five classifiers were 

employed as objective functions. However, the proposed method is only evaluated against itself, that is, feature subset 

obtained from the proposed method against the original features of only one dataset. Therefore, the robustness of the 

method is not sufficiently justified against some literature proven optimization algorithms. The authors concluded to 

improve on the method by developing a novel hybrid algorithm.    

The research work of [53] to advanced a new hybrid method that combined the binary modifications of DMO and 

simulated annealing algorithm christined as binary dwarf mongoose simulated annealing optimizer (BDMSAO). 

Furthermore, when it comes to coordinated and flexible mechanism to improved local and global exploration 

capabilities, PSO posses this strength. PSO is also suitable to indicates the fitness function and to define fixed bounds 

on the optimized parameters. to propose an enhanced version of binary PSO to solve a domain problem. Finally, 

BEOSA is another new optimization algorithm, which has demonstrated good performance in proffering solution to 

the problem of binary optimization [54]. Ebola virus disease and its propagation model inspire this algorithm. Thus, 

this paper aims to take advantage of these three remarkable algorithms by hybridizing them for optimal feature subsets 

and consequently, good classification accuracy for the domain under consideration. 

Several other studies have demonstrated the relevance of using metaheuristic algorithms to finding suboptimal feature 

space required for finding better classification accuracy. For instance, the work in [55] showed that the problem of 

imbalanced data samples and feature selection can be combined. The combined problem space was solved using 

metaheuristic based on Random-SMOTE (RSMOTE) using the self-adaptive Bat algorithm for feature selection on 

X-ray data samples. Similarly, the use of Gaussian-based Moth-Flame Optimization (MFO) algorithm has been 

proposed for solving feature selection problems in text-based datasets. The resulting metaheuristic algorithm namely 

GMSMFO successfully reduced feature space and as well selected suboptimal set necessary for improving 

classification accuracy [56]. In the same vein, the use of text-based dataset on metaheuristic algorithms in feature 

selection process have been reported in [57]. Authors demonstrated that the adaptive PSO with leadership learning 

(APSOLL) can support the performance of classifiers through an effective feature selection mechanism. Their study 

compared some well-known metaheuristic algorithms with their approach and confirmed that the continuous 

optimization method supersedes others in addressing the problem. On the other hand, [58] showed that a metaheuristic 

algorithm which is Levy Adapted SLnO (LA-SLnO) which is originally based on SLnO algorithm can improve the 

feature selection process on features extracted using Tri-Kernel principal component analysis (TK-PCA). 

Furthermore, the study noted that even the approaches of linear discriminant analysis and linear square regression can 

also interface with the LA-SLnO to ensure features extracted are optimized for classification such as the neural 

network. Interestingly, the use of deep Q-learning as a measure for ensuring the integration of a feedback mechanism 

to feature learning process, has been reported in [59]. The study aimed at addressing the limitation of traditional 

continuous optimization algorithms in that they fail to intelligently learn the task of feature selection. As such, the use 

of PSO, FA, and WOA algorithms with the deep Q-learning helped to discover feature importance during feature 

selection process.  

Meanwhile, the performance of examines harmony search (HS) and the genetic algorithm (GA) in feature selection 

problem as used with support vector machine (SVM) classifier have been investigated in [60]. This was experimented 

to improve the detection of sarcopenia disease. Using the VOC 2007 dataset, [61] have also shown that Red Fox 

Optimization Algorithm is suitable for solving the same problem of feature selection. However, using image datasets, 

[62] have demonstrated that the performance of a least square support vector machine (LSSVM) classifier can be 

improved in classifying those samples. The study investigated the use of modified quantum-based marine predators’ 

algorithm (Mq-MPA) on the classifier and reported some improvements. Still in the case of image-based classification 

problem, [63] have combined Ant Colony Optimization and Tabu search with Fuzzy Rough set for Optimal feature 

selection (ACTFRO) algorithm to support classifiers by aiding the use of only optimal feature sets. Furthermore, the 



authors also reported that a Genetic algorithm and Tabu search with Fuzzy Rough set for Optimal feature selection 

(GATFRO) algorithm was likewise investigated for the same task.  

In Table 1, a summary review of most related studies considered in this section is provided to highlight their 

contributions and their limitations. 

Table 1: A summary of review on similar studies discussed in this section. 

Ref, Year Approach Limitation in the context of this study 

[56], 2023 Investigated the use of an improved 

version of Gaussian-based Moth-flame 

optimization algorithm for feature 

selection in images using machine 

learning algorithms. 

The feature selection process is based on 

machine learning algorithms as against the deep 

learning method applied in this study. 

[58], 2022 Combines Levy Adapted SLnO (LA-

SLnO) optimizer with deep machine 

learning-based data classification 

which uses Tri-Kernel principal 

component analysis (TK-PCA) for 

feature extraction. 

The feature extraction method is limiting in its 

ability to find relevant features for the optimizer 

to select from to the classifier. 

[57], 2022 Feature selection problem was 

addressed using adaptive PSO with 

leadership learning (APSOLL). 

The approach is based on text-based datasets and 

not image datasets for feature selection 

problems. In addition, the study is focused on 

the use of continuous optimization methods for 

feature selection. 

[59], 2024 The study hybridized PSO, FA, and 

WOA algorithms to introduce the of 

deep Q-Learning module to 

intelligently updates feature 

importance during feature selection 

task. 

The use of deep Q-learning is novel in the study; 

however, it was limited to software bug 

detection dataset when compared with the focus 

of this study. 

[62], 2023 Machine learning based least square 

support vector machine (LSSVM) 

classifier was applied to feature 

selection problem by leveraging on 

modified quantum-based marine 

predators algorithm (Mq-MPA) 

method 

In this study, we evaluated the use of machine 

learning-based classifiers and softmax function 

in classification tasks. This is and advantage of 

their work which was focused on LSSVM alone. 

[63], 2021 The study investigated the usefulness 

of Ant Colony Optimization and Tabu 

search with Fuzzy Rough set for 

Optimal feature selection (ACTFRO) 

and Genetic algorithm and Tabu search 

with Fuzzy Rough set for Optimal 

feature selection (GATFRO) 

algorithms for feature selection. 

The approach is limited only to continuous 

optimization (metaheuristic) to image feature 

selection problem. 

[60], 2024 Machine learning method was applied 

for feature selection while harmony 

search (HS) and the genetic algorithm 

(GA) were used for the feature 

selection task. 

The machine learning method used for feature 

extraction stage undermines the quality of 

feature learning process 

[22], 2023 QLESCA for extraction of opti9mal 

feature subsets from the high 

dimensional space resulting from a 

sha9llow conventional neural network 

(SCNN) on X-ray samples. 

The approach is limited only to continuous 

optimization (metaheuristic) to image feature 

selection problem. 



[54], 2022 Proposed BEOSA for handling feature 

selection in text-based dataset. 

 

The limitation of BEOSA with respect to 

mutation of instances during the exploration and 

exploitation stages, were inherited. 

[23], 2021 Investigated the role of MRFGRO a 

continuous metaheuristic algorithm for 

feature selection through reduction of 

the noisy features 

The approach is limited only to continuous 

optimization (metaheuristic) to image feature 

selection problem. 

[25], 2023 Investigated the use of PSO, CSO, 

FFA, BA, FPO, WOA, ASOA, 

HHOA, BOA, and GWO with CNN on 

feature selection. 

The approach is limited only to continuous 

optimization (metaheuristic) to image feature 

selection problem. 

[28], 2022 FMCSA was used with CNN The approach is limited only to continuous 

optimization (metaheuristic) to image feature 

selection problem. 

[29], 2024 Combined the MCS algorithm with 

CNN for a CBMIR  

The approach is limited only to continuous 

optimization (metaheuristic) to image feature 

selection problem. 

[30], 2024 medical image segmentation can be 

improved using KOA and neural 

network on chest X-ray 

The approach is limited only to continuous 

optimization (metaheuristic) to image feature 

selection problem. 

 

3. Proposed Methodology 

The approach described in this section is based on the novel design and use of hybrid binary optimization algorithms 

to find the optimal feature subsets from a neural network architecture. First, the hybrid binary metaheuristic algorithm 

is described with focus on the mathematical model and algorithmic representation. Furthermore, integration of the 

optimizer into the convolutional neural network architecture is presented and discussed.  

3.1 The Base BEOSA, BPSO, and BDMO Algorithms 

The base binary optimizer used for the hybrid method described in this subsection, is based on the BEOSA. The aim 

is to improve the exploration and exploitation phases of the BEOSA using some very outstanding binary optimizer 

whose mechanisms for achieving these phases have been reported to be suitable for the problem domain. As result, 

the BPSO and BDMO are investigated for HBEOSA. The outcome of these hybridizations is two new binary 

optimizers namely the HBEOSA-PSO and HBEOSA-DMO. Further to this, the transfer functions used for binary 

optimizers for formalization of the search space are being redesigned to investigate the influence of nested transfer 

(NT) function on the performance of binary optimizers. These redesigned functions yielded new variants of the hybrids 

being investigated in this study so that we have the HBEOSA-PSO-NT and HBEOSA-DMO-NT. This subsection 

therefore is focused on the presentation of the methods and approaches that describe hybrid algorithms. 

3.1.1 Binary Ebola Optimization Search Algorithm (BEOSA) 

The BOESA was first presented in [54] from the original continuous variants EOSA. Using the traditional S-shaped 

and V-shaped functions, the continuous metaheuristic variant was binarized for solving problems with similar 

representation. The search space formalism for the binary variants allows for the initialization of solutions in the space 

with 1’s, as seen in equation (1), so that the optimization process transforms the dimension (𝑑) of each item or 

individual (𝑥𝑖) to values in the range of 0s to 1s.  

𝑥𝑖 = ∑𝑥𝑖,𝑗 = 1

𝑑

𝑗=0

                                                                                                                    (1) 

The binary optimizer is based on the infection rate of the Ebola disease, so that items in the search space represent 

human individuals or organisms or animals that can be infected by the disease. So, it is desirable that the search space 

represents a population 𝑋 that is susceptible to disease and that can be infected. In equation (2), the search space shows 

that it is possible to have 𝑛 items or individuals with each having its anatomy represented by 𝑑 − 𝑠𝑖𝑧𝑒 features. 



𝑋 = [

𝑥1,1 ⋯ 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥1,𝑛 ⋯ 𝑥𝑛,𝑑

]                                                                                          (2)  

The infection rate of the disease demonstrates the optimization process with an increased propagation rate capable of 

yielding different subgroups or subpopulations such as the infected, recovered, and others. However, the infected 

group yields a new set of individuals whose anatomical feature representation has been mutated. This mutation results 

in a search space with items or individuals whose configurations are no longer the 𝑑 − 𝑠𝑖𝑧𝑒1s representation. This 

then allows for computing the best individual in the solution space whose feature representation is optimal and suitable 

for transformation into the problem space for solving the binary optimization problem. The mutation of the individual 

𝑥𝑖 is denoted by equation (3) so that 𝑥𝑖
𝑛𝑒𝑤 is the outcome of the mutation resulting from the infection. Note that the 

variable 𝑥𝑏𝑒𝑠𝑡 in the equation is the computed best individual in the population 𝑋, and is obtained by first calculating 

the fitness of each 𝑥𝑖 in 𝑋 so that 𝑥1, 𝑥2 … 𝑥𝑛  are sorted to obtain the best.  

 

𝑥𝑖
𝑛𝑒𝑤 = ∆ ∗ 𝑒𝑟𝑛𝑑cos (2𝜋𝑟𝑛𝑑) ∗ (𝑥𝑖   −  𝑥𝑏𝑒𝑠𝑡)                                                           (3) 

The use of the notation ∆ is to represent the mutation factor that differentiates the rate and way in which the individual 

is mutated by the infection. Meanwhile, the 𝑟𝑛𝑑 returns a random number generated within the range of [−1, 1] 
of a uniform distribution. However, this mutation was inherited from the continuous variant of the BEOSA with no 

support for the binarization of the population 𝑋. As a result, the transfer function which are S-shaped and V-shaped 

are applied for this purpose. In equation (4) and (5), two types of the S-shaped namely the S1 and S2 are described. 

Furthermore, in equations (6) and (7) represents the description of two types of V-shaped transfer functions. 

Interestingly, the transfer functions are applied to the mutated 𝑥𝑖
𝑛𝑒𝑤. 

 

𝑆1 =   
1

1 + 𝑒(
−𝑥𝑖

𝑛𝑒𝑤

2⁄ )
                                                                                                                             (4) 

𝑆2 =   1 − 
1

1 + 𝑒𝑥𝑖
𝑛𝑒𝑤                                                                                                                             (5) 

𝑉1 =   |
𝑥𝑖

𝑛𝑒𝑤

√2 + 𝑥2
|                                                                                                                                       (6) 

𝑉2 =  |tan 𝑥𝑖
𝑛𝑒𝑤|                                                                                                                                           (7) 

This mutation and binarization functions are at the core of the BOESA and provide for using the method as a base for 

the hybrid methods. In the following paragraphs, we described the two other methods combined with the BOESA. 

3.1.2 Binary Particle Swarm Optimization (BPSO) Algorithm 

The BPSO was motivated from the natural lifestyle of swarm-like animals such as birds. Their ability to swarm as a 

population combined with their behavioral interaction presents an interesting optimization process [64]. While the 

continuous PSO has received a very wide application and acceptance, the binary variant demonstrated another unique 

algorithm for solving binary optimization problem. Unlike the BOESA which is based on infection of the animals or 

humans in the population space, the BPSO is focused on the position 𝑝𝑖,𝑗 of the animals in the swarm so that 

initialization of the population space is focused on the random positioning. The optimization process is designed 

around ensuring that this positioning is changed, and the velocity of repositioning is also updated. The aim of the 

optimization process is to obtain new positions 𝑝𝑏𝑒𝑠𝑡,𝑖,𝑗 for an item in the swarm as different from its initial position 

𝑝𝑖,𝑗. However, the computation is also influenced by a know best position 𝑔𝑏𝑒𝑠𝑡,𝑖,𝑗 within the swarm. The velocity of 



the repositioning is computed using equation (9) for a new time (𝑡 + 1) during the optimization process. Using this 

computed velocity, the organism in the swarm for that same optimization process time is represented in equation (10). 

Once this repositioning and velocity changing is completed, the transfer function based on the sigmoid function in 

equation (12) is applied to binarize the organism/particle as shown in equation (11).  

𝑣𝑖,𝑗(𝑡 + 1) =  𝑤𝑣𝑖,𝑗(𝑡) + 𝑐1𝑅1 (𝑝𝑏𝑒𝑠𝑡,𝑖,𝑗 − 𝑥𝑝,𝑖,𝑗(𝑡)) + 𝑐2𝑅2 (𝑔𝑏𝑒𝑠𝑡,𝑖,𝑗 − 𝑥𝑝,𝑖,𝑗(𝑡))             (9) 

𝑥𝑔,𝑖,𝑗(𝑡 + 1) =  𝑥𝑔,𝑖,𝑗(𝑡) + 𝑣𝑖,𝑗(𝑡 + 1)                                                                                                 (10) 

𝑥𝑝,𝑖,𝑗(𝑡 + 1) =  {
1 𝑟𝑛𝑑 < 𝑇(𝑥𝑔,𝑖,𝑗(𝑡 + 1))

0  𝑟𝑛𝑑 ≥ 𝑇(𝑥𝑔,𝑖,𝑗(𝑡 + 1))
                                                                                 (11) 

𝑇 (𝑥𝑔,𝑖,𝑗(𝑡 + 1)) =  
1

1 + 𝑒−𝑥𝑔,𝑖,𝑗(𝑡+1)
                                                                                                     (12) 

Note that the use of the 𝑖 and 𝑗 notations are to represent the index of the particle in the swarm, position within the 

particle. In addition, the 𝑤, 𝑐1, and 𝑐2 are the inertia weight, acceleration coefficients 1, and acceleration coefficients 

2 respectively. Meanwhile, the 𝑅1and 𝑅2 are chosen from between 0 and 1. 

3.1.3 Binary Dwarf Mongoose Optimizer (BDMO) 

The BDMO [53] is based on the continuous variant namely the DMO. The method is motivated by the behavior of the 

dwarf mongoose animal and their nomadic lifestyle which often require the transit from one location to another in 

search of food. As a result, the position of the mongoose is the central focus of the mutation or change during the 

optimization process. Contrary to the BEOSA and BPSO which uses some unique transfer functions to binarize the 

population of the organisms, the BDMO relies on computing the best candidate food position as shown in equation 

(13), and then condition the mutation between 0s and 1s using in 0.5 < 𝑏𝑒𝑠𝑡𝑓𝑝
 𝑖+1  ≤ 0.5 equation (14). Note that 

the 𝑥𝑓𝑝
 𝑖+1 is the current best computed food location, and the 𝑝𝑒𝑒𝑝 notation is a sound made during the search for 

such food location.  The computation for the position of each dwarf mongoose in the population is obtained using 

equation (15).  

 

𝑏𝑒𝑠𝑡𝑓𝑝
 𝑖+1 = 𝑓𝑝𝑖 + 𝑝ℎ𝑖 ∗ 𝑝𝑒𝑒𝑝                                                                                                                        (13) 

𝑥𝑑 = {
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒  𝑥𝑓𝑝

 𝑖+1 > 0.5

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  𝑥𝑓𝑝
 𝑖+1  ≤ 0.5

                                                                                             (14) 

𝑥𝑓𝑝
 𝑖+1 = {

𝑏𝑒𝑠𝑡𝑓𝑝
 𝑖 − 𝐶𝐹 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑥𝑓𝑝

 𝑖 − 𝑀⃗⃗ ]  𝑖𝑓 𝜑𝑖+1 > 𝜑𝑖 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛

𝑏𝑒𝑠𝑡𝑓𝑝
 𝑖 + 𝐶𝐹 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑥𝑓𝑝

 𝑖 − 𝑀⃗⃗ ]    𝑒𝑙𝑠𝑒 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛
                                  (15) 

Note that the use of the notation 𝐶𝐹 which is the parameter for directing the collective velocity of the movement of 

the mongoose group in the equations can be interpreted as 𝐶𝐹 = (1 − 
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)
(2

𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)
, and 𝑀⃗⃗  which is the vector 

controlling the group movement to sleep in another sleeping mound (sm) is represented by  𝑀⃗⃗ =  ∑
𝑥𝑖∗ 𝑠𝑚𝑖

𝑥𝑖

𝑛
𝑖=1  . Here 

𝑀𝑎𝑥𝑖𝑡𝑒𝑟 and 𝑖𝑡𝑒𝑟 denotes the maximum number of iterations for the optimization process and the current iteration 

point in the optimization process. Meanwhile, the 𝜑 notation helps to compute the average sleeping mound as given 

by 𝜑 = ∑
𝑠𝑚𝑖

𝑛
𝑛
𝑖=1 .  



These basic modelling for the BEOSA, BPSO, and BDMO provides a platform for generating two new algorithms 

with the focus on addressing the limitation of the BOESA. In the following paragraphs, we described how the 

combination of the methods is achieved. 

3.2 Hybrid BEOSA-PSO and Hybrid BEOSA-DMO 

The hybrid methods are designed to improve the exploration and exploitation of the BEOSA so that where the 

algorithm seeks to explore new location in the search space, the BPSO or BDMO can be adapted to do the search. 

Similarly, where the exploitation process is desired to achieve a better local search for the optimal solution, the BPSO 

and BDMO are adapted for this. The outcome of this adaptation of the two optimizers produced the hybrid BEOSA 

with BPSO (HBEOSA-PSO) and hybrid BOESA with BDMO (HBEOSA-DMO). And algorithmic representation is 

designed to illustrate how this integration is achieved.  

3.2.1 Overview of the hybrid binary optimizer 

Figure 1 summarizes the optimization procedure of the proposed HBEOSA-PSO and HBEOSA-DMO as applied to 

feature selection and optimization problem in medical image classification. Meanwhile, the feature extraction process 

using the CNN technique is discussed in subsection 3.2 and the use of the nested transfer functions are detailed in this 

subsection. The proposed method applies a forward mapping function to correlate the vectorized feature sets into a 

binary search space. This is to allow for the optimization of the binary search space using a two-level optimization 

strategy. Once the optimization of the binary search space is completed with the fitness function confirming that 

candidate solutions have been ranked, then the backward mapping function is applied. The selected features are then 

extracted to the classifier for classification operation. 

 

 
Figure 1: An illustration of the optimization process of the HBEOSA-DMO, HBEOSA-PSO and their use of the 

nested transfer functions on the search space 

 

3.2.2 The nested transfer functions 

Further to this, the traditional transfer function applied for the BOESA function is overridden to accommodate a new 

approach described in this study. In this improvement, the S1, S2, V1 and V2 transfer functions are nested to 

investigate what performance improvement a nested binary-mutation function can achieve in the optimization process. 



In equation (16), the nesting of the two transfer functions are illustrated and conditioned on the derivation of a 

𝑟𝑎𝑛𝑑(0|1) randomly generated number of either 1 or 0. The S1 and V1 transfer functions are applied when the 

𝑟𝑎𝑛𝑑(0|1) returns a 0, while the S2 and V2 are nested when 𝑟𝑎𝑛𝑑(0|1) returns 1. Once the 𝑆(𝑥𝑖
𝑘), 𝑉(𝑥𝑖

𝑘) have 

been computed, the 𝑑 − 𝑠𝑖𝑧𝑒 dimension of 𝑥𝑖 is mutated within the context of the binary representation by deriving 

a random number 𝑟 which satisfying  𝑆(𝑥𝑖
𝑑) <  𝑟 >  𝑇(𝑥𝑖

𝑑) as represented in equation (17). 

 

𝑆(𝑥𝑖
𝑑), 𝑉(𝑥𝑖

𝑑) =  {
𝑆2(𝑥𝑖

𝑑), 𝑉2(𝑥𝑖
𝑑)       𝑟𝑎𝑛𝑑(0|1) == 1

𝑆1(𝑥𝑖
𝑑), 𝑉1(𝑥𝑖

𝑑)       𝑟𝑎𝑛𝑑(0|1) == 0
                                                                         (16) 

𝑥𝑖
𝑑 = {

1       𝑟 >  𝑆(𝑥𝑖
𝑑) | 𝑟 >  𝑇(𝑥𝑖

𝑑) 

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                            (17) 

 

The nesting of the S-shaped transfer functions is based on 𝑆1(𝑉1), 𝑆2(𝑉1), 𝑆1(𝑉2), and 𝑆2(𝑉2) as represented in 

equations (18), (19), (20), and (21) respectively.  

𝑆1(𝑉1) =   
1

1 + 𝑒(
−(|

𝑥

√2+ 𝑥2
|)

2
⁄ )

                                                                                                         (18) 

𝑆2(𝑉1) =   1 − 
1

1 + 𝑒
(|

𝑥

√2+ 𝑥2
|)
                                                                                                         (19) 

𝑆1(𝑉2) =   
1

1 + 𝑒(
−(|tan𝑥|)

2⁄ )
                                                                                                             (20) 

𝑆2(𝑉2) =  1 − 
1

1 + 𝑒(|tan𝑥|)
                                                                                                             (21) 

Similarly, the nesting of the V-shaped transfer functions is based on the 𝑉1(𝑆1), 𝑉2(𝑆1), 𝑉1(𝑆2), and 𝑉2(𝑆2), 

functions in equations (22), (23), (24), and (25) respectively. 

𝑉1(𝑆1) =       
|

| (
1

1 + 𝑒(−𝑥
2⁄ )

)

√2 + (
1

1 + 𝑒(−𝑥
2⁄ )

)2
|

|
                                                                                             (22) 

𝑉2 (𝑆1) =  |tan(
1

1 + 𝑒(−𝑥
2⁄ )

)|                                                                                                         (23) 

𝑉1(𝑆2) =                 ||
(1 − 

1
1 + 𝑒𝑥)

√2 + (1 − 
1

1 + 𝑒𝑥)2
||                                                                                    (24) 

𝑉2(𝑆2) =               |tan  (1 − 
1

1 + 𝑒𝑥
)|                                                                                            (25) 



 

The investigation on the shape distortion resulting from the application of the nesting transfer function revealed that 

the basic S-shape and V-shape were strongly represented. Interestingly, we observed some slight reshaping appearing 

within figures – demonstrating subtle points of influencing the binarization process. In Figure 2, an illustration of 𝑆1, 

𝑆2, 𝑉1, 𝑉2, 𝑆1(𝑉1), 𝑆2(𝑉1), 𝑆1(𝑉2), 𝑆2(𝑉2), 𝑉1(𝑆1), 𝑉2(𝑆1), 𝑉1(𝑆2), and 𝑉2(𝑆2) transfer functions are 

shown. The use of this function on the HBEOSA-PSO method resulted in the HBEOSA-PSO-NT algorithm. Also, the 

HBEOSA-DMO was investigated on these nested functions to obtain the HBEOSA-DMO-NT algorithm.  

 
 

𝑆1(𝑥), 𝑆2(𝑥) 
 

𝑉1(𝑥), 𝑉2(𝑥) 

  
𝑆1(𝑉1(𝑥)), 𝑆2(𝑉1(𝑥)) 

 

𝑆1(𝑉2(𝑥)), 𝑆2(𝑉2(𝑥)) 

  
𝑉1(𝑆1(𝑥)),  𝑉2(𝑆1(𝑥)) 𝑉1(𝑆2(𝑥)), 𝑉2(𝑆2(𝑥)) 

 

Figure 2: Transfer function applied for BEOSA, BPSO, HBEOSA-DM and HBEOSA-PSO which are 𝑆1, 𝑆2, 𝑉1, 

𝑉2, 𝑆1(𝑉1), 𝑆2(𝑉1), 𝑆1(𝑉2), 𝑆2(𝑉2), 𝑉1(𝑆1), 𝑉2(𝑆1), 𝑉1(𝑆2), and 𝑉2(𝑆2) 



The curves indicates that all the 𝑆1, 𝑆2, 𝑉1, 𝑉2, 𝑆1(𝑉1), 𝑆2(𝑉1), 𝑆1(𝑉2), 𝑆2(𝑉2), 𝑉1(𝑆1), 𝑉2(𝑆1), 

𝑉1(𝑆2), and 𝑉2(𝑆2) are distinct in their representation and interpretation. For instance, the curves of 𝑆1 and 

𝑆2 shows that the pattern of the latter when applied to the dimension of 𝑥𝑖 is different from the former. 𝑆1will 

return a new 𝑥𝑖  based on it slightly linear S-shaped pattern while 𝑆2 will return a new 𝑥𝑖  with a straighter S-shaped 

pattern.  This same effect is rippled into 𝑉1(𝑆1), 𝑉2(𝑆1), 𝑉1(𝑆2), and 𝑉2(𝑆2). On the other hand, the transform 

pattern of 𝑉1and 𝑉2 are different as observed in the curve pattern because 𝑉2 demonstrates a narrow V-shape while 

𝑉1 pattern indicates a shallow V-shaped. These differences in their transform approach reveal an interesting influence 

on the entire optimization process which this study aims to investigate and draw on the comparative analysis.  

3.2.3 Algorithm of the hybrid binary optimizers 

The pseudocode for the HBEOSA-DM, HBEOSA-PSO, HBEOSA-PSO-NT, and HBEOSA-DMO-NT is listed in 

Algorithm 1. The inputs to the algorithm are the number of iterations for the optimization process, the population of 

the base BEOSA method, the short and long change factor rate, and the dimension of each organism or individual in 

the population. The desired output from the optimization process is the best solution representing the optimal solution 

in the search space.  Before the optimization process begins, the population is generated, and an index infected case 

is selected based on the first individual in the population. The use of the S-to-V-shaped transfer functions, that is the 

𝑆1(𝑉1), 𝑆2(𝑉1), 𝑆1(𝑉2), and 𝑆2(𝑉2), is conditioned to the exploration phase as seen on lines 16-22. On the other 

hand, the application of the V-to-S-shaped transfer functions, that is the the 𝑉1(𝑆1), 𝑉2(𝑆1), 𝑉1(𝑆2), and 𝑉2(𝑆2), 

is conditioned to the exploitation phase as listed on lines 23-29.  

Algorithm 1: HBEOSA-DMO and HBEOSA-PSO method 

1 Input: maxIter, psize, srate, lrate, dim 

2 Output: gbest 

3   begin 

4       𝑋 =generate population based on psize 

5       𝐼, 𝑔𝑏𝑒𝑠𝑡 ← 𝑋[0], 𝑋[0] 
6      𝑖𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑟𝑎𝑛𝑑(1|0) 
7      while e   < maxIter and size (I) > 0 do: 
8            generate a subpopulation to from the infected for quarantine 

  9            I=difference of current infected cases (I) from quarantine cases 

10           for i in 1 to size(I) do: 

11       generate new infected (nI) case from X 

12       𝑛𝐼𝑖 = (𝑛𝐼𝑖 − 𝑔𝑏𝑒𝑠𝑡) ∗ 𝑒𝑟𝑎𝑛𝑑 ∗ cos(2𝜋 ∗ 𝑟𝑎𝑛𝑑)  
13       if  ! 𝑖𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

14              for j in 1 to dim do: 

15         randomly generate d between 1|0 

16        if displacement(nIi,) > 0.5 do: 

17                  update size of nI using srate  

18                  s= {
𝑆2(𝑉1(𝑛𝐼𝑖,𝑗))| 𝑆2(𝑉2(𝑛𝐼𝑖,𝑗))    𝑑 = 1

𝑆1(𝑉1(𝑛𝐼𝑖,𝑗))| 𝑆1(𝑉2(𝑛𝐼𝑖,𝑗))  𝑑 = 0
  

19                  if s >= rand do: 
20               𝑛𝐼𝑖,𝑗 = 1 

21                  else: 
22               𝑛𝐼𝑖,𝑗 = 0 

23          else: 

24                   update size of nI using lrate  

25                   𝑣 = {
𝑉2(𝑆1(𝑛𝐼𝑖,𝑗))| 𝑉2(𝑆2(𝑛𝐼𝑖,𝑗))    𝑑 = 1

𝑉1(𝑆1(𝑛𝐼𝑖,𝑗))| 𝑉1(𝑆2(𝑛𝐼𝑖,𝑗))   𝑑 = 0
 

26                   if t >= rand do: 
27                 𝑛𝐼𝑖,𝑗 = 1 



28                   else: 
29                𝑛𝐼𝑖,𝑗 = 0 

30                  if displacement(nIi,) < 0.5: 

31                        𝑛𝐼 =  BDMO(nI) 

32                  else: 

33                       𝑋 = BPSO(X)  

34         Evaluate new fitness of 𝑛𝐼𝑖 

35 𝐼 ← 𝑛𝐼 
36           Update gbest, I and quarantine variables 

37      return gbest 

38 end 

 

Once the binary mutation of every 𝑥𝑖 has been achieved across the 𝑑 − 𝑠𝑖𝑧𝑒 dimension of that individual or organism, 

the BDMO method is applied for generating a new set of infected subgroups during the exploration phase on lines 30-

31. Also, when the algorithm shifts to the exploitation phase, the BPSO is applied to regenerate the complete 

susceptible population on lines 32-33. This is informed by the progressive change in the immunity of the susceptible 

population and the increasing mutation of the virus among the infected. 

The evaluation of the fitness of each 𝑥𝑖 is based on the equation (26) which applies a classifier 𝑐𝑙𝑓 to the 𝑥𝑖 to 

compute all indexes of 1 in 𝑥𝑖. Furthermore, a control variable 𝜔 which represents a random number obtained in 

the range [0,1] for weight assignment to the error classification, is used to keep the fitness value within range. The 

parameter 𝑑 denotes the number of features represented in the datasets. |𝐹̇́| is a set of features selected as represented 

in 𝑥𝑖 and |𝐹| is the number of those features which are total features sets represented in the dataset. On the contrary, 

a cost function, represented in equation (27), is also computed by the hybrid method to compute how far the 𝑥𝑖 is from 

an optimal position. The parameter 𝜔 we applied to control the quality of the classification performance, and to as 

well to regulate the relevance of the feature subsets selected. Experimentally, we choose the value of 0.99 for the 𝜔 

parameter because conventionally, 𝜔 ∈ [0, 1]. 

𝑓𝑖𝑡 = 𝜔 ∗ (1 − 𝑐𝑙𝑓(𝑥𝑖)) + ((1 −  𝜔) ∗ 
|𝐹̇́|

|𝐹|
)                                                                                   (26) 

𝑐𝑜𝑠𝑡 = 1 − 𝑓𝑖𝑡                                                                                                                                    (27) 

Where 1 −  𝑐𝑙𝑓(𝑥𝑖) is the classification error rate computed as: 1 −
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑑𝑎𝑡𝑎
. In the following 

subsection, we describe the application of these hybrid binary optimizations algorithms to finding a subset of 

optimal features extracted from image samples using neural network architectures.   

3.2 Formulation of the HBEOSA Methods for Neural Network Optimization  

The challenge of feature optimization and selection has often been addressed using the continuous metaheuristic 

algorithm approach. In this section, we demonstrate the approach to formulation of the application binary 

metaheuristic algorithm to the same problem of feature optimization. In Figure 3, the pipeline shows the feature 

extraction process, feature optimization, classification, and sample labeling or prediction.  The digital mammography 

samples are passed as input to the pipeline. This is followed by a neural architecture which extracts the image features 

using its convolutional-pooling layers. The dimension of the extracted complete features is passed for creation of 

search space and initialization. The search space becomes input to the hybrid binary optimization methods. Output 

from the binary optimizers is the optimized search space which is then mapped to the feature sets for selection of the 

matching spaces. The selected feature subsets are supplied to the classifier for the classification process which returns 

the prediction.  



The CNN architecture applied for the feature selection task is composed of four blocks of convolutional-pooling 

layers. Each block has two-padded convolutional layers which is then followed by a max-pooling layer. The 

convolutional layers were designed to use a 3x3 filter size while the filter counts were kept varied across blocks. For 

instance, the first two-padded convolutional layers in the first block use 32 filter counts, while those similar layers in 

the second block were architected to use 64 filter counts. The filter counts of 128 and 256 were applied to convolutional 

layers of the third and fourth blocks of the convolutional-pooling blocks respectively. Meanwhile, the filter count used 

for the max-pooling layers in each block is 2, while the strides is 1. The four blocks of convolutional-pooling layers 

are followed by two flattened layers and a dense layer. These last three layers are applied for vectorizing the matrix 

representations of the extracted features. The motivation for application of the CNN architecture is based on 

experimental evaluation and benchmarking of the performance of the different architecture for feature extraction task 

on the datasets considered in this study. Further to this, the study applied some architectural pruning and parameter 

tuning to arrive at the current configuration of the architecture and parameter combination. Meanwhile, the choice of 

a CNN architecture over the transformer-based vision transformers (ViTs) is informed on the aim to control the model 

optimization process which is easier with CNN compared with ViTs. Moreover, the moderate model size combined 

with the efficient hierarchical and spatially invariant feature extraction approach of the architecture and proven 

impressive performance over ViTs in some task [65], inspired its use for the investigation reported in this study.    

 

 
Figure 3: A pipeline of feature extraction, feature optimization, and feature classification composing of a neural 

network architecture and binary optimization algorithms 

 

The search space is built based on the dimension of the feature sets extracted. For instance, given that a 100-sample 

batch (𝑓100) of digital mammography is supplied as input to the neural architecture, and a width and height of 299x299 

represents the image size, then  𝑓𝑖 = [

𝑓1,1 ⋯ 𝑓1,299

⋮ ⋱ ⋮
𝑓299,1, ⋯ 𝑓299,299

] where 𝑖 = 1 - 100. However, for the optimization 

purpose, we are not interested in the feature sets but rather the dimension of the feature set. It is expected that the 

outcome from the vectorization of the 𝑓𝑖 will yield transformed feature representation as 𝑓𝑖 = [

𝑣1

⋮
𝑣𝐷

]. The dimension 

𝐷 of 𝑓𝑖 is used for building the search space so that only 100 individuals or organism are added to the search space 



with each having a vector representation in the 𝐷dimension initialized to 1s, that is 𝑥𝑖 = [
11

⋮
1𝐷

]. The 𝑥𝑖 in the search 

space now represents the input to the binary optimization algorithms. These algorithms pass their inputs through the 

optimization process to yield outputs such as 𝑥𝑖 = [
01

⋮
1𝐷

] as the optimized feature space. The task of the mapping and 

selection compartment is to ensure that 𝑓𝑖 = [

𝑣1

⋮
𝑣𝐷

] is mapped to 𝑥𝑖 = [
01

⋮
1𝐷

] so that only corresponding slots with 1s 

are composed as the feature subset. The feature subset for every 𝑓𝑖 is supplied to the classifier for classification 

operations which usually return probability distributions that can be mapped into the label set.  

The discussion in this section has described the design of the binary optimization methods and the corresponding 

variants which are based on the nested transfer functions. Furthermore, the architecture of CNN used for feature 

extraction, and the formalism for the binarization of the feature space through optimization process have been 

discussed.  In the following sections, the experimentation demonstrating the methodology described in this section are 

presented and discussed.  

4. Experimentation Setup and Datasets 

The experimentation of the methodology described in the previous section was conducted using some selected datasets 

and within some computational environments. In this section, a description of the configurations and settings for the 

algorithms and methods proposed are presented. Furthermore, the datasets applied for exhaustive experimentation are 

presented and discussed to provide for reproducibility of the results obtained in this study.  

4.1 Computation environment configuration and settings 

Two categories of experimentation are conducted in this study involving hybrid binary optimization methods, and 

experiment on the application of the hybrid algorithms to medical image analysis. The training of the binary 

metaheuristic algorithms was conducted using a computer running Windows 10 operating system, with Intel processor 

Core i5-4200 with speed of 1.70 GHz and 2.40 GHz. The memory size for this computer is 16GB, with sufficient 

secondary drive space. On the other hand, the computational environment for the application of the hybrid binary 

optimizer was conducted in Intel Silver Xeon 4210 computer system with about 10 processors or central processing 

unit (CPU). The memory of the system is 256GB and external drive space as much as 4TB-960GB of hard disk drive 

(HDD) – solid-sate drive (SSD). In addition to the primary memory, the system provided 2 extra graphical processing 

units (GPU) with each having 32GB space.  

In Table 2, the summary is presented of the algorithmic configurations and settings used for experimenting on the 

computational environment described in the previous paragraph. The binary optimization algorithms BEOSA, BDMO 

and BPSO are described based on their parameter settings. We note that these single algorithm-based settings were 

applied to the hybrid binary methods experimented with in this study. This implies that HBEOSA-DMO, HBEOSA-

DMO-NT, HBEOSA-PSO, and HBEOSA-PSO-NT were experimented based on the settings and configurations of 

their based methods. 

Table 2: Parameter settings for CNN, HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-PSO, HBEOSA-PSO-NT, 

and BEOSA binary metaheuristic algorithms 

Method Parameter Description 

BEOSA β1=0.1, β2=0.1, β3=0.1, β4=0.1, 
and π=0.1,  

Contact rate of infected (β1), of host (β2), with the dead (β3), 

and with the recovered (β4), and recruitment rate (π)   

BDMO Nb=3, peep=1, 𝜏 =  rand(0, 1), 

L= round(0.6*D*nb) 

Number of baby-seaters (Nb), Peep sound, tau operator (𝜏), 

babysitter exchange parameter (L) 

BPSO c1=2, c2=2, W=0.9, Vmax=6 Positive learning factors constant 1 (c1) and constant 2 (c2), 

initial weight (W), maxfor imum velocity vector (Vmax) 



CNN 𝜕 =  1e − 06, 𝛼 = 𝐴𝑑𝑎𝑚,
𝛽1 =  0.5 and 𝛽2 = 0.999, 

𝜀 =  1e − 08, 𝜏 = 0.0002,  
𝜑 = 32, 𝑊 = 299, 𝐻 =
299, epoch=40, stride=1, 

layers = 8, padding=false, 

batch size=64, dropout=0.5 
filter size=3, filter counts=32, 

64, 128, 256 

learning rate (𝜕), optimizer algorithm (𝛼), beta1 (𝛽1), beta2 

(𝛽2), epsilon (𝜀), L2 regularizer rate (𝜏), batch size, image 

width (𝑊), image height (𝐻) and number of training epochs 

respectively 

 

The values for the optimization algorithms were experimentally investigated and proven suitable for their application 

to feature selection problem. For instance, the choice of the recruitment and infection rates of BEOSA have been 

investigated in our previous studies [54], and also the choice of the values for initial weight and babysitter exchange 

parameter for BPSO and BDMO respectively were inspired from a previous study [14]. In section 5, a thorough 

sensitivity and computation cost analysis on these benchmark datasets, upon desirable performance, we proceeded to 

apply to address the main research problem of the study. These becnhmark datasets used for this purpose are namely 

BreastEW, Colon, Ionosphere, KrVsKpEW, Leukemia, PenglungEW, Sonar, WaveformEW, CongressEW, 

Lymphography, SpectEW, Vote, Zoo, Exactly, Exactly2, Iris, M-of-n, Tic-tac-toe, and Wine. Furthermore, the neural 

network applied for the feature extraction was experimented using the parameters and some hyperparameters 

described and listed in the table. Here, we explicitly mentioned the learning rates, the learning optimizer, beta one and 

two values, epsilon parameter, L1 regularizer value, the batch size for training, and lastly the image size. All these 

parameter configurations and settings for the algorithms and models provided means for conducting the experiment 

in the computational environments described in this subsection. In the following subsection, the datasets applied for 

the experimentation are discussed.   

4.2 Datasets 

The nature of the two-fold experimentation conducted in this study necessitated the use of two categories of datasets 

namely the text-based datasets and the data sources from medical image samples. The first category of datasets was 

used for investigating the viability of the hybrid binary optimization methods to check their performance with respect 

to classification accuracy, fitness, and cost function values. Once the outcome of this first experiment proved useful, 

we advanced to the second experiment which applied the medical image datasets to the hybrid binary optimizers to 

improved feature extraction of the neural network’s architecture.  

4.2.1 Text-based Datasets 

There are three types of datasets used for the investigation of the performance of the hybrid binary optimizers. These 

are the high-dimensional datasets, medium-dimensional datasets, and low-dimensional datasets. The high-dimensional 

datasets include the BreastEW, Colon, Ionosphere, KrVsKpEW, Leukemia, PenglungEW, Sonar, and WaveformEW. 

The CongressEW, Lymphography, SpectEW, Vote, and Zoo were listed as the medium scale sized datasets. The low-

dimensional datasets include Exactly, Exactly2, Iris, M-of-n, Tic-tac-toe, and Wine. This dimensionality classification 

is based on the number of instances and the number of features listed in each dataset in Table 3.   

Table 3: datasets listing and their corresponding details such as number of features, classes, and instances, a 

description on the dataset. 

Dataset and 

References 

Number of 

Instances 

Number 

of 

features 

Number 

of 

classes 

Dimensionality of dataset 

BreastEW 569 30 2  

 

 

 

High-dimensional dataset 

WaveformEW 5000 40 3 

Sonar 208 60 2 

PenglungEW 325 73 7 

KrVsKpEW 3196 36 2 

Leukemia 7070 72 2 

Ionosphere 351 34 2 



Colon 2000 62 2 

CongressEW 435 16 2  

 

Medium-scale dimensional dataset 

Lymphography 148 18 4 

SpectEW 267 22 2 

Vote 300 16 2 

Zoo 101 16 7 

Exactly 1000 13 2  

 

Low-dimensional datasets 

Iris 150 4 2 

Exactly2 1000 13 2 

M-of-n 1000 13 2 

Tic-tac-toe 958 9 2 

Wine 178 13 3 

 

Interestingly, the datasets have were drawn from different domains, demonstrating the richness and rigour of the 

experimentation testing the viability of the hybrid binary optimizers. For instance, the BreastEW is biology-based and 

medical oriented dataset, the WaveformEW is generates three classes of waves with each class sampled at 21 intervals, 

the Sonar represents a dataset of sonar signals, the PenglungEW is a biology-based and medical dataset, the 

KrVsKpEW and Tic-tac-toe are game-based, the Leukemia  dataset is a biology-based and medical-based dataset, the 

Ionosphere is based on electromagnetic records, the colon dataset is also a biology-based and medical-based as similar 

to Lymphography, SpectEW, and M-of-n. on the other hand, the CongressEW dataset is a congressional voting, as 

well as the Vote dataset. The Zoo and Iris are biology-based datasets. The Exactly and Exactly2 are artificial binary 

classification datasets, while the Wine dataset is based on information on chemicals in wines. 

4.2.2 Image-based Datasets 

The second experimentation applying the hybrid binary optimizer to medical images uses the MIAS [66] which has 

been preprocessed into the CBIS of the DDSM+CBIS [67]. In Figure 4 some samples of these datasets ate shown and 

some ground truth labeling listed with each sample. Th samples have samples with normal mammography images, 

and those with different abnormalities such as the calcification, and micro mass. Furthermore, the dataset allows for 

using samples with benign mass and benign calcification features.  

 
(a) Normal        (b)     Mass         (c)  Calcification        (d) Benign with  calcification         (e) Benign with mass 

Figure 4: Samples of images to be extracted from a combined datasets sourced from DDSM+CBIS and MIAS 

databases. Image labels follows: (a) Normal sample (N), (b) Mass abnormality (M), (c) calcification abnormality 

(CALC), (d) benign calcification (BC), and (e) benign with mass (BM). 

To eliminate noise from the MIAS and DDSM+CBIS datasets, this study used image enhancement technique, namely, 

contrast-limited adaptive histogram equalization (CLAHE). Outcome of the images from the CLAHE operation, a 

wavelet decomposition packet function is applied to extract high resolution and rich feature representation of each 

image passed through seam carving procedure.  

The breakdown of the image samples applied for the investigation of the proposed hybrid binary solution is provided 

in Table 4. The table lists the statistics of data applied from DDSM+CBIS and those from the MIAS sources. Sample 

size of 21,844 were resulting from DDSM+CBIS having 16,382 allocated for training, 2,182 for evaluation during 

training, and 3,274 for testing or prediction. On the other hand, the MIAS samples were set aside for a second-round 

evaluation/testing of the trained model. This is necessary to mitigate against overfitting the model. 

Table 4: Digital mammography dataset listing according to their class-based distribution. 



Dataset and 

References 

 Total 

image 

samples 

Normal 

samples 

(N) 

Samples 

with 

Mass 

(M) 

Samples 

with 

calcification 

(CALC) 

Samples with 

benign 

calcification 

(BC) 

Samples 

with benign 

with mass 

(BM) 

DDSM+CBIS 

[67] 

 21844 19077  728 660 708 671 

 Training 

samples 

16382  14307  546 495 531 503 

 Evaluation 

samples 

2182 1907 72 66 70 67 

 Testing 

samples 

3274 2861 109 99 106 100 

        

MIAS [66]  3075 2718 45 159 36 117 

 

These datasets with the five different categories of sample labels only amounted to about 75658 instances. However, 

to ensure that this study overcomes overfitting and underfitting of the neural network models, transformational data 

augmentation technique was applied to the samples to increase the sample size to 31688 instances. This argumentation 

technique includes image flipping, rotating and some other operations. These provided sufficient image samples, in 

addition to the text-based datasets, for the experimentation that produced the results discussed in the following section. 

5. Results and Discussion 

The experimentation described in the last section demonstrates the approach proposed in this study, and performance 

associated data were collected for results presentation in this section. To elaborate on this results presentation, in this 

section provided in three subsections which are: evaluation of the hybrid BEOSA methods with the non-hybridized 

binary variant of the EOSA algorithm; performance and discussion of the statistical analysis of the performances of 

the four binary algorithms considered in this study; and lastly, a discussion of the impact of the application of the 

hybrid binary optimizers to addressing neural network optimization architectures for better medical image analysis. 

Meanwhile, we provide a state-of-the-art comparison of the results of the application of the binary optimization 

algorithm with other studies which have applied the continuous optimization algorithm. 

5.1 Evaluation of the Hybrid BEOSA methods 

The results on the performance of HBEOSA-DMO HBEOSA-DMO-NT HBEOSA-PSO HBEOSA-PSO-NT and 

BEOSA methods are investigated and comparatively analyzed in this subsection. Using the metrics of accuracy, fitness 

function, cost function, feature count, and computation time (CT), the five methods are evaluated for determining 

which is more superior in application to addressing binary optimization challenges in real-life problems. Recall that 

the classification accuracy demonstrates the measure of the binary optimizers in effectively selecting a minimal 

number of features which are optimal in helping the classifiers produce good result. Meanwhile, the fitness and cost 

functions allow for investigating how the methods effectively fits each solution in the search space and what is the 

domain-related cost value required in achieving this fitness function. On the other hand, the feature count demonstrates 

the approximate number of features required by the optimizer to provide the classifier for improved performance. 

Lastly, we investigate what is the computational time required to apply the algorithm to the binary optimization 

process to derive good fitness and cost values, and as well to extract the optimal feature counts. Meanwhile, the 

experimentation was applied to categories of population to understand what the impact of population size is in 

influencing the performance being understudy in this research. As a result, we have chosen to investigate this using 

population sizes of 50 and 100. All presentations of the performance and evaluation of the HBEOSA-DMO HBEOSA-

DMO-NT HBEOSA-PSO HBEOSA-PSO-NT and BEOSA methods are based on dataset dimension. Therefore, our 

result presentation is further subdivided into high-dimensional, medium-dimensional, and low-dimensional datasets 

performance evaluation. 

 

In Table 5, the performance evaluation of the high-dimensional datasets namely BreastEW, Colon, Ionosphere, 

KrVsKpEW, Leukemia, PenglungEW, Sonar, WaveformEW, are outlined. Th result obtained for the accuracy on 50 

and 100 population sizes showed that the HBEOSA-PSO and HBEOSA-PSO-NT returned the best accuracy for 50 



population size, while the HBEOSA-DMO-NT returned the best classification accuracy for 100 population size. 

Results obtained for the fitness and cost function values demonstrate that the HBEOSA-PSO-NT and HBEOSA-

DMO-NT yielded better performance for the 50-population size on the fitness and cost respectively. However, when 

the 100-population size was applied, the HBEOSA-DMO-NT returned the best for fitness while HBEOSA-DMO and 

BEOSA returned the best performance for the cost function. Meanwhile, feature count results performance showed 

that HBEOSA-DMO-NT, HBEOSA-PSO-NT and BEOSA were more optimal and acceptable than the others. 

Interestingly, the BEOSA used the most minimal computational time compared to the other methods. Results obtained 

for the Colon and Ionosphere datasets were more interesting with the classification accuracy on 50 and 100 population 

sizes in each datasets showed that HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-PSO, HBEOSA-PSO-NT, and 

BEOSA for Colon, while only BEOSA demonstrated best performance on the Ionosphere dataset. For both datasets, 

BEOSA returned the minimal values for computational time and feature counts. However, the values returned for the 

fitness and cost functions showed that HBEOSA-DMO-NT and HBEOSA-PSO-NT were the best under 50 and 100 

population sizes. 

 

Table 5: Evaluation of the HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-PSO, HBEOSA-PSO-NT, and BEOSA 

methods using high-dimensional datasets on accuracy, fitness, cost function and feature counts 

Dataset Algorithm Acc-50 Acc-100 Fit-50 Fit-100 Cost-50 Cost-100 FC CT 

BreastEW 

HBEOSA-DMO 0.942 0.940 0.056 0.054 0.944 0.946 15.000 2540.629 

HBEOSA-DMO-NT 0.949 0.965 0.057 0.021 0.943 0.979 8.600 2766.993 

HBEOSA-PSO 0.963 0.953 0.072 0.035 0.928 0.965 7.000 2260.324 

HBEOSA-PSO-NT 0.965 0.946 0.016 0.053 0.984 0.947 6.381 3086.175 

BEOSA 0.947 0.947 0.054 0.054 0.946 0.946 5.000 0.021 

Colon 

HBEOSA-DMO 1.000 1.000 0.085 0.085 0.915 0.915 2.000 2413.129 

HBEOSA-DMO-NT 1.000 1.000 0.002 0.000 0.998 1.000 134.000 2088.655 

HBEOSA-PSO 1.000 1.000 0.089 0.157 0.911 0.843 76.077 2469.002 

HBEOSA-PSO-NT 1.000 1.000 0.002 0.000 0.998 1.000 45.315 2392.427 

BEOSA 1.000 1.000 0.0005 0.002  0.9995 0.9980 396.000 0.022 

Ionosphere 

HBEOSA-DMO 0.886 0.879 0.0849 0.085 0.9151 0.9146 2.000 708.539 

HBEOSA-DMO-NT 0.900 0.936 0.100 0.087 0.900 0.913 8.500 723.254 

HBEOSA-PSO 0.886 0.857 0.055 0.086 0.945 0.914 5.000 793.166 

HBEOSA-PSO-NT 0.914 0.936 0.114 0.073 0.886 0.927 4.500 786.935 

BEOSA 0.943 0.943 0.057 0.057 0.943 0.943 2.000 0.013 

KrVsKpEW 

HBEOSA-DMO 0.937 0.938 0.641 0.058 0.359 0.942 16.000 2943.689 

HBEOSA-DMO-NT 0.931 0.947 0.057 0.072 0.943 0.928 15.000 2894.754 

HBEOSA-PSO 0.900 0.934 0.148 0.057 0.852 0.943 1057.872 2846.351 

HBEOSA-PSO-NT 0.966 0.961 0.037 0.028 0.963 0.972 10.257 3115.554 

BEOSA 0.948 0.948 0.055 0.055 0.945 0.945 12.899 0.012 

Leukemia 

HBEOSA-DMO 1.000 1.000 0.0003 0.000 0.9997 1.000 145.000 3047.149 

HBEOSA-DMO-NT 0.987 1.000 0.00047 0.000358 0.9995 0.9996 213.000 2693.147 

HBEOSA-PSO 0.947 1.000 0.0001 0.0005  0.9999 0.9995 165.000 3301.407 

HBEOSA-PSO-NT 1.000 0.973 0.0004 0.0003  0.9996 0.9997 91.000 2799.496 

BEOSA 0.933 0.933 0.066 0.066 0.934 0.934 74.000 0.016 

PenglungEW 

HBEOSA-DMO 0.767 0.667 0.044 0.002 0.956 0.998 40.000 248.420 

HBEOSA-DMO-NT 0.867 0.733 0.068 0.067 0.932 0.933 17.500 250.196 

HBEOSA-PSO 0.800 0.767 0.069 0.023 0.931 0.977 49.000 256.531 

HBEOSA-PSO-NT 0.767 0.867 0.067 0.059 0.933 0.941 59.000 256.038 



BEOSA 0.933 0.933 0.000 0.000 1.000 1.000 9.732 0.018 

Sonar 

HBEOSA-DMO 0.929 0.810 0.096 0.120 0.904 0.880 17.000 646.479 

HBEOSA-DMO-NT 0.869 0.917 0.143 0.119 0.857 0.881 15.000 672.351 

HBEOSA-PSO 0.857 0.821 0.095 0.072 0.905 0.928 9.407 513.774 

HBEOSA-PSO-NT 0.881 0.905 0.142 0.095 0.858 0.905 15.112 634.425 

BEOSA 0.905 0.905 0.099 0.099 0.901 0.901 25.000 0.013 

WaveformEW 

HBEOSA-DMO 0.811 0.780 0.200 0.197 0.800 0.803 20.000 4554.501 

HBEOSA-DMO-NT 0.813 0.820 0.177 0.189 0.823 0.811 24.500 4146.997 

HBEOSA-PSO 0.781 0.798 0.114 0.086 0.886 0.914 16.000 4549.970 

HBEOSA-PSO-NT 0.820 0.810 0.194 0.169 0.806 0.831 17.034 4685.436 

BEOSA 0.801 0.800 0.202 0.202 0.798 0.798 20.000 0.012 

 

The computational time obtained for the KrVsKpEW, Leukemia, PenglungEW, Prostate, Sonar, and WaveformEW 

datasets showed that the BEOSA method remains the most efficient algorithm, and as well yielding the most optimal 

feature counts. However, when the classification accuracy is for these datasets were investigated for the 50 and 100 

population sizes, we observed that HBEOSA-DMO, HBEOSA-DMO-NT, and HBEOSA-PSO-NT were topping. 

Moreover, the performance for the fitness and cost function values showed that the BEOSA algorithm was more 

outperforming than others. The implication of our findings on the application of the high-dimensional datasets showed 

that while the hybrid methods and their corresponding NT-variants were more outperforming in classification 

accuracy, fitness, and cost function, they lagged the BEOSA method in the feature count and computational time. This 

demonstrates that hybrid methods are computationally expensive though they can help achieve better fitness of the 

search space and have a better understanding of yielding relevant features to the classifier for better performance. 

Furthermore, experimental results obtained for the medium-sized datasets are reported in Table 6. The CongressEW, 

CongressEW, Lymphography, SpectEW, Vote, and Zoo datasets were also investigated with the HBEOSA-DMO, 

HBEOSA-DMO-NT, HBEOSA-PSO, HBEOSA-PSO-NT, and BEOSA methods. As is observed with the high-

dimensional datasets, we found a reoccurring performance for BEOSA with respect to achieving the best in feature 

count and computational time for all the medium-dimensional datasets. Again, the implication of this is that in most 

datasets and real-life problems, the BEOSA method which does not hybridize with other methods are more desirable 

and optimal in helping to select the best combination and number of features in a dataset at a reduced computational 

time. However, when we desire to improve classification accuracy and obtain very good fitness and cost function 

values, hybrid methods are suitable for these. Meanwhile, the population sizes used were also found to minimally 

impact performance differences observed for these metrics.  

The classification accuracy for the CongressEW and Lymphography showed that HBEOSA-PSO was best on 50 

population size while HBEOSA-DMO-NT was suitable for population size of 100.  However, when their 

performances were investigated on their capability to fit the solution space and reduce cost function, the BEOSA was 

optimal with respect to cost function for both 50 and 100 population sizes, while HBEOSA-DMO-NT was optimal 

for on fitness function for both 50 and 100 population sizes. Though the HBEOSA-PSO high performing under the 

Lymphography dataset for the fitness and cost, it could not yield superior performance with the classification accuracy. 

Furthermore, an investigation of the performance of the SpectEW, Vote, and Zoo datasets showed that the hybrid 

methods, particularly HBEOSA-DMO-NT, always outperformed the non-hybrid method on the fitness and cost 

function values. However, for the performance on classification accuracy, the HBEOSA-PSO and HBEOSA-PSO-NT 

are more competitive on the population size of 50 with the Zoo dataset. The summary of our findings of the 

performance evaluation on the medium-dimension datasets on the HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-

PSO, HBEOSA-PSO-NT, and BEOSA methods revealed that applying the hybrid methods to obtain better 

performance on the classification accuracy, fitness function, and cost function is more optimal compared to the 

BEOSA methods. Moreover, it is desirable that our data instances are well classified with reduced cost and fitness 

values than having low feature counts which does not achieve the aim of performance enhancement. Therefore, our 



conclusion is that the hybrids method is more desirable when using high and medium dimensional datasets in real-life 

applications. 

Table 6: Evaluation of the HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-PSO, HBEOSA-PSO-NT, and BEOSA 

methods using medium-dimensional datasets on accuracy, fitness, cost function and feature counts  

Dataset Algorithm Acc-50 Acc-100 Fit-50 Fit-100 Cost-50 Cost-100 FC CT 

CongressEW 

HBEOSA-DMO 0.954 0.931 0.036 0.046 0.964 0.954 1.000 477.454 

HBEOSA-DMO-NT 0.954 0.971 0.058 0.026 0.942 0.974 6.500 466.500 

HBEOSA-PSO 0.989 0.966 0.047 0.026 0.953 0.974 1.996 515.259 

HBEOSA-PSO-NT 0.966 0.954 0.037 0.036 0.963 0.964 4.000 531.094 

BEOSA 0.943 0.943 0.060 0.060 0.940 0.940 5.000 0.013 

Lymphography 

HBEOSA-DMO 0.833 0.000 0.136 0.165 0.864 0.835 6.000 718.970 

HBEOSA-DMO-NT 0.917 0.900 0.074 0.037 0.926 0.963 7.500 599.726 

HBEOSA-PSO 0.783 0.900 0.233 0.036 0.767 0.964 9.000 650.063 

HBEOSA-PSO-NT 0.900 0.917 0.103 0.067 0.897 0.933 4.124 636.246 

BEOSA 0.900 0.000 0.103 0.103 0.897 0.897 6.524 0.011 

SpectEW 

HBEOSA-DMO 0.843 0.870 0.170 0.150 0.830 0.850 7.000 617.395 

HBEOSA-DMO-NT 0.889 0.824 0.096 0.187 0.904 0.813 10.000 596.261 

HBEOSA-PSO 0.815 0.796 0.186 0.077 0.814 0.923 7.360 601.872 

HBEOSA-PSO-NT 0.870 0.870 0.130 0.132 0.870 0.868 7.632 608.789 

BEOSA 0.870 0.870 0.132 0.132 0.868 0.868 7.000 0.016 

Vote 

HBEOSA-DMO 0.975 0.942 0.004 0.051 0.996 0.949 4.500 465.388 

HBEOSA-DMO-NT 0.958 0.983 0.051 0.020 0.949 0.980 5.500 491.004 

HBEOSA-PSO 0.967 0.958 0.019 0.050 0.981 0.950 1.498 459.809 

HBEOSA-PSO-NT 0.967 0.967 0.019 0.035 0.981 0.965 3.410 459.633 

BEOSA 0.967 0.967 0.035 0.035 0.965 0.965 3.416 0.011 

Zoo 

HBEOSA-DMO 0.950 0.920 0.002 0.147 0.998 0.853 3.000 494.763 

HBEOSA-DMO-NT 0.925 0.900 0.104 0.053 0.896 0.947 6.000 477.552 

HBEOSA-PSO 1.000 0.900 0.092 0.053 0.908 0.947 1.641 454.429 

HBEOSA-PSO-NT 1.000 1.000 0.004 0.006 0.996 0.994 8.000 440.724 

BEOSA 1.000 1.000 0.006 0.006 0.994 0.994 8.000 0.011 

 

The performance of the HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-PSO, HBEOSA-PSO-NT, and BEOSA 

methods on the low-dimensional datasets were also investigated and results listed in Table 7. The datasets considered 

in this category were Exactly, Exactly2, Iris, M-of-n, Tic-tac-toe, and Wine. An interesting reoccurring pattern 

observed for the high-dimensional, medium-dimensional, and low-dimensional datasets with respect to performance 

on number of feature counts returned and computational time required is that both HBEOSA-PSO-NT, and BEOSA 

were competing, though BEOSA remained at the topmost with respect to computational time. For the 50population 

size, BOESA was best for Exactly dataset, HBEOSA-PSO-NT best for Exactly2, Tic-tac-toe, and Wine datasets, 

HBEOSA-DMO-NT was the best for the Iris dataset, and HBEOSA-PSO was the best for the M-of-n dataset. This 

distribution of high performance among all methods for these low-dimensional datasets showed that any of the 

methods will be suitable for low-dimensional dataset. Interestingly, a similar performance is observed for the 

classification accuracy using the 100-population size. However, when the fitness and cost functions were evaluated 

on the datasets based on the five optimization methods, we found that the HBEOSA-PSO and HBEOSA-PSO-NT 

yielded better performance by obtaining good fitness values while the HBEOSA-DMO and HBEOSA-DMO-NT 

returned better cost function values for most low-dimensional datasets.  



Table 7: Evaluation of the HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-PSO, HBEOSA-PSO-NT, and BEOSA 

methods using low-dimensional datasets on accuracy, fitness, cost function and feature counts  

Dataset Algorithm Acc-50 Acc-100 Fit-50 Fit-100 Cost-50 Cost-100 FC CT 

Exactly 

HBEOSA-DMO 0.760 0.652 0.168 0.301 0.832 0.699 6.000 934.955 

HBEOSA-DMO-NT 0.695 0.792 0.308 0.154 0.692 0.846 7.000 946.215 

HBEOSA-PSO 0.890 0.758 0.009 0.308 0.991 0.692 1.000 1027.426 

HBEOSA-PSO-NT 0.760 0.877 0.306 0.232 0.694 0.768 6.668 1151.243 

BEOSA 0.980 0.900 0.022 0.022 0.978 0.978 2.336 0.011 

Exactly2 

HBEOSA-DMO 0.700 0.722 0.237 0.238 0.763 0.762 1.000 1153.631 

HBEOSA-DMO-NT 0.770 0.760 0.238 0.238 0.762 0.762 3.500 820.203 

HBEOSA-PSO 0.740 0.650 0.025  0.235 0.975 0.765 2.000 855.708 

HBEOSA-PSO-NT 0.778 0.762 0.222 0.238 0.778 0.762 3.000 1091.790 

BEOSA 0.765 0.760 0.236 0.236 0.764 0.764 5.000 0.011 

Iris 

HBEOSA-DMO 0.953 0.967 0.071 0.054 0.929 0.946 2.000 2146.082 

HBEOSA-DMO-NT 0.973 0.973 0.036 0.070 0.965 0.920 1.600 2019.983 

HBEOSA-PSO 0.940 0.933 0.001 0.066 0.999 0.934 1.000 2187.545 

HBEOSA-PSO-NT 0.967 0.953 0.003 0.033 0.998 0.967 1.014 1884.631 

BEOSA 0.967 0.967 0.036 0.035 0.965 0.964 1.000 0.016 

M-of-n 

HBEOSA-DMO 0.810 0.797 0.326 0.217 0.674 0.783 6.000 874.501 

HBEOSA-DMO-NT 0.843 0.820 0.183 0.208 0.817 0.792 96.000 854.640 

HBEOSA-PSO 0.918 0.900 0.166 0.127 0.834 0.873 1.276 708.316 

HBEOSA-PSO-NT 0.837 0.910 0.152 0.027 0.848 0.973 4.550 757.834 

BEOSA 0.855 0.850 0.148 0.148 0.852 0.852 6.000 0.010 

Tic-tac-toe 

HBEOSA-DMO 0.742 0.719 0.179 0.252 0.921 0.748 1.000 1816.082 

HBEOSA-DMO-NT 0.776 0.773 0.209 0.224 0.791 0.776 6.000 1686.338 

HBEOSA-PSO 0.758 0.779 0.244 0.018 0.756 0.982 1.000 1804.136 

HBEOSA-PSO-NT 0.820 0.773 0.151 0.238 0.849 0.762 5.000 1778.422 

BEOSA 0.781 0.781 0.222 0.222 0.778 0.778 5.000 0.014 

Wine 

HBEOSA-DMO 0.903 0.903 0.030 0.059 0.970 0.941 5.000 1014.824 

HBEOSA-DMO-NT 0.972 1.000 0.032 0.004 0.968 0.996 4.500 762.768 

HBEOSA-PSO 0.986 0.889 0.003 0.025 0.997 0.975 2.137 840.244 

HBEOSA-PSO-NT 0.986 0.986 0.056 0.002 0.944 0.998 3.065 1090.850 

BEOSA 0.972 0.972 0.031 0.031 0.969 0.969 4.000 0.011 

 

The summary of the findings on the investigation of the performances of the HBEOSA-DMO, HBEOSA-DMO-NT, 

HBEOSA-PSO, HBEOSA-PSO-NT, and BEOSA on high-dimensional, medium-dimensional, and low-dimensional 

datasets is that the BOESA method remains efficient with respect to computational time. However, performance 

evaluations on the classification accuracy, fitness function, and cost function values showed that the hybrid binary 

optimizers are more optimal and suitable for application to real-life optimization problem. This is important because 

while it is desirable to return a very minimal number of feature sets, it is also most desirable to have the optimizer 

select and combine the most relevant features to help the classifier perform well. Moreover, the fitness function is a 

factor for judging the quality of the search space to know what solution to select for solving an optimization problem. 

Therefore, since the hybrid methods such as the HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-PSO, and 

HBEOSA-PSO-NT are returning the best fitness and cost values, the outcome from our study demonstrates and 

confirms that these hybrids method are to be desirable over the basic BEOSA method. 



The plot for the fitness values and cost function values obtained for the number of iterations experimented are graphed 

in Figures 5 and 6 respectively.  These plots are very important to help understand how the convergence curve for 

these fitness and cost functions flowed during the optimization process.  For brevity, we examined the convergence 

curves for the fitness and cost functions for WaveformEW, Zoo, and Wine which belong to the high-dimensional, 

medium-dimensional, and low-dimensional dataset categories. The fitness function convergence curves for all datasets 

considered showed that the BEOSA method has a curve that always sits at the bottom of the graph except in the case 

of the WaveformEW – a generalization on the high dimensional datasets. Whereas the hybrid binary optimization 

methods such as the HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-PSO, HBEOSA-PSO-NT always compete by 

sitting at the top of the graph (for high dimensional datasets e.g WaveformEW), and mid-level (for medium 

dimensional datasets e.g Zoo), bottom (for low dimensional datasets e.g Wine).  This is important to understand the 

implication of the position along which a curve runs. For instance, the curve of HBEOSA-DMO sits at the top position 

for the WaveformEW datasets both in the cases of 50 and 100 population sizes. The implication of this is that 

throughout the optimization process over the 50 and 100 iterations times, the HBEOSA-DMO algorithm returned 

minimal fitness values when compared with HBEOSA-DMO algorithm which returned best fitness for 50 and 100 

population sizes. The performance of HBEOSA-DMO-NT and HBEOSA-PSO-NT methods on the medium-

dimensional (e.g Zoo) datasets yielded the best in 100 population size and 50 population size respectively. Similarly, 

when the 50 and 100 population sizes are also considered, we found that the same HBEOSA-DMO, HBEOSA-DMO-

NT and HBEOSA-PSO-NT methods returned a very good convergence curve which lies mostly at the bottom. 

However, the HBEOSA-PSO showed a fitness curve that underperformed when compared with other hybrid methods.    

As another example, when the convergence curves for the cost function were examined, the hybrid methods HBEOSA-

DMO, HBEOSA-DMO-NT and HBEOSA-PSO-NT showed a very strong competition because they obtained low-

cost functions for the high-dimensional (e.g WaveformEW) datasets. This implies that the methods successfully 

optimized the cost objective function so that the process was completed at a reduced optimization computation cost 

and gaining good fitness values. Recall that these HBEOSA-DMO-NT and HBEOSA-PSO-NT are those methods 

using the proposed nested transform functions. Therefore, it is important to observe here that the proposed nested 

transfer functions have contributed to addressing the issue of maximization of the cost function objective. On the other 

hand, their corresponding variants namely the HBEOSA-DMO and HBEOSA-PSO also performed well especially in 

the cases of Zoo dataset (for HBEOSA-DMO) using 50 population size, Wine (in 50 and 100 population sizes), and 

Zoo (in 50 population sizes) datasets. Meanwhile, for the desirable performance among the curves showing well 

maximized objective cost function, the HBEOSA-DMO returned the best curves in the cases of 50 and 100 population 

sizes for the high-dimensional (e.g WaveformEW) datasets. The HBEOSA-DMO and HBEOSA-PSO curves were the 

best when used with 50 and 100 population sizes on Zoo dataset. Interestingly, the HBEOSA-PSO showed competitive 

performance on the 50 and 100 population sizes for the low-dimensional (e.g Wine) datasets.  

The implication of these observations with respect to the convergence curves of the fitness and cost function values is 

that the optimization process over those number of iterations reveals that the hybrid binary optimization methods can 

find optimal binary solutions from the search space using consistent and quality fitness. The same interpretation holds 

for the cost values obtainable when the hybrid binary optimizers are applied to finding optimal binary solutions from 

the search space in real-life optimization problems. 



  

  
(a) 50-population size  

  



 
(a) 100-population size 

Figure 5: Line plot showing the fitness-function optimization visualization for the high-dimensional, medium-dimensional, and 

low-dimensional datasets during the 50 iteration points. (a) showing the fitness-function for 50-population size, and (b) showing 

the fitness-function for the 100-population size 

 

 

 

 

 
(a) 50-population size 



 

 

 
(a) 100-population size 

Figure 6: Line plot showing the cost-function optimization visualization for the high-dimensional, medium-dimensional, and 

low-dimensional datasets during the 50 iteration points. (a) showing the cost-function for 50-population size, and (b) showing the 

cost-function for the 100-population size 

 

Another important graphing observed and plotted during the experimentation are those for the classification accuracy 

and those for the computational runtime. In Figure 7, we illustrate the differences observed for the classification 

accuracy for the high-dimensional, medium-dimensional, and low-dimensional datasets. For the high-dimensional 

datasets all the methods showed that there was a strong competition among them for the Colon and WaveformEW 

datasets, however, the BreastEW, Ionosphere, KrVsKpEW, Leukemia, and Sonar datasets have the hybrid binary 

algorithms rotating or sharing the superiority. The PenglungEW datasets showed that the BOESA was returning best 

classification accuracy. In summary, the hybrids are more impressive in their classification accuracy performance 

compared with BEOSA. Furthermore, the medium datasets showed that for CongressEW and Vote datasets, all 

algorithms are competing well. But for the Lymphography, SpectEW, and Zoo, we observed that HBEOSA-DMO-

NT and HBEOSA-PSO-NT were more outperforming in classification accuracy compared with others. For the low-

dimensional datasets, the BEOSA returned best for Exactly and Iris datasets, while the HBEOSA-PSO was best for 

M-of-n. The HBEOSA-DMO-NT and HBEOSA-PSO-NT competes Wine and Tic-tac-toe. 



  
(a) High-dimensional dataset (b) Medium-dimensional dataset 

 

(c)Low-dimensional dataset 

 

Figure 7: Bar chart on the classification accuracy of the high-dimensional, medium-dimensional, and low-dimensional 

datasets 

 

The runtime required by each algorithm was evaluated based on each category of the datasets used for the 

experimentation over the number of iterations. Using the bar chart in Figure 8, the high-dimensional datasets, the 

highest computational time was demanded by the WaveformEW dataset, and followed by the BreastEW, Colon 

KrVsKpEW, and Leukemia whose runtime was in the average of about 2500 seconds. The Ionosphere, PenglungEW, 

and Sonar datasets utilized the lowest computational time among those in the category of high-dimensional datasets. 

The BOESA remained very insignificant based on computational time on the bar charts, though among the hybrid 

binary optimization algorithms, the HBEOSA-DMO-NT showed efficiency with respect to computational time among 

all the high-dimensional datasets. The HBEOSA-PSO and HBEOSA-PSO-NT were the costliest based on 

computational time for the high-dimensional datasets.  Interestingly, for the medium-dimensional datasets, the 

HBEOSA-DMO were the costliest while the HBEOSA-DMO-NT were runtime efficient. Similarly, the HBEOSA-

DMO-NT remained very efficient for computational time in the category of low-dimensional datasets. For this same 

low-dimensional category, the HBEOSA-DMO, HBEOSA-PSO and HBEOSA-PSO-NT methods were least cost 

effective considering their computational runtime. 



  

(a) High-dimensional dataset (b) Medium-dimensional dataset 

 

(c) Low-dimensional dataset 

 

Figure 8: Bar chart on the computational time comparison of the high-dimensional, medium-dimensional, and low-dimensional 

datasets 

 

In Table 8, a computer resource based comparative analysis is presented which investigated and reported the proposed 

hybrid method with other similar non-hybrid methods which does not use the nested transfer functions. Findings from 

this comparative analysis showed although the complexity of the proposed method is more than those other traditional 

methods, it however utilized a low computational resource on average high computing infrastructure. For instance, 

the proposed method was experimented on a system with memory 256GB, external drive space as much as 4TB-

960GB, and 2 extra graphical processing units (GPU) with each having 32GB space. On the other hand, 

experimentation of the traditional single binary optimizers with no use of the proposed nested transfer functions, was 

conducted on a system CPU 1.70 GHz, 2.40 GHz; RAM of 16 GB; 64-bit Windows 10 OS. Results obtained and listed 

in the table indicates that the computational cost of the proposed method will be high on low-resourced computing 

infrastructure while it will be insignificant on systems with average computational power. 

Table 8: A comparison of the binary optimization method proposed in this study with continuous methods based on 

computational cost on some selected benchmark datasets. 

 Hybrid binary method with nested transfer functions 

Single binary method with NO nested transfer 

functions 



Dataset 

HBEOSA-

PSO-NT 

HBEOSA-

DMO-NT 

HBEOSA-

PSO 

HBEOSA-

DMO BPSO BDMO BEOSA BIEOSA 

Colon 2549 2211 2597 2561 10,541 10,026 8971 9562 

Leukemia 2838 2758 3378 3053 15,367 14,626 10,973 13,082 

SpectEW 601 584 591 621 3386 3314 4389 4118 

CongressEW 535 476 511 482 3293 3167 3681 3439 

Iris 1821 2046 2401 2387 1569 2454 3638 4367 

Exactly 1258 910 1107 889 5576 5139 6135 5239 

 

Datasets were selected from the high-dimensional, medium-dimension and low-dimensional categories to compare 

across the hybrid binary method with nested transfer functions and the single binary method with NO nested transfer 

functions. Results reported in the table showed that there is an average 4-fold reduction in computational cost in 

running the approach proposed on systems with more processing power and memory. 

The existing variation of computational time among the algorithms notwithstanding, we observed that the marginal 

differences are insignificant compared to performance improvements obtained using these algorithms for the 

classification accuracy, fitness function, and cost functions. It demonstrates that if we desire this high level of 

performance in addressing real-life optimization problems, it will be at the cost of computational time – a tradeoff that 

is worth the benefit of solving a challenging optimization.  

 

5.2 Statistical Analysis of the BEOSA and the HBEOSA methods 

In the previous subsection, the focus of the evaluation was on the binary optimization algorithms with respect to their 

performances on standard metrics. However, it is also important to comparatively evaluate the statistical significance 

of their performance. As a result, in this subsection, the Analysis of Variance (ANOVA) test is applied to statistically 

analyze the difference between the means of all the five binary optimization methods. The one-way and two-factor 

ANOVA analysis were investigated to check the statistical differences among the means of the HBEOSA-DMO, 

HBEOSA-DMO-NT, HBEOSA-PSO, HBEOSA-PSO-NT, and BEOSA methods. In the two analyses, a null 

hypothesis is being tested: to determine if there is no significant difference among the means of the five binary 

optimization methods. To investigate this, we focused on using the fitness and classification accuracy of all the 

methods. 

The single-factor or the one-way ANOVA test results obtained are listed in Tables 9 and 10 for the summary statistics 

and the ANOVA about the five binary optimization methods respectively. Using a p-value of 0.05, the summary table 

shows that for the fitness values over the 100-population size, the mean strengths range between 0.068305 for the 

BEOSA to the highest being 0.105155 for HBEOSA-DMO. The value of 0.081545 which was returned as the average 

mean for HBEOSA-DMO-NT is very close in range with that of HBEOSA-PSO-NT – a confirmation that the NT-

variant of the hybrid binary optimizers may not really have a significant statistical difference between their mean. For 

the classification accuracy based on the 100-population size, the lowest mean is reported for 0.844037 while the 

highest remains 0.916949. This also shows that there is a significant statistical difference among the means of all the 

five binary optimization algorithms.  

 

Table 9: Summary of ANOVA: Single Factor 

 Fit-100 population Accuracy-100 population 

Groups Count Sum Average Variance Count Sum Average Variance 

HBEOSA-DMO 9 0.946397 0.105155 0.008399 9 7.596332 0.844037 0.015607 

HBEOSA-

DMO-NT 9 0.733902 0.081545 0.003983 9 8.080683 0.897854 0.008604 

HBEOSA-PSO 9 0.693548 0.077061 0.008385 9 7.852659 0.872518 0.008505 

HBEOSA-PSO-

NT 9 0.745773 0.082864 0.005426 9 8.22799 0.914221 0.002913 



BEOSA 9 0.614745 0.068305 0.003277 9 8.25254 0.916949 0.002236 

 

In the ANOVA table, the p-value of 0.886557 for fitness on 100-population is significantly higher than the 0.05 which 

we used. This therefore allows for accepting the null hypothesis to confirm that there is no significant difference in 

the mean-values of all the five binary optimization algorithms.  Considering the p-value returned for the classification 

accuracy on the 100-population size, the value of 0.3581 is significantly higher than the value of 0.05 we used. This 

confirms that there is no significant statistical difference among the mean values of all the binary optimization methods 

with respect to the classification accuracy they reported. 

 

Table 10: ANOVA for the single factor analysis 

 Fit-100 population 
Accuracy-100 population 

Source of 

Variation SS df MS F P-value F crit SS df MS F 

P-

value F crit 

Between 

Groups 0.006698 4 0.001674 0.284 0.886557 2.605975 0.0341 4 0.00853 1.12572 0.3581 2.6060 

Within 

Groups 0.235757 40 0.005894    0.30292 40 0.00757    

Total 0.242454 44         0.33702 44         

 

The two-factor ANOVA analysis performed for the HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-PSO, 

HBEOSA-PSO-NT, and BEOSA methods is reported on Table 11. In this two-factor analysis, the aim is to investigate 

if there are not any mean differences among the five binary optimization methods studied in this research based on 

the combination of their classification accuracy and fitness function value. The outcome of these two-factor ANOVA 

tests is divided into the summary of the analysis and the ANOVA analysis result. The values of 0.489699, 0.474789, 

0.498542, 0.492627, and 0.489699 were obtained for the HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-PSO, 

HBEOSA-PSO-NT, and BEOSA respectively on the two-factor consideration for accuracy-fitness factors. The 

average mean for the HBEOSA-DMO, and BEOSA are similar when compared to those for the other three methods. 

Interestingly, we observed that the average mean for the HBEOSA-DMO was the lowest and far removed from the 

range of the remaining methods. This demonstrates that while looking at the performance of HBEOSA-DMO based 

on individual dataset, we assumed that it was yielding better performance, however here we understand from the 

analysis that a two-facto consideration of the performance reveals a lag.  

Table 11: Two-factor ANOVA analysis based on the fitness and accuracy metrics. 

SUMMARY 

HBEOSA-

DMO 

HBEOSA-

DMO-NT 

HBEOSA-

PSO 

HBEOSA-

PSO-NT BEOSA Total 

fitness             

Count 9 9 9 9 36 9 

Sum 0.733902 0.693548 0.745773 0.614745 2.787969 0.733902 

Average 0.081545 0.077061 0.082864 0.068305 0.077444 0.081545 

Variance 0.003983 0.008385 0.005426 0.003277 0.00485 0.003983 

       

Accuracy             

Count 9 9 9 9 36 9 

Sum 8.080683 7.852659 8.22799 8.25254 32.41387 8.080683 

Average 0.897854 0.872518 0.914221 0.916949 0.900385 0.897854 

Variance 0.008604 0.008505 0.002913 0.002236 0.005409 0.008604 

       

Total          

Count 18 18 18 18 18  



Sum 8.814585 8.546208 8.973763 8.867284 8.814585  

Average 0.489699 0.474789 0.498542 0.492627 0.489699  

Variance 0.182313 0.175441 0.186877 0.193235 0.182313  

       

       

ANOVA       
Source of 

Variation SS df MS F P-value F crit 

Sample 12.1902 1 12.1902 2250.748 1.37E-51 3.990924 

Columns 0.005519 3 0.00184 0.339673 0.796696 2.748191 

Interaction 0.006889 3 0.002296 0.423973 0.736459 2.748191 

Within 0.346628 64 0.005416    

       

Total 12.54923 71         

 

The two-way ANOVA analysis shows that the p-values obtained are 1.37E-51, 0.796696, and 0.736459. Interestingly, 

the largest of these p-values is 0.796696, a value higher than the 0.05 applied for the analysis. Since the p-value of the 

interaction is not closer to 0.05, we may conclude that probably one or more of the fitness function value or the 

classification accuracy contributed to the improved performance reported for the methods investigated in this study. 

Now with this two-factor ANOVA result, and the one-factor ANOVA result discussed earlier, it is evident that the 

performance of the five binary optimization methods is relevant and has a real-life applicability. 

5.3 Application of the HBEOSA methods to medical image analysis 

In this subsection, we investigate the applicability of the hybrid binary optimization algorithms and the basic binary 

optimizers. The aim is to understand how efficient binary optimization algorithms can outperform or compete with 

continuous optimization algorithms. Experimentation design was aimed at optimizing the features extracted through 

the convolutional-pooling blocks using the binary optimizer and the related hybrid binary optimization algorithms. In 

Figures 9 (a-d), the convergence curves for the 1earning rate 1e-06 on 40 epochs using Adadelta, 1earning rate 1e-05 

on 10 training epochs using Adadelta, 1earning rate 1e-05 on 10 training epochs using Adam, and 1earning rate 1e-

04 on 10 training epochs using Adam are listed. The 40-epoch training showed that the model was learning the feature 

representations so well such that curves for both the training and validation dataset samples were aligning from epoch 

3-40. To verify if a reduced learning rate will improve learning and speed the process, we applied a learni9ng rate of 

1e-05 on the same Adadelta through 10-epcohs. Since there was not much difference, the experimentation was further 

improved by investigating how the Adam optimizer will perform on 1e-05 and 1e-04 learning rates. Results returned 

as plotted in the figures indicate that the CNN architecture is suitable for the feature extraction task.   



  
(a) 40-epoch training using Adadelta and learning rate 

of 1e-06 

(b) 10-epoch training using Adadelta and learning rate of 

1e-05 

  

  
(c) 10-epoch training using Adam and learning rate of 

1e-05 

(d) 40-epoch training using Adam and learning rate of 1e-

04 

Figure 9: Convergence curves for the different hyperparameters investigated on the CNN architecture to understand 

the suitable hyperparameters to use for the feature extraction task. 

In Table 12, a summary of the performance of the CNN model is outlined. The aim is to evaluate the effectiveness of 

the model for effectively extracting the necessary features required for initialization of the optimization phase.  Results 

obtained showed that the value of 0.881491 for classification accuracy, precision, recall, and F1-score were returned 

when the model was applied for prediction on the unseen dataset. The implication of these performance is that the 

current classification capability of the trained model is desirable and useful to progress the next phase of the study. 

Table 12: Performance of the trained CNN on prediction task using the test data partition 

Accuracy Precision Recall F1-Score 

0.881491 0.881491 0.881491 0.881491 

Experimentation for the feature selection and reduction using the hybrid binary optimizers was carried out using for 

different classifiers. Recall that the CNN model has been used for feature extraction while the vectorized features have 

been optimized for selection using the binary hybrid methods. Therefore, the random forest (RF), KNN, multilayer 

perceptron (MLP), and Decision Tree (DT) were applied as classifiers during this experiment. The K-fold value of 5 

was used with each of the classifier on the test data when the training of the classifiers has been completed. The 



Random Forest classifier was trained using the n_estimators=300, Decision Tree classifier was trained with the 

maximum depth = 2, the MLP classifier was trained using the parameters alpha=0.001, 

hidden_layer_sizes=(500,200,100), max_iter=200, and random_state=4. All these hyperparameters constitute the 

training of the classifiers on the selected and reduced feature set. Results were obtained by evaluating the optimized 

features with the RF, KNN, MLP and the softmax classifiers.  The results from the experimentation are analysed and 

comparatively compared for discussion to understand how the hybrid binary optimization algorithms can perform in 

solving the medical image analysis. Here, we seek to understand how efficient the binary optimization methods over 

the continuous optimization methods are in selecting the discriminant features from digital mammography to ensure 

a good classification result is obtained. Presentation and discussion of the results obtained here are made to establish 

the difference between the pre-optimization phase, and the after effect when the optimization methods have been 

applied. 

In Table 13, the results for the classification accuracy, precision, recall, F-score, and area under the ROC (AUC) are 

outlined for the application of HBEOSA-DMO to the feature selection problem. Meanwhile, note that the 

interpretation to these metrics follows: accuracy implies the percentage of the predictions that are correct; precision is 

computes the percentage of real positives samples that our model correctly predicted; recall implies the percentage of 

positive predictions made that are actually correct; F1-score is the weighted average of the values for precision and 

recall for the predictions; and AUC showing the performance of the model as a value near 1.0 represents good 

performance. So, in the table, the performance of HBEOSA-DMO showed that the pre-optimization phase had the 

best classification accuracy of 0.6731, best precision is 0.85, best recall is 0.99, best F1-score 89 and the best AUC is 

0.7918. however, after the optimizer method was applied to the feature selection process, result obtained showed that 

best classification accuracy of 0.8252, best precision is 0.97, best recall is 0.97, best F1-score 99 and the best AUC is 

0.8291. The implication of this performance is that there is now a classification accuracy performance gain of 0.1521 

because of the proposed approach of using the hybrid binary of BEOSA with DMO and with the nested function.   

Table 13: Comparative analysis of the classification accuracy, precision, recall, F1-score, and AUC performances of 

features extracted when applied to KNN, RF, MLP and DTree algorithms for HBEOSA-DMO 

Stage Classifier Accuracy Precision Recall F1-score AUC 

Pre-

optimization 
KNN 0.6623 0.85 0.94 0.89 0.7539 

RF 0.6731 0.73 0.67 0.84 0.7818 

MLP 0.6666 0.67 0.99 0.80 0.7918 

DTree 0.6147 0.72 0.92 0.81 0.7505 

Post-

optimization 
KNN 0.7002 0.88 0.97 0.92 0.7954 

RF 0.8252 0.97 0.83 0.99 0.8291 

MLP 0.6743 0.76 0.69 0.81 0.7922 

DTree 0.6415 0.73 0.96 0.83 0.7591 

In a similar manner, the performance of HBEOSA-DMO-NT was investigated and reported in Table 14. The aim of 

these second investigation is to compare the result of HBEOSA-DMO and HBEOSA-DMO-NT to understand the 

relevance of the nested function when applied to the problem of feature reduction and selection. Results obtained 

showed that prior to using the HBEOSA-DMO-NT method for the optimization the feature selection process, recall 

and precision yielded 0.97 and 0.85 being the best, while maximum values for F1-score, AUC, and classification 

accuracy obtained are 0.94, 0.7904, and 0.6883. However, it was interesting to discover that the application of the 

HBEOSA-DMO-NT showed that maximum performance obtained for recall, precision, F1-score, AUC, and 

classification accuracy are 1.0, 0.97, 0.98 0.8280, and 0.8286 respectively. This demonstrates that performance gain 

with respect to classification and AUC are 0.1403 and 0.0376 respectively.  

Table 14: Comparative analysis of the classification accuracy, precision, recall, F1-score, and AUC performances of 

features extracted when applied to KNN, RF, MLP and DTree algorithms for HBEOSA-DMO-NT 

Stage Classifier Accuracy Precision Recall F1-score AUC 

KNN 0.6277 0.85 0.92 0.88 0.7656 



Pre-

optimization 
RF 0.6883 0.92 0.97 0.94 0.7888 

MLP 0.6731 0.68 0.67 0.81 0.7904 

DTree 0.6341 0.74 0.95 0.83 0.7506 

Post-

optimization 
KNN 0.7002 0.88 0.97 0.92 0.7954 

RF 0.8286 0.97 1.00 0.98 0.8280 

MLP 0.6743 0.68 0.68 0.81 0.7922 

DTree 0.6415 0.73 0.96 0.83 0.7592 

Therefore, comparing the performance of HBEOSA-DMO-NT and HBEOSA-DMO, we found that there is a 

performance gain of 0.0118 based on classification accuracy. This demonstrates that the use of the nested function in 

feature selection on the hybrid solution is much beneficial than the basic binary hybrid method. 

Furthermore, we investigated the performance of HBEOSA-PSO with HBEOSA-PSO-NT to understand if the use of 

the proposed nested function is supportive of improving classification accuracy, precision, recall, F1-score, and AUC. 

To understand this further, Table 15 is provided to outline the results obtained for the HBEOSA-PSO approach. Pre-

optimization performance of this method shows that precision, recall, and F1-score are high though the best of these 

stood at 0.92, 0.97, and 0.88 respectively. The classicisation accuracy and the AUC at this stage also reported their 

best as 0.6905 and 0.7905. However, after the optimization method was applied to select the best representation of 

feature subset required for the classifier, we observed some measure of improvements. The result showed that the best 

for classification accuracy, precision, recall, F1-score, and AUC are 0.8212, 0.97, 1.00, 0.98 and 0.8284. this indicates 

that there was performance gain of 0.1307, 0.05, 0.05, 0.04, and 0.0379 for classification accuracy, precision, recall, 

F1-score, and AUC respectively due to the use of HBEOSA-PSO. The implication of this is that the combination of 

the hybrid with the proposed nested function improved performance across all metrics.         

Table 15: Comparative analysis of the classification accuracy, precision, recall, F1-score, and AUC performances of 

features extracted when applied to KNN, RF, MLP and DTree algorithms for HBEOSA-PSO 

Stage Classifier Accuracy Precision Recall F1-score AUC 

Pre-

optimization 
KNN 0.6277 0.85             0.92 0.88 0.7656 

RF 0.6905 0.92       0.97       0.94 0.7832 

MLP 0.6732 0.68 0.67 0.68 0.7905 

DTree 0.6342 0.74             0.95 0.83 0.7520 

Post-

optimization 
KNN 0.7002 0.87             0.97 0.92 0.7954 

RF 0.8212 0.97             1.00 0.98 0.8284 

MLP 0.6743 0.68             1.00 0.81 0.7922 

DTree 0.6415 0.73             0.96 0.83 0.7591 

The result obtained for HBEOSA-PSO-NT for all metrics are listed in Table 16 for classification accuracy, precision, 

recall, F1-score, and AUC. The comparative analysis of the results with respect to the pre-optimization and post-

optimization phases showed that there was also an improvement. For instance, performance for classification 

accuracy, precision, recall, F1-score, and AUC after the optimization returned the best values of 0.825, 0.96, 1.0, 0.98, 

and 0.8288 respectively. Computing the difference between this performance and those obtained prior to the 

application of the HBEOSA-PSO-NT, result shows performance gains of 0.1519, 0.1, 0.07, 0.9, and 0.0356 for 

classification accuracy, precision, recall, F1-score, and AUC respectively.    

Table 16: Comparative analysis of the classification accuracy, precision, recall, F1-score, and AUC performances of 

features extracted when applied to KNN, RF, MLP and DTree algorithms for HBEOSA-PSO-NT 

Stage Classifier Accuracy Precision Recall F1-score AUC 

Pre-

optimization 
KNN 0.6536 0.86             0.93 0.89 0.7605 

RF 0.6731 0.72 0.67 0.83 0.7761 



MLP 0.6688 0.67 0.67 0.80 0.7932 

DTree 0.6342 0.69       0.95      0.80 0.7494 

Post-

optimization 
KNN 0.7002 0.88             0.97 0.92 0.7954 

RF 0.825 0.96             1.00 0.98 0.8288 

MLP 0.6743 0.68             1.00 0.81 0.7922 

DTree 0.6415 0.73             0.96 0.83 0.7592 

Comparing the performance of HBEOSA-PSO with HBEOSA-PSO-NT, we discovered that the HBEOSA-PSO which 

uses the nested function outperformed the latter across all the metrics computed. Furthermore, the performances of 

HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-PSO, and HBEOSA-PSO-NT were comparatively evaluated. 

Outcome of this comparison showed that the other of performance follows this sequence with the most performing 

method being the first and the least performing being the last: HBEOSA-PSO, HBEOSA-DMO, HBEOSA-PSO-NT 

and HBEOSA-DMO-NT. Overall the improvement observed for PSO-based hybrid over the DMO-based hybrid 

showed that a classification accuracy difference stood at 0.1401. 

In Table 17, the summary of the classification accuracy and the area under curve (AUC) metrics are presented for the 

RF, KNN, MLP, and softmax classifiers for each optimizer namely: HBEOSA-DMO, HBEOSA-DMO-NT, 

HBEOSA-PSO, HBEOSA-PSO-NT, and BEOSA methods. The comparison reported in this table is to enable 

differentiating performances of all the classifiers applied. This is necessary to help guide the choice of classifier in 

future studies. We discovered that the random forest and the softmax classifiers showed significant performance 

increase compared to KNN, MLP and decision tree. 

Table 17: Comparative analysis of the classification performance of the trained CNN using the Softmax, KNN, RF, 

MLP and DTree algorithms for HBEOSA-DMO, HBEOSA-DMO-NT, HBEOSA-PSO, HBEOSA-PSO-NT, and 

BEOSA methods 

Classifier 

HBEOSA-DMO HBEOSA-DMO-NT HBEOSA-PSO HBEOSA-PSO-NT 

Acc AUC Acc AUC Acc AUC Acc AUC 

KNN 0.7002 0.7954 0.7002 0.7954 0.7002 0.7954 0.7002 0.7954 

RF 0.8252 0.8291 0.8286 0.8280 0.8212 0.8284 0.825 0.8288 

MLP 0.6743 0.7922 0.6743 0.7922 0.6743 0.7922 0.6743 0.7922 

DTree 0.6415 0.7592 0.6415 0.7592 0.6415 0.7591 0.6415 0.7592 

Softmax 0.794 - 0.708 - 0.794 - 0.794 - 

 

To further understand how relevant the use of the binary metaheuristic algorithms over the popular continuous 

metaheuristic algorithm for selection of optimal medical image features is, we compare the result obtained in this 

study with those recent related methods. In Table 18 the listing for the performance comparison with the state-of-the-

art methods is based on the approach used, the type of optimizer used, and the result obtained. Note that all the related 

studies compared here are all based on digital mammography datasets.   

Table 18: Performance-based comparative analysis of the proposed method with methods using continuous 

optimization algorithms for neural network hyperparameter optimization on digital mammography. 

Ref, Year Approach Category of Optimizer Performance 

[22], 2023 QLESCA for extraction of optimal 

feature subsets from the high 

dimensional space resulting from a 

shallow conventional neural network 

(SCNN) on X-ray samples. 

Continuous optimization 

(metaheuristic) 

algorithm 

Classification 

accuracy 97.8086%, 



[23], 2021 Investigated the role of Manta Ray 

Foraging based Golden Ratio 

Optimizer (MRFGRO) a continuous 

metaheuristic algorithm for feature 

selection through reduction of the 

noisy features 

Continuous optimization 

(metaheuristic) 

algorithm 

Classification 

accuracy 95.59%, 

[25], 2023 Investigated the use of PSO, CSO, 

FFA, BA, FPO, WOA, ASOA, 

HHOA, BOA, and GWO with CNN on 

feature selection. 

Continuous optimization 

(metaheuristic) 

algorithm 

Classification 

accuracy 95.7%, 

[28], 2022 FMCSA was used with CNN Continuous optimization 

(metaheuristic) 

algorithm 

F1-score = 87.5%, 

[29], 2024 Combined the Modified Cosine 

Similarity (MCS) algorithm with CNN 

for a CBMIR) 

Continuous optimization 

(metaheuristic) 

algorithm 

Accuracy=0.916082, 

precision=0.908542, 

sensitivity=0.923785, 

specificity=0.908481, 

F1-score=0.887539 

[30], 2024 medical image segmentation can be 

improved using KOA and neural 

network on chest X-ray 

Continuous optimization 

(metaheuristic) 

algorithm 

accuracy=94.88%, 

specificity=96.57%, 

precision=95.40%, 

and recall=95.40% 

[68], 2023 The SqueezeNet neural network model 

was applied for feature extraction 

while AOA selection of best 

hyperparameter combination. 

Continuous optimization 

(metaheuristic) 

algorithm 

Classification 

accuracy of 96.48% 

[69], 2023 The VGG16 architecture was applied 

for feature extraction. Then a hybrid of 

Social Ski-Driver (SSD) algorithm and 

Adaptive Beta Hill Climbing were 

applied to find the discriminant 

features for further classification using 

KNN.  

Continuous optimization 

(metaheuristic) 

algorithm 

Classification 

accuracy of 96.07% 

[70], 2023 The combination of PSO, dragon-fly 

optimization algorithm (DFOA), and 

crow-search optimization algorithm 

(CSOA) were applied for selecting 

optimal features from total features 

extracted using neural network based 

on transfer learning 

Continuous optimization 

(metaheuristic) 

algorithm 

Classification 

accuracy of 84.35% 

[27], 2022 The immunity-based Ebola 

optimization search algorithm 

(IEOSA) was applied to find the 

optimal features subset from the 

complete feature set extracted using a 

custom CNN architecture 

Continuous optimization 

(metaheuristic) 

algorithm 

F1-score and recall 

obtained are 0.58 and 

0.72 for KNN. 

[71], 2021 Features extracted using the 

combination of gray-level 

cooccurrence matrix (GLCM) and 

discrete wavelet transform (DWT) 

were further refined using Advanced 

Thermal Exchange Optimizer (ATEO) 

Continuous optimization 

(metaheuristic) 

algorithm 

Classification 

accuracy 93.79%, 

sensitivity of 

96.89%, and 

specificity of 67.7% 

[72], 2023 Enhanced Ant Colony Optimization 

(EACO) was applied for finding 

Continuous optimization 

(metaheuristic) 

algorithm 

Classification 

accuracy of 98.63%, 

sensitivity of 



optimal combination of 

hyperparameter of ResNet101 

98.76%, and 

specificity of 98.89% 

[73], 2023 The AlexNet architecture was applied 

for feature extraction, while the feature 

optimization was achieved using the 

Advanced Al-Biruni Earth Radius 

(ABER) optimization algorithm 

Continuous optimization 

(metaheuristic) 

algorithm 

average classification 

accuracy is 97.95% 

[74], 2022 Improved marine predators algorithm 

(IMPA) was applied to find the best 

selection and combination of 

ResNet50 hyperparameters 

Continuous optimization 

(metaheuristic) 

algorithm 

classification 

accuracy of 98.32% 

accuracy, sensitivity 

of 98.56%, and 

specificity of 98.68% 

[75], 2022 The GA, WOA, multiverse optimizer 

(MVO), satin bower optimization 

(SBO), and life choice-based 

optimization (LCBO) were applied for 

fine-tuning the weights, biases, and 

hyperparameters of a custom CNN 

architecture.  

Continuous optimization 

(metaheuristic) 

algorithm 

The best 

classification 

accuracy of 86.0% 

was reported 

[76] 2024 BEOSA was applied to optimize 

extracted features of a twin neural 

network 

Binary optimization 

(metaheuristic) 

algorithm 

Classification 

accuracy of 95.2% 

This study Hybrid binary optimization 

algorithms were applied for finding 

optimal subset of features from 

feature sets extracted using custom 

CNN architecture 

Binary optimization 

algorithm 

Classification 

accuracy of 0.8286, 

precision of 0.97, 

recall of 0.83, F1-

score of 0.99, and 

AUC of 0.8291 

 

The related works compared with this study may be categorized into two: studies optimizing the selection and 

combination of hyperparameters, weights, and biases of neural networks [68], [72], [74], [75], [22], [23], [25], [28], 

[29], [30], and studies optimizing the features sets extracted using neural networks to obtain an optimal feature subsets 

[69], [70], [27], [71], [73], and [76]. Most of the studies reported the classification accuracy obtained using their 

approaches, and so, we compare using this metric. The classification accuracy performances obtained in [22], [23], 

[25], [29], and [30] showed that these values range from 95.59 to 97.80 percent for different datasets such as chest X-

ray and brain MRI. Results reported for [68], [72], [74], and [75] are 96.48%, 98.63%, 98.32%, and 86.0% 

classification accuracies respectively. These are the studies in the category of optimizing hyperparameters of neural 

networks. Compared with the result obtained in this study, approaches using metaheuristic algorithms to optimize 

neural network architectures outperformed our method which applied metaheuristic algorithm to optimize features 

sets extracted using neural network architectures. While these two approaches are different, we further compare the 

results obtained by approaches using continuous metaheuristic algorithms for optimizing features sets with those 

binary metaheuristic algorithms solving the same problem. Classification results reported for [69], [70], [27], [71], 

[73], and [76] are 96.07%, 84.35%, 72.0% (recall), 93.79%, 97.95%, and 95.2% respectively.  The best classification 

accuracy for the second category is 97.95% from the [73] study. In Table 19 we provide an outline that summarizes 

performance based on benchmark metrics, and have compared the performance of this study with related studies. 

Table 19: Comparative analysis of the classification accuracy, precision, recall, F1-score metrics with other 

benchmark related studies 

References Accuracy Precision Recall F1-score AUC Sensitivity Specificity 

[30] 0.948 0.954 0.954 - - - 0.966 

[27] - - 0.720 0.580 - - - 

[29]  0.916 0.906  0.887  0.924 0.906 



[71] 0.938 - - - - 0.969 0.677 

[74] 0.983 - - - - 0.986 0.987 

[76]  0.952 - - - 0.638 - - 

This study 0.825 0.96 0.93 0.98 0.8288 0.93 - 

 

Comparing this best result with what is obtained in this study, we observed a very good competition between the 

approaches using continuous optimization algorithm and our approach using binary optimization method for finding 

optimal feature subset. Furthermore, we compared our result with the related work which also uses binary optimization 

method as described in this study, though the hybrid binary methods are investigated in this study. The result of the 

comparison showed that the hybrid binary optimization methods are also very competitive with those of the basic 

binary optimizer. 

5.4 Discussion of Findings and Limitation of the Current Approach 

Finding from this study confirmed that the binary optimization methods, particularly the hybrid binary methods, are 

very useful for finding optimal subset of features from those extracted using neural network architectures. The result 

also demonstrates that contrary to the popular methods of using only continuous metaheuristic (optimization) 

algorithms for solving this same problem, the binary metaheuristics (optimization) algorithm are very suitable and 

applicable. Most importantly, the outcome from the study showed that formulation of the search space for the binary 

optimization algorithm can be achieved in a unique way as demonstrated in this study. Therefore, it is confirmation 

that the binary optimization algorithm is suitable for optimizing the selection and combination of hyperparameters, 

weights, and biases of neural networks. 

Considering the findings and performance rsulting from the result analysis in previous subsections, the following 

highlights the main contributions of this study thereby making it the state-of-the-art in this domain. First, the novel 

approach applied to adapt the feature sets extracted by neural network into useful search space of binary optimizers is 

new. This also allows for rerepresenting these optimzed feature sets into formalism useful for the classifier. An 

exhaustive experimentation was performed to evaluate the four variants binary optimizers, HBEOSA-DMO 

HBEOSA-DMO-NT, HBEOSA-PSO and HBEOSA-PSO-NT. These new hybrid binary optimizers are now available 

for use among researchers for addressing similar problems in medical imaging.  

The approach proposed in this study has demonstrated good performance and is representative of a novel adaptation 

of hybrid binary optimization algorithms to feature selection in medical image analysis. However, the role of transform 

function in binary optimization method is very important in converting the continuous search space into binary search 

space. Hence, it is desirable to investigate the current limitation of the proposed nested transfer functions so that the 

impediment resulting from the fundamental mathematical approach might be addressed for better performance. This 

is necessary because this study was not focused on comparative analysis of the influence of the nested transfer 

functions on the medical image feature selection and reduction in neural network architecture. Rather, it was focused 

on applying the new hybrid binary method and evaluating or comparatively analyzing the role of the whole hybrid 

method.    

6. Conclusion 
In this study, the challenge of finding the best optimal subset of features from those extracted using convolutional 

neural network architectures was addressed. The approach presented in the study is based on examining the influence 

of four related hybrid binary optimization algorithms for the search and selection of these optimal feature subsets. 

Meanwhile, the hybrid binary algorithms were first improved using some nested transform functions proposed in the 

study. An exhaustive experimentation was carried out on these optimizers to ascertain their usefulness in addressing 

the medical image feature selection problem. Furthermore, an approach to support the formulation of the CNN-based 

extracted feature space into a binary search space for the adaptation of the hybrid binary methods, was also introduced 

in the study. This is motivated by the difficulty of handling very high dimensional data representation of medical 

images, and the need to ensure that non-relevant features are eliminated so that only the discriminants are left for the 

classifier. It is important to address this problem to ensure that false positives and false negatives are reduced in the 

performances of neural networks detecting and characterizing abnormalities in medical image analysis. As proof of 



concept, this study investigated the applicability of the approach proposed on digital mammography, specifically the 

MIAS dataset. Meanwhile, the first part of the methodology and experimentation was focused on the design of the 

novel hybrid binary optimization algorithms which applies a new transfer function. The performance of the hybrid 

binary optimization algorithm was investigated through an exhaustive experimentation using several datasets. The 

evaluation of the hybrid binary metaheuristic algorithms was investigated and analyzed using metrics such as the 

classification accuracy, fitness function value, cost function value, number of feature count, and the computational 

runtime. Results obtained when the new hybrid binary optimizers were applied to medical image feature selection, 

showed that classification accuracy of 0.8286, precision of 0.97, recall of 0.83, and F1-score of 0.99, AUC of 0.8291. 

Findings from this evaluation showed that the hybrid binary metaheuristic algorithms yielded better performances in 

respect to the classification accuracy, fitness, and cost function values. However, we found the basic binary 

metaheuristic algorithm BEOSA was returning best computational time, lower than they hybrid methods, and as well 

yielded the minimal feature counts. Considering the impressive performances of the hybrid binary optimizers, we 

proceeded with experimentation to apply the method to search and select the optimal subsets of features sets from the 

extracted features in batches of medical image samples supplied into the neural network architecture. Result obtained 

showed that the hybrid binary optimization algorithms successfully selected the required discriminant subset of 

features sufficient to help the classifier return best classification accuracy. In addition to the findings in this study, 

from the study showed that contrary to the popular approach of using continuous metaheuristic algorithms for 

addressing the same problem, the binary metaheuristic algorithms are well suitable for handling the challenge. 

Comparative analysis of the study with the related works revealed that the approach proposed in this study can be 

investigated as a future work for optimizing the selection and combination of hyperparameters, weights, and biases of 

neural networks. The new hybrid binary optimizers HBEOSA-DMO HBEOSA-DMO-NT, HBEOSA-PSO and 

HBEOSA-PSO-NT represents new set of algorithms which can be applied for optimization tasks in neural networks. 

Future studies might consider applying these new methods for finding the best combination of hyperparameters in 

neural networks. Other considerations are to discover and design a new approach to adapting these new methods to 

the difficult challenge of neural architecture search (NAS). Moreover, the new hybrid binary methods were only 

applied to digital mammography samples. Studies have shown that different imaging methods presents varied 

challenges in detection and characterization of abnormalities represented in them. As a result, future work might 

consider seeking the implication of using these new hybrid solutions on samples from other medical imaging 

techniques. This will provide sufficient information on the applicability of the approach in medical image and signal 

analysis, thereby allowing for extending them to other domains.  
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