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Abstract— Data transmission over power line communication 

(PLC) infrastructure will proliferate lightweight Internet of Things 

(IoT) nodes in 5G and 6G networks. Consequently, a 

corresponding lightweight multi-hop routing protocol (LMRP) 

with reduced path loss and computational complexities will be 

required at the edges of PLC networks to connect the cloud sinks. 

Using a multi-layered system architecture, we present an LMRP 

for optimal routing and highlight the components of a smart PLC 

network comprising edge power pool orchestration, edge layer 

service provisioning, fog latency layer, and cloud resilient 

backbone. The LMRP reduces path loss and node failure states at 

the edge while optimising throughputs, minimum cost flow, and 

signal stability. A multi-hop deterministic testbed is designed and 

applied in three different locations to estimate path loss leveraging 

TelosB IoT node, Raspberry Pi (RPI) with NesC, and Java scripted 

logger application. Three different testbeds of varying path loss 

characteristics at the Federal University of Technology Owerri 

(FUTO) are used while the analysis was completed at Manchester 

Metropolitan University engineering LAB. The result of PL 

mitigation in Location 1 (sonic FUTO) shows 33.89%, 33.25%, 

and 32.77% with genetic algorithm (GA), particle swarm 

optimisation (PSO), and the proposed LMRP, respectively. In 

Location 2 (Old SEET Complex, FUTO), the PL obtained are 

33.81%, 33.57%, and 32.62%, while Location 3 (New SEET 

Complex, FUTO) yields 33.65%, 33.41%, and 32.74% in PL 

mitigation for GA, PSO, and LMRP, respectively. Despite 

improved PL mitigation, the results also show that the proposed 

scheme offers a lightweight routing performance of at least 

76.30% compared to similar schemes.  

Keywords — Driverless Cars, Edge Computing, Internet of 

Things, Lightweight Routing Optimisation, Multi-Hop Routing 

Protocol, Path Loss Optimisation. 

I. INTRODUCTION 

Recent trends in smart infrastructure (e.g., driverless 

cars, smart grids, and several automated systems) show an 

increased need for power line communication (PLC) 

networks to transfer converged traffic (e.g., data, voice, and 

video). The PLC in IoT is standardised by ITU-T G.9903 to 

digitally route data over conventional electric power lines 

[1]. Although largely discussed in terms of other physical 

layer requirements, PLC networks require an efficient 

routing policy and minimised path loss incidents to achieve 

high-speed, dependable, secure, and bidirectional data 

communications. This is the major constraint to the 

development trends in smart grids [2] and several other 

cyber-physical applications, such as driverless smart 

transport systems [3].  

Future connected grid networks have a lot of potential to 

utilise the Internet of Things (IoT)-enabled PLC systems. 

As an established, affordable, and reliable communication 

technology, PLC is now much more appealing for such 

networks because of new research efforts in the ―In-band 

full-duplex (IBFD) broadband PLC (BB-PLC)‖ application 

[3]. IBFD can boost data throughput and spectrum 

efficiency in communication networks. Due to their 

lightweight characteristics on network resources, IoT 

devices are versatile and can be installed in various low-

latency and high-throughput applications. IoT-PLC edge 

routing (ITU-T G.9903) is a pertinent technology 

standardised through IPV6 routing protocol for low-power 

and lossy networks (RPL RFC6550) [1]. Additionally, PLC 

technology is now advanced, affordable, dependable, and 

safe with this routing protocol [4]. According to their 

transmission frequencies, the narrow band PLC (NB-PLC) 

and the broadband PLC (BB-PLC) are two prominent PLC 

technologies. Both systems have difficulties when millions 

of devices transmit and receive data, and each one has a role 

in different setup scenarios and regulatory regimes [4]. The 

IoT-Lightweight PLC (IoT-LPLC) perfectly fits large 

networks and distant factories under optimised RPL. The 

RPL IPV6 is widely utilised in many fields, including the 

military, industry, smart cities, and smart buildings via 

outlet and switch ports. The reason for wide adoption is that 

it offers a straightforward method of utilising the same 

infrastructure seamlessly while addressing issues about data 

transmissions such as path loss, fault tolerance, security, 

energy usage, and load balancing [5]. This popular routing 

protocol for low-power and lossy networks has not yet been 

fully optimised for real-time adaption in cyber-physical 

systems [6]. For instance, using IoT-PLC integrated Layer 2 

devices, the existing smart factory floor equipment must be 

controlled with a lightweight edge routing scheme [6]. Any 

edge node could be connected throughout the office 

building, providing stable communication between inside 

and outside of the building while connecting multiple nodes. 

Due to strong encryption and the flexibility of 

interconnecting and grouping devices, industry 4.0 will 

benefit significantly. IoT-LPLC is remarkably safe, 

dependable, and secure. This confers excellent market 

differentiation from past alternatives.  

Additionally, the need for data speeds and network 

coverage is growing at the edge. The use of IBFD 

technology is one way to meet the growing need for data 

interchange in PLC networks [7], [8]. As demonstrated in 

these works, the IBFD technology could boost data speeds 

and reduce latency in BB-PLC. Also, it can extend network 

reachability by utilising full-duplex Fog relay nodes. Like 

most communication devices, a PLC channel has issues 

with spread-spectrum radio transmissions in a crowded 

setting [9]. Implementing IBFD for BB-PLC becomes 

challenging due to path loss constraints. There are several 

fundamental obstacles to IBFD technology. For instance, at 

28GHz, signal path loss (PL) is prominent [10],[11]. Some 

propagation measurement studies demonstrate how 

mmWave attenuation is addressed while utilising the 

                  



available frequency resource in the 5G cellular networks 

[11]. According to [12], the performance of outdoor 

mmWave ad-hoc networks demonstrates that in the event of 

some PL blockages, mmWave may support high density and 

substantial spectral efficiency. Path loss could still provide a 

significant rate coverage challenge. The performance will 

be impaired without an adequate understanding of channel 

characteristics and lightweight routing schemes. 

A major challenge with IBFD is that the edge computing 

technologies have failed to account for a robust lightweight 

routing scheme for real-time traffic provisioning while 

dealing with the issues of PL. The layer-three QoS metrics 

in legacy PLC network designs are severely constrained and 

cannot support massive traffic workloads due to serious 

interference and distortion issues within the PLC 

transceiver's channel block [13]. To address this issue, a 

resilient-oriented architecture of IoT-PLC clusters was 

proposed [9]. With a connection-oriented network, a reliable 

routing strategy will create full-duplex routes and carry out 

data offloading more efficiently.  

From existing literature, various efforts have been made 

with the PLC fields to improve latency, throughput, path 

loss efficiency, energy drain, and other metrics within PLC 

ITU-T G.9903 routing at the edge network [4]. To date, 

there are initiatives to develop IPv6 routing protocols for 

lossy and low-power networks (LLNs) [1], [14], [15]. 

Several authors created protocols to suit devices with 

limited resources in commercial, domestic, and urban 

settings [16]. For instance, the authors [1], proposed 

emergency RPL (EMRPL), which can efficiently forecast 

the course of action and communicate sensory data in real-

time. In [17], the authors proposed a PriNergy-RLP 

approach that reduces end-to-end delay, energy 

consumption, and overhead on mesh IoT networks without 

considering PL incidents.  In [18], the authors looked at 

congestion and QoS-Aware RPL for IoT applications 

(CQARPL) and used a multi-metric evaluation for route 

conditions. The focus was on transmission and congestion 

control in IoT nodes. Most works on IPV6 RPL LLNs did 

not explore PL [19].  

The interface between the IoT-PLC device and the edge-

to-Fog network at the application layer handles data display 

and formatting. To distribute communication resources to 

nodes, the constrained application protocol (CoAP) was 

employed as a RESTful scheduling function [20]. Similarly, 

the authors [21] focused on Mobile IoT communication 

using message queuing transport telemetry (MQTT) 

protocol. The authors [22] concentrated on reliability-

focused pub/sub messaging protocol, i.e., advanced message 

queuing protocol (AMQP) which was extended to serve as a 

communication interface for robotic technology (RT) 

middleware (RT-Middleware).  The authors [23] presented 

a lightweight Xtensible message and presence protocol 

(XMPP) with publish/subscribe mechanism for resource 

constrained IoT devices. RESTful API has been used for 

web application integration and data tracking [24]. These 

lightweight algorithms are beneficial in cyber-physical 

applications but may suffer from PL challenges. Hence, 

further optimisation is needed at the edge. 

Regarding edge communication optimisation, the work 

[25] proposed a multi-objective QoS optimisation routing in 

the industrial IoT domain. In [26], the authors proposed a 

unique algorithm for locating routing paths with the least 

amount of power loss while enhancing the optical signal-to-

noise ratio of the routing paths. In [27], an artificial neural 

network (ANN), the multi-layer perceptron (MLP) neural 

network was used to precisely forecast PL. In [28], the 

authors focused on an exhaustive search algorithm (ESA) 

based on weighted least square (WLS) minimisation for 

network localisation. An algorithm for queen honeybee 

migration for routing and transmission paths was discussed 

[29]. Other routing and PL optimisation models were 

investigated, such as genetic algorithm (GA) [30], ant 

colony algorithm (ACA) [31], gravitational search 

algorithm [32], co-evolutionary optimisation algorithm 

(CEOA) [33], particle swarm optimisation (PSO) [34], 

whale optimisation (WO) [35] and flower pollination 

algorithm (FPA) [36]. The works in [37]-[40] contributed 

significantly to PL propagation and optimisation. But while 

various efforts came with great traffic provisioning, new 

challenges for the current PLC network have emerged with 

traffic routing and PL optimisation. But research on the 

multi-path lightweight routing of PLC networks is seldom 

reported.  

Regarding the market, this article proposes a next-

generation IoT-Lightweight PLC (IoT-LPLC) that 

significantly impacts the edge automation layer. It 

maximises performance and versatility, providing an edge 

over other legacy PLC solutions currently on the market. 

This study suggests a connection-oriented resilient routing 

approach for any edge computing system in a typical PLC 

network.  

To prevent data stream distortion between adjacent nodes 

while sending high-speed data traffic, this article explores 

the principle of connection-oriented signalling. The 

proposed robust routing strategy specifies the robust 

weighted value of each connection.  

Now, no RPL-based routing protocol exists for real-time 

efficient routing in cyber-physical edge networks. Chanel 

traffic signaling [41] and RPL protocols for connection-

level QoS are largely missing especially for time-stamped 

CPS. As a result, it is possible to significantly enhance 

routing resilience in edge-distributed IoT-PLC architecture. 

This article seeks to fix the problems of reactive RPL (PLC 

ITU-T G.9903), and channel characteristics at the edge 

layers. 

The main contributions of this paper include: 

 For the PLC datastream routing policy, a novel 

SPLCN architecture is designed to optimise the k-

shortest routing policy. 

 For the edge layer, data transmission is proposed 

with a minimum cost flow problem to determine 

the best communication route that saves energy, 

reduces PL and computational complexity. 

 Testbed characterisation of lightweight PL 

environment with optimisation validation involving 

GA and PSO respectively. 

 Edge routing validation with lightweight 

application routing protocols such as REST, CoAP, 

MQTT, XMPP, and AMQP.  

The remaining parts of this paper are organised as follows. 

Section II presents the baseline system model. Section 

                  



III reports the experimental path loss theory with other 

research efforts. Section IV discussed the experimental 

designs, radio models, and their significance at deployment 

sites. Section V presents results on PL mitigation, energy 

depletion, frequency comparisons, and optimisation 

evaluations. Section VI presents experimental validations 

while the work concludes in Section VII. 

II. SYSTEM MODEL  

This study proposes an SPLCN architecture to support PL 

and routing optimisations. Figure 1 shows a     MIMO 

BBPLC with IBFD-enabled features. It has two modems 

interacting with one another simultaneously. Transceivers 

TRX1 and TRX3 are present in the first modem (local 

node), whereas TRX2 and TRX4 are present in the second 

modem (remote node). Signals sent by transmitters TX1 and 

TX3 of the local node are signals of interest (SI), whereas 

those sent by transmitters TX2 and TX4 of the remote node 

are SI at the edge layer.  

 
Figure 1: A redesigned     MIMO IBFD communication system for 

SPLCN architecture. 

 

We represent the data received by     receiver, which is 

typically in the time domain, as: 

  ( )  ∑   ( )     ( )    ( )

   

   

 
(1) 

where   is the default number of active transceivers,   ( ) 

is the lightweight signal of the     transmitter,    ( ) is the 

channel impulse response from the connection between 

                and             , and   ( )  represents the 

impulsive and white Gaussian noise captured at the     

receiver. But at the edge layer, poor PLC channel 

characteristics and signal interference between edge nodes 

create a routing loop problem considering (1). Current 

multi-path routing methods are not suited for large BPLC 

networks,  hence PLC ITU-T G.9903 routing was 

introduced in the validations. Also, PL must be significantly 

reduced for long-range payload delivery in Figure 2.  

A. SPLCN Architecture 

Distributed edge computing with lightweight processing and 

storage capabilities is used to enable local data processing in 

Figure 2 before applying the routing scheme. The 

fundamental concept behind the proposed connection-

oriented routing strategy is that the routing calculation in the 

IoT-PLC network may be performed using the shortest path, 

thereby overcoming the limitations of (1).  

 

 
Figure 2: The proposed multi-layer SPLCN architecture shows four 

network layers from the edge devices to the cloud; the layers include the 
smart power pool isolation layer (SPPIL), the edge automation layer 

(EAL), the Fog latency layer (FLL), and the cloud core resilient layers 

(CCRL). 

 

In addition, terminal nodes that work with edge computing 

resources will use the routing policy exchange signals. 

While the full-duplex route is operational in (1), new links 

can be constructed, and the related surrounding nodes use it 

to route to the upper layers. Initial route data can be 

disseminated around the edge network and stored on 

possible edge servers. When the service request is received, 

the closest edge node is selected as the edge data cluster 

head (EDCH). As the original data are resource intensive, 

they are processed at edge cluster heads and updated to the 

cloud data center.  

 

Figure 2 shows the layered SPLCN architecture for a 

transparent routing scheme. Its main elements include the 

smart power pool isolation layer (SPPIL), the edge 

automation layer (EAL), the Fog latency layer (FLL), and 

the cloud core resilient layer (CCRL). The edge natives are 

a subset of the global grid cluster mapped into the Fog 

implementation layer of the SPLCN. The stream power pool 

(which provides energy-neutral IoT) is a fundamental 

advantage of lightweight IoT-PLC technology over other 

communication schemes. The FLL is used for latency 

reduction and resource maximisation during upward 

datastream offloading into the cloud.  

Finally, the CCRL plays a very vital role in the entire 

architecture. In this case, the technique of anticipating 

potential disruptions to computational service offloading is 

known as cloud resilience. This offers service continuity 

and figures out the best recovery strategy without losing the 

network data. Cloud systems' resilience depicts their 

capacity to respond to failure while continuing to operate. 

Figure 2 shows the built cloud-native services running at the 

resilient cloud backbone (RCB). This is fault/failure tolerant 

for massive traffic workloads.  

Here, we require to determine the most affordable way to 

transmit a specific amount of data across the edge-layered 

network in Figure 1.  

                  



In this context, constrained application protocol is required 

and maintains acceptable PL. This is useful for efficient 

data transmission. Since the IoT-PLC system requires 

performance considerations, lightweight MCFP can lower 

capacity restrictions for datastream flow provisioning. This 

is replaced by a demand condition or minimum routing [42]. 

The edge source is connected to a smart PLC adapter 

embedded in the distribution controllers in the 

implementation. This multi-hop functionality is shown in 

Figure 2.  

At the layer 2 edge network, the powerline is reused to 

achieve data offload infrastructure needed for the distributed 

smart grid utility.  In the design, the IoT-LPLC nodes are 

kept at rest to deliver data streams quickly and energy 

efficiently through cluster gateway having active 

communication links. Edge location sensor nodes (i.e., 

cluster heads) route data streams through labelled shortest-

distance paths. Section II-C details the concept of minimum 

cost flow problem formulation (MCFPF). But this helps to 

route clustered nodes with time-varying link attributes (e.g., 

impulsive noise). It provides optimal path allocation and 

time-stamped links with auto-scaling. Hence, it is feasible to 

formulate a resilient routing algorithm that can optimise PL 

and still maintain reliability. The algorithm can support 

unicast, broadcast, and multicast transmission for converged 

traffic. These are useful for the overall computational 

efficiency and will improve routing concurrency in SPLCN. 

B. Linear Node Distribution 

The proposed system can be viewed as a directed graph 

  *    +  where   denotes the collection of vertices or 

nodes,   = 1    , and   denotes the collection of edges or 

links (connectivity of nodes). The edge Nodes at Layer 1 or 

cluster head sink node can be positioned inside or outside 

the monitored area, as shown in Figure 2. 

In the case of a network with   linearly distributed nodes, 

a link  (   ) exists between nodes   and   with a Euclidean 

distance     , which must be less than the radio transmission 

radius  , i.e.,       . 

C. Minimum Cost Flow Problem Formulation (MCFPF) 

Notations: For any IoT-PLC node   ( )  an edge layer 

subnet-set is denoted by   ( )  *     +  and the PL 

nodes set is denoted by   *        + . We let 

   *           +  where    represents the IoT-PLC 

wireless links and    *           +where    is the 

number of PL links. Here,        denotes the index for the 

  
   wireless broadband link and        denotes   

   PL link. 

In addition,     ⋃   represents all hybrid networks. 

Radio channel matrix    connects node   transmitter to 

node    and is described via (   )   The optimisation design 

for lightweight routing information is provided for 

deployment localisation at the edge layers.  
 

Let   (   )  be an internally connected digraph for 

edge nodes in Figure 1: 

 Upstream and lower stream capacity functions  

      and       , respectively; 

 overhead cost payload function       ;  

 Cluster demand function        with 

∑  ( )      . 
 

The edge MCFP determination has a mapping        

with minimal routing cost for   ( ) . Hence, the new 

formulation is given as: 

 ( )    ( )  ∑    

 

   

 ∑    
 

  

   

 

(2a) 

Subject to: 

    ( )   ( )   ( )              (2b) 

   ∑  ( )

    

 ∑  ( )

    

  ( )       
(2c) 

Here,   represents an IoT-LPLC node port;  
   

 depicts     

node in the     cluster location;   depicts location  of a 

strong reception map,   designates non-overlapping 

channels;    depicts     node port at the     IoT-LPLC 

node. Note that  ( )    is a critical objective in which   
depicts IoT-LPLC nodes placed in a defined location 

domain. (2b) represents the node cluster capacity 

restrictions, and (2c) represents the node cluster demand 

restrictions. 

For short linear node broadcasts, a cut represents a partition 

      , and the capacity of the relay cluster head is 

given as 

 (   )  ∑  ( )
           

 ∑  ( )
           

 
(3) 

 

where   is the IoT-PLC source,   is the IoT-PLC time 

stamp,  ( ) represents the IoT-PLC cluster head, and  ( ) 

represents IoT-PLC buffer overflow. In the formulation, the 

flow in an edge cluster is a map       meeting the 

resource demand constraints for all     ;  again, if the 

capacity restrictions stand for all      this is now 

representing the cluster admissible flow. As a result, the 

MCFP requires a flow of minimum cost overhead to save 

the battery life of the IoT-PLC node. This is realised with k-

node shortest path constructs. 

D.  -Node Shortest Path  

This is very important in Figure 2, especially in dealing with 

reliability at both edge layer service provisioning and fog 

latency layers. As part of the PL mitigation, we are to find the 

shortest path between edge source   and destination Fog   

using non-negative link weights, then the second shortest 

path, etc., up to the K
th 

shortest path. The Algorithm I 

describe the optimal  -shortest paths, i.e..,   
*              +. 

In Algorithm I, the method finishes after finding the 

unique shortest path for   = 1. Otherwise, a complex 

technique is used to identify each of the shortest pathways 

after the initial one. To modify the set   of potential shortest 

paths. The process uses an auxiliary set   which is made up 

of pairs of the form (   ), where   is a path from   to   and 

     . This is used to modify a cluster of potential shortest 

paths. In the algorithm,   stands for the operator opposite 

concatenation  . Additionally, sub  (   )  signifies the 

sub-path of   from node   to node  . 

The process modifies the set of potential paths   by 

adding the shortest path   to set   from the previous 

iteration. After doing this, it uses the function shortest ( ) to 

discover the shortest path in this set and adds it as the 

subsequent shortest path to set  . 

                  



The next adjustment is made to Set  . The unique pair of 

the form ( ,  ) in set   and the related deviation vertex   

associated with path   are first found using the function 

GetDeviationVertex (    ). Then, we consider all the 

subsequent vertices in the sub-path     (   )  except for 

the destination t. These are referred to as deviation vertices. 

We identify the deviation path—also known as the shortest 

route—from each such vertex   to the destination  , and we 

combine it with the sub-path of  ,     (   ), which begins 

in   and ends in  , to create path    from   to  . Then set   

receives Path  . 

We must alter the graph using the function DisableV 

erticesAndEdges to ensure that path   has not previously 

been formed before the Dijkstra algorithm is run. This 

function eliminates from graph   all vertices that make up 

the sequence     (   )   , together with all edge 

incident to those vertices. Notably, this guarantees that the 

newly created path   is straightforward. Additionally, we 

take away the edge extending from the vertex   towards the 

target (  ) for each previously discovered shortest path 

      * +  This has the property:     (   )  

      (   ) . When path   has been determined for each 

deviation vertex  , pair ( ,  ) is added to set  . 
 

Algorithm  I. Lightweight Connection   Shortest Path Algorithm 

 Procedure LRAP ( ) History of IoT-PLC route 

service provisioning; Signaling < Rqs 

msg, Conf msg, Rel Msg. 

 
 Procedure     (       )  

      
     (     )   
  *(   )+  
  * +; 
  * +; 
 

While     and        

       Begin 

           *  + 
                            (   ) 

  for   〈    (   )  * + 〉   

Set all flows in all node resource layers (   )  
    
Begin 

                          (         )  
      (   )    (      )   

    * +  
    *(   )+ 
end; 

           ( ); 
    * +  
      

end; 

end {procedure} 

 

 
 end return 
 

E. Node Energy Problem Formulation 

The edge power pool orchestration requires resource 

optimisation. Hence, it is feasible to convert battery lifetime 

into MCFPs. Assuming the initial energy is   , the lifetime 

of the node   during routing is given as 

   
   

∑      ( )   (   )
   
 

 
(4) 

where     is routing multistep transactions over the PL 

channel.    is    .  ( ) and  ( )  denote outgoing and 

incoming links at the IoT-PLC deployment edge network. 

The state vectors at     is given as 

 ( )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ,     ( )       ( )   -  .  Now, a lifetime of the 

network is given as 

        
   

     (5) 

 

The first objective is to maximise the IoT-PLC network life 

at the edge during the routing phases. Therefore, the 

network lifetime maximisation problem is formulated below 

as a mixed integer convex optimisation problem [43] in (6): 

 

   
    

 

    

 
 (6a) 

  

           
  

∑    ( )   (   )
   
 

 (   ) 
 (6b) 

         (6c) 

     (6d) 

   *         + (6e) 

 

The variables                must be considered in the 

routing scheme concerning    ( ).   is the weight interval 

for the computation of the variables in (6). The first 

inequality in (3) states that each IoT-PLC node's energy 

usage during routing must not be greater than the battery's 

capacity for the whole network lifetime. The maximum 

transmission power restriction for all links makes up the 

second inequality. The restriction ensures that the data 

transmission is completed in time T. The energy flow 

conservation for all nodes is in (5). If the integer restrictions 

on    are relaxed for this formulation, the optimisation 

challenge would be convex type. Section IV discussed the 

explicit radio model. 

F. Node Link Problem Formulation 

Apart from node energy Optimisation, creating an IoT-PLC 

node-link formulation is solved with mixed-integer 

programming (MIP). Only the edge variables are integer-

constrained to depletion rates under an active state. This is 

the next step in the SPLCN design. Let’s imagine a two-

layer probe arranged into N layers. The N-layer design issue 

with link capacities    for the top layer (Layer 2) is 

considered. This intermediate demand is met at the 

downstream or lower layer (i.e., layers 1-2) using a 

lightweight routing flow that drains less energy. This results 

in the identification of the optimised layer link capacity,   .  

Assume for a moment that the bottom layers are joined by a 

new layer. Accordingly, the traffic demand intensity for 

replicated layer 1, (i.e., which must be routed to the next 

Fog layer),    becomes the link path of the present lower 

layer. This ultimately determines the link bandwidth data 

stream offloading. The next step in the process is to 

                  



continue making the basic observation (on-demand traffic) 

for a specific layer (downstream) to match the connection 

resource capacity required for the upstream layer. This can 

be seen in factory automation pyramids driving cyber-

physical systems. 

As a result, if an IoT-PLC edge link in layer   is represented 

by   , then its capacity,  
  
 , is sent to layer (   )  via 

aggregated flows as  
       
 .To identify the datastream edge 

device cluster capacities in layer (   ), we denoted this 

variable with  
    
   . This represents the designated 

redundant flows or traffic demand needed to test resilience 

in an active link. 

There are two subscript elements introduced, d for 

demand and e for the link—with the datastream N-layer 

model, which assumes an upward orientation in SPLCN 

design. The Fog layer can be simply one layer above the 

higher one (or layer   in the multi-layer case). As a result, 

layer   has a demanding workload placed on it by layer 

   , which is a hypothetical layer. The location of the 

initial demand workload   is also known. Thus, we can 

deploy the demand layer as the layer     immediately 

above the topmost Fog layer   as it currently exists. 

Therefore, we can equally analyse the generic relationship  

 
    
    and  

  
  for an edge-to-Fog layer   in place of the 

relationship between    and    . It should be noticed that 

for the top (demand) layer, we have      
    
   . Once the 

relationship between two neighboring layers has been 

established, the layer   link-path indicator can be written as 

 
         
 . 

Another way to look at this is to think of the "links" in layer 

     as the constraints placed on the IoT-PLC nodes. The 

resource layer problem can then be thought of as (   ) 

layer design challenge. This would imply that the N 

resource layer problems presented in the design could be 

generalised within a complex-layered space. Finally, the 

lightweight multi-hop routing protocol (LMRP) is a multi-

hop routing protocol for PLC that minimises routing paths 

in SPLCN. The LMRP aims to optimise resources according 

to:  
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Where F denotes overall efficiency covering sets of nodes, 

overhead cost vector, clusters, PL channels resource 

provisioning.  

As previously shown in [43], single-layer and two-layer 

IoT-PLC sensor arrays can have the shortest-path allocation 

rule applied for       . Therefore, the lightweight 

resource allocation policy (LRAP) for the general multi-

layer case in Figure 2 is shown with Algorithm I. In its 

structure, it could be noticed that    (  
     

     
  
 )  

depicts the vector representing the accumulated costs of the 

entire layered linkages   (         )   Considering only 

the layer-specific overhead,  
   
  of link    while reducing 

the link cost of IoT-PLC node clusters below    the function 

length_shortest_path (       )   returns the total shortest 

path on the routing list of the link     .   

From Line 1, the routing scheme commenced with the 

nodes first powered by an edge stream power pool that 

charges the battery. This then provides depletable energy 

communication from the nodes to the cluster heads. The 

link state layers are then established from the edge to the 

fog while allowing the cloud resilient layer to orchestrate 

datastream. Auto-scaling based on resource availability is 

realised. The traffic request message, confirm message and 

release message designates the three different categories of 

signaling messages during routing. Routing computation is 

done by Dijkstra's shortest path and reliability degree value 

during active operation. This sorts every link according to 

its availability, chooses the best link, and adds it to the 

available topology. The route computation is then finished 

after getting the route result. To get the route result and the 

list of involved nodes, the resilient routing calculation is 

carried out. 
 

Algorithm  II. Lightweight connection-oriented Policy 

 Procedure LRAP () History of IoT-PLC RPL service 

provisioning; Signaling < Rqs msg, Conf 

msg, Rel Msg; 

 Begin 

       Func G.9903 ( ); 

  Instantiate smart power pool for entire edge nodes ( ); 

Set all flows in all  node resource layers (   )      

Set    
      

  for all links    of layer 1. 

for      to     do 

      for        to      do  
    
    

                     ( 
      )    

    
   ;   

 for     down to 1    

     Begin 

        for        to        

        Begin 

             (      )                      ( 
      )  

              
      (      )   

    
   

  

           end. 

for      to        
  
   ∑  

         (      )
 

     
    
    

call signalling ( );  

construct battery sub-model output matrix ( ); 

if scaling Parameter   Impulsive noise Aware  

  then 

  call Middleton Class-A ( ); 

 Else 
end  

end {procedure} 

  if scalingParameterType is                    -Aware 

then 
    parameterStatusPredictor (history of Response 

Time) 

  Elseif scalingParameterType is Resource-Aware then 

   parameterStatusPredictor (history of QoS 

parameterStatus) 

  end if 

                  



  If parameterStatus is higher than power-poolScale Up 

routing threshold then 

   decisionScale Up 

  Elseif parameterStatus is lower than power-poolScale 

Down threshold then 

   decisionScale Down routing 

  end if  

  end if 

 end return 
 

The resilient routing computation is employed to provide 

the algorithm result and the list of participating nodes. The 

major problem is that resilient routing computational 

complexity must be implemented and compared with other 

RPL schemes. The reliability requires two multiple 

operations, with O-level complexity (1). For the 

dependability routing service in IoT-PLC networks, the 

complexity is only O(n)O (1) when the number of complex 

network nodes approaches n.  

As an important edge communication metric, the PL in IoT-

PLC interfaces is further investigated for outdoor 

deployments. In this use case, the electromagnetic wave 

propagation in IoT-PLC wireless channel is represented as a 

power law function with a separation between the RF 

transmitter and receiver. The free space model and the two-

ray model are considered. When there is a direct, 

unimpeded line of sight (LoS) between the transmitter and 

receiver, the received signal strength is predicted using free 

space propagation.  

Given that the free space power received by an IoT-PLC 

receiver radio is d miles away from transmitting edge-node. 

As shown in Figure 1, PL is the difference (in dB) between 

the effective transmitted power and the received power 

during the routing operation. This is used to depict signal 

attenuation as a positive number measured in   . In this 

context, the following equations illustrate the influence of 

node antenna gain [44]. 

  ( )  [
       

 

(  )    
]                                                           ( )   

where     IoT transmitted power,      IoT received 

power and   ( )  received power, which depends on the 

T-R (transmitter-receiver) spacing distance d.  

    transmitter antenna gain,     receiver antenna gain, 

   non-propagation-related system loss factor,     and 

   Wavelength (m). 

   and    are dimensionless quantities, however the values 

of    and     are in the same unit. The IoT-PLC RF, and 

filter losses as well as the transmission space diversity 

generate signal losses  (   ) . The received power 

diminishes with the square of the     separation distance, 

according to the free space (1). This suggests that the 

received power decreases by 20 dB/decade as a function of 

distance. During the experiment in Section IV, the 

transmitted power    is obtained. But the PL measurements 

are calculated using (9a). 
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By substituting (8) into (9a), this gives (9b). The free space 

model can accurately estimate    only for   values that are 

in the transmitting antenna's far field. (9d) can be obtained 

by simplifying (9c). To obtain the free space PL formula, 

we obtain (9d). 

          (  )         ( )         ( )          (  ) 

If we put  (  )     
 (   )⁄  into (9d), and simplify 

further, we have (9e).  

  (  )              ( )         ( )                 (  )   

In the experimental testbed, 1m is used as the received 

power reference   ( ) in the close-range measurement. At 

any distance     , the received power,   ( ), is related to 

        . In the radio setup domain, the value   (  ) was 

determined by averaging the received power    at numerous 

locations    away from the transmitter. Given that the 

received power    was obtained during the experiment and 

the transmitted power    obtained, path loss measurements 

(PLMs) were calculated using (8).  

From (8), the experiment's    value was set     , such 

that   in free space at a distance       is then given by 

(10). 

  ( )     (  ) (
  

 
)
 

 
(  ) 

At high values of  , the    and PL in the two-ray model 

becomes frequency independent. In terms of dB, the PL for 

the two-ray model is given as (11).                         
  (  )         (               

                  
 (  ) 

By calculating the received signal intensity as a function of 

distance, PL can be used to forecast other channel 

parameters. Equ. (12) uses a route loss exponent,  , to 

express the average PL for each transmitter-receiver 

separation distance  . 
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)
 

   
 (  ) 

  (  )    (  )        (
 

  

) 
 (  ) 

Where the average PL between the sender and receiver is 

measured in       (  ) denotes referenced PL model (dB). 

When the   between the receiver and transmitter is at 

reference   , With     as the close-in reference distance    , 

we can calculate the PL exponent, n from measurements 

taken close to the transmitter. This represents the rate at 

which the PL rises with distance   which gives T-R 

separation. 

The edge network propagation environment has specific 

characteristics that affect the value of n. For instance, n = 2 

in free space; nevertheless, n will increase in value in the 

presence of impediments. The free space PL formula is used 

to compute the reference PL (13).  

Now, the estimated PL is calculated using (14), where n can 

be manually calculated or obtained with a linear regression 

analysis approach: 

  
  ( )    (  )

       (
 

  
⁄ )

  
(  ) 

By reducing the gap between the observed data and the 

anticipated PL value of (13), the PL exponent can be 

                  



calculated from the measured data using LR. The PL 

exponent is given by (15a): 

 ( )  *       +
                                             (15a) 

where     is the experimental PL at   using (136).     is 

the measured PL at distance   in dB. The model (14) is 

obtained when (13) is substituted for     in (158). The PL 

exponent is then given by (  ) 

 ( )  ∑ ,      (  -      
        (

 

  
)           (   ) 

By differentiating (15a), this gives 
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Let 
  ( )

  
   and equate both the left-hand side and right-

hand side, this implied that          .
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Making   the subject in (15c) yields the PL exponent  : 
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With MATLAB scripts,   was computed (16). 

  (  )    (  )          .
 

  
/                     (  )  

Where    is a zero-mean, Gaussian-distributed random 

variable with a standard deviation of  ; both values are in 

decibels.    is computed with (16) to yield (18). 

 (  )  √∑
(       )

 

 

 

   

                                        (  ) 

Where      experimental PL (dB) 

                 predicted PL (dB) 

              No of data points = 25;    2.3;   (  )   43.83 

These values were computed with MATLAB [45] for the 

derived PL model.  

Now, by substituting these values in (17), this gives outdoor 

PL with IoT-PLC TelosB in (7). 
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)                        (  ) 

The  PL in (20) represents the PL model for any random 

distance d from the transmitter as the outdoor scenario for 

TelosB. The average PL of the indoor environment was 

determined using (9a). This is done with the transmitted 

power set at 0dBm and the received power measured at 

various distances from 10 to 60m at intervals of 1m. The 

determined average PL of the indoor environment for the 

TelosB nodes is later discussed in section IV.  

III. RADIO ENERGY MODEL  

Consider the edge node cluster comprising N IoT nodes 
*       + used in Figure 2. The nearest IoT node to the 

edge network    and the farthest is   . During the multi-hop 

transmission of data,    sends its data to the cluster head 

and the sink seamlessly. The transmission power influences 

the node transmission range. Therefore, the nodes are 

linearly placed from source to sink with their respective 

distances  *          + . The edge-to-Fog distance d is 

given by  

  ∑  

 

   

                                                                               (  ) 

The necessary transmission of one way to model energy is 

given as  

  (   )   (      )                                                      (  )  
Additionally, the receiver's energy usage for the same 

bitstream given as  

  ( )      

where    No of bits,     and    = Energy/bit consumed in 

the Tx and Rx, respectively. 

   distance 

  = Path loss exponent (for perfect LoS between the 

transmitter and receiver,      n= 4 in dense urban 

locations) 

       =      

            Electronics Energy   

(23a) and (23b) are obtained from (22) considering the 

crossover distance (i.e. approximately 87.6m). 

  ( )  *         
 +                                   (   ) 

  ( )  *         
 +                                 (   )       

The authority to route or distribute this message is 

  (   )    (   )     ( )                                       (  ) 

             
                                             (   ) 

Or 

             
                                         (   ) 

where 

    threshold distance is given as  

   √
   

   

                                                                      (  ) 

According to the experiment, the PL exponents for the 

indoor and outdoor testbeds, respectively, were calculated to 

be 2.67 and 2.77. Thus, using (23a) and (23b) respectively, 

we now provide the amount of energy used by the IoT 

transmitter to power the radio electronics and the amplifier 

for outdoor and inside use. 

  ( )  *   +      
    +                                         (   ) 

  ( )  *   +      
     +                                        (   ) 

Using the determined PL, the energy required to transmit 

the message can be given as 

       +      
                                                    (   ) 

       +      
                                                    (   ) 

The edge source IoT node will transmit j bits data stream to 

the distant sink node through direct or multi-top 

transmission when it detects an event. The N-hop 

transmission is explored from source to sink node because 

multi-hop transmission is more energy efficient when d is 

large. For each node to use the least amount of energy at the 

same pace, we must determine the ideal multi-hop number 

and each distance d. The total energy required to transmit 

one bit of data (    ) over an N-hop route will be 

calculated using (26) and (27). 
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Where        when     and         when n =4 

   (    )   ∑    
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For the same distance between nodes ∑       
    ∑   

 
    

in (15) has an optimised value if            
 

 ⁄    is the deployment length. Then EN is then equal to 

   (    )                                                    (  )                                                                  
 

Then (29) is the minimum when EN = 0. 

Since the distance    and traffic length is the same for all 

sensor nodes, the sensor nodes consume energy at the same 

rate. Hence,                

The radio parameters are given as   =50nJ/bit,     

                    ,                    

 
and 16 bytes. If these values are inserted into (24a) and 

(24b), the energy consumed for transmission and reception 

of data for various distances used in the experiment was 

calculated.  

The ideal number of IoT  (     , the transmission 

distance   , and the corresponding power level  (  ), for 

each sensor node   (       ) such that the energy 

consumption of the sensor nodes is equal or that the sensor 

nodes deplete their energy at the same rate (30). This must 

be determined to achieve the maximum lifetime of the 

sensor nodes.  

Finding    and    that reduces the energy consumed by each 

sensor node is the goal. 

   *                                                            (   ) 
Subject to  

                                                                                 (   )      

∑    

 

   

                                                                         (   ) 

 

where the first condition (31b) identifies each node's 

transmission limit and the second (31c) guarantees that the 

nodes can cover the infrastructure locations under 

consideration.  

In (31a), (31b), and (31c), we assume that the sensor nodes 

being examined have   distinct power levels, denoted by 

(     ) (     ) , where    is the power level at which 

sensor nodes communicate;     is the transmission range. 

The maximum transmission range is restricted to being 

(       ) the maximum transmission power level 

       . Like this, the sensor nodes can broadcast data 

up to a range of         at the minimal power level 

       . It could be deduced that PL decreases as the 

transmission power rises. Also, there is a relationship 

between PL and the square of the signal frequency 

transmitter–receiver distance. The PL affects the degree of 

received power. With less received power, this will mean 

more PL is evidenced. To increase the power level available 

at the node receiver, efforts are then made to minimise PL 

using high-gain IoT devices with lightweight routing 

optimisation. 

IV. EXPERIMENTAL DESIGN AND ANALYSIS 

A. Testbed Setup 

In this section, a low-cost, and resource optimised TelosB 

IoT platform [45] with Raspberry Pi [46] is deployed. These 

are portable open-source hardware for various field 

experiments with test parameters [13]. As a deterministic 

testbed, the TelosB IoT platform is driven by the MSP430 

CPU core and CC2420-ITU-T G.9903 instead of compatible 

RF interfaces. Similar experiments were described [46], 

[47] but lacked PL Optimisation contributions. In both 

indoor and outdoor location settings, this study focused on 

the PL, and battery depletion efficiency of edge-to-CH data 

stream transmission-offloading. Since Raspberry Pi (RPI), 

is not G.9903 compatible by default, the TelosB USB port is 

connected directly to the RPI module as shown in Figure 1. 

Keep in mind that the RPI has an ARM configuration, a 

quad-core CPU running at 1.2 GHz, a RAM size of 1GB, 

and a Linux OS. A Fog layer is used to store data streams 

from TelosB-based IoT devices in the Fog gateway. RPI 

offered a lightweight platform for TinyOS which supports 

the pass-through for Fog over the Internet (FoI) and hence 

designated as the sink data logger in Figure 3. It can also 

run an edge instance locally. 

  
a) CC2420 Edge-Fog CH  b) CH analytics 

Figure 3. An experimental outdoor testbed for edge-Fog PL investigations. 

 
Figure 4. TelosB Indoor Calibration with CH sink Injection. 

B. System Operating Kernel 

As shown in Figure 3, the TelosB device has 10Kbyte RAM 

with 48Kbyte flash memory. Hence, the OS for IoT devices 

has a minimal memory footprint. Due to these limitations, 

general-purpose OS is not supported by the TelosB 

platform. Therefore, the TelosB transceivers coupled to the 

RPI module are controlled by the IoT software platform 

called TinyOS [48]. 

                  



C. Software Framework Integration  

NesC and Java are the two programming languages used to 

configure the CC2420 TelosB IoT nodes. The readings from 

the nodes were directly converted to values using NesC 

programs. The source codes were executed on TinyOS 2.x. 

For the MSP430 platform, TinyOS 2.x provides Java 1.5 

cross-compilers and tools that are connected to 

TinyOS/NesC. The mote's USB port was used to compile 

and load the TinyOS code. For the compilation procedures, 

four files were created: the Make file, the Header file, the 

Configuration file, and the module file. In the testbed 

experiment, the nodes are set up to send data every 5 

seconds, and when the message is sent successfully, the 

radio is turned off to save power. Most conversions for the 

typical measurement data are also encoded into the nodes, 

and the software has their readings set to SI units. 

Following that, a Java graphic user interface was created 

and utilised for data collection in Figure 5. The application 

shows the data as it is sent and presents a graphical 

representation of the relationships between the sensor nodes 

for voltage, temperature, light intensity, and humidity [47]. 

PL was derived from the received signal strength datasets. 

Options to save data, clear data, start monitoring, and stop 

monitoring are available on the graphical display. Data 

supplied every 5 seconds up to 2 minutes was saved and 

maintained. The work averaged the saved data, which 

included up to 1000 separate counts. The datasets for the 

listed parameters were obtained for six weeks, with daily 

readings from 6 am morning to 6 pm. 

With the node integration, the software composition largely 

adheres to the spine-leaf architecture highlighted in Figure 

2. Data stream dissemination is made possible by software 

components using the two primary communication 

protocols. The forwarding of transmitted data streams (TX) 

is achieved with the layer 3 Internet Protocol (IP V6) design 

between the edge-Fog layer and the RPI controller located 

powering the Internet. Meanwhile, ITU-T G.9903 sets up 

seamless communication between TelosB nodes 

transmitting the edge data streams (TXs) to the controller 

RPI. On the RPI, the TinyOS mines data locally while 

serving as the raw data gathering environment with TelosB 

nodes. The RPI data collection repository is shown in 

Figure 4. Since the channel capacity of IEEE 802.15.4 is not 

compatible, G.9903 is then explored. 

 
Figure 5. TelosB Virtua Machine JAVA GUI instance with no readings. 

 

 
Figure 6. TelosB Virtua Machine TinyOS instance (Upstate). 

 

 
Figure 7. TelosB Virtual Machine JAVA GUI instance with readings. 

 

The edge-Fog TX is put together by the Fog container 

wallet, which is implemented as a TinyOS image. This 

collects PL data from the edge sensors. Security functions 

are used by the Fog container wallet engine to assemble the 

edge-Fog TX. The SHA3-256 [46] provides cryptographic 

digests, while SHA3-256 delivers 256-byte-long transaction 

signatures. Because SHA3-256 is a quick and resource-

conserving cryptographic primitive, its use is acceptable. 

Only one TelosB Sensor node at a time is used to send 

edge-Fog TXs on the testbed for this study which is 

powered by AA batteries (3.3v). Using channel 26 (2.4 

GHz) and the TinyOS mac channel access mechanism, the 

TelosB device transmits data at a bandwidth of 250 kbit/s 

[46]. TelosB uses the CC2420 Transceiver chip, which 

complies with 802.15.4 [46]. This configuration also sets 

the CC2420's default transmission power to 0 dBm. Also, 

Line-of-Sight (LOS) and Non-Line of Sight (NLOS) are 

two experimental configurations that used indoor and out 

PL measurements respectively. Each edge node has a 

customisable ID with signed data packets. Also, each data 

size weighs 20 Bytes. If the expected ACK is absent, a 

packet is sent up to ten times again. 

The evaluation of the edge-Fog TX technique looked at the 

transmission performance based on the volume of traffic 

expressed in bytes and the number of packets delivered, 

including retransmissions. In the LOS scenario, the packet 

overhead, or the percentage of extra packets transmitted on 

top of data packets, is always around 100%, whereas greater 

                  



packet values are observed in the NLOS situation owing to 

retransmissions. The result of ACK messages verifying each 

packet sent is this significant packet overhead. The TelosB-

RPI platform may function for roughly 10 years if the deep 

inactive current is less than 0A, has two AA batteries with 

1,200mWh each; and wakes up once/day for measurements. 

A traffic volume that is around 10 times the size of the data 

block is seen when a TX is made up entirely of payloads.  

We observed that energy efficiency rises when more data 

streams are contained within a single TX, per energy usage 

measurements. This overhead is added by TinyOS because 

of the costly calculations needed. Therefore, it is desirable 

to send multiple data streams; each signed with a TelosB 

signature. Since the node uses less energy, this platform's 

energy efficiency is slightly lower than the results reported 

in [47]. 

V. RESULT ANALYSIS 

In this section, the results from the edge network PL studies 

and lightweight routing validations are presented. The 

relevance of this section is to enable the construction of 

reliable IoT PLC edge networks. This is by understanding 

the impact energy drain of a wave propagating between the 

transmitter and the receiver, under the routing scheme. 

A. Path Loss Mitigation Analysis 

The theoretical models in Section In Table 1, the TelosB 

node characterisation of the outdoor empirical measurement 

environment was determined using (1). The transmitted 

power was set at 0 dBm while the received power was 

measured at various distances from 10 to 60m at intervals of 

10m. The calculated average PL in the outdoor setting is 

shown in Table 1.  
Table 1. average outdoor environment PL for IoT TelosB nodes. 

Distance Avg. PL (dB) 

Node 1 

Avg. PL (dB) 

Node 2 

Avg. PL 

(dB) 

Node 3 

Avg. PL 

(dB) 

Node 4 

1 40.7 46.0 44.8 43.83 

5 61.4 64.1 62.3 62.60 

10 68.1 69.6 65.8 67.83 

15 82.4 75.9 74.7 77.67 

20 80.3 77.7 81.9 79.97 

25 77.6 88.5 81.3 82.47 

30 81.5 88.5 89.5 86.50 

35 88.7 89.2 84.7 87.53 

40 75.8 88.2 86.3 83.40 

45 82.3 91.8 85.5 86.53 

50 84.7 91.8 92.2 89.57 

55 78.8 88.8 89.3 85.63 

60 92.2 92.43 92.3 92.3 

 

Under multi-hub routing, numerous factors, including free-

space loss, refraction, diffraction, reflection, aperture-

medium coupling loss, and absorption, contributed to PL 

experienced in Figures 8, 9, and 10. Along with 

topographical contours, environment (e.g., urban/rural, 

vegetation, and foliage), propagation medium (dry or moist 

air), the distance between transmitter and receiver, and 

antenna height and placement, PL was influenced by these 

factors too. However, the PL estimation is better compared 

with [49], and [50] in free space using the deterministic 

approach. The proposed technique relies on the correct and 

thorough description of every item in the propagation space, 

including buildings, roofs, windows, doors, and walls, and 

is predicted to yield more accurate and trustworthy forecasts 

of the PL than the empirical techniques as shown in Figure 

9. This observation will be useful for short propagation 

paths in connected vehicular models because of the above 

factors. Table 2 and 3 shows the mean experimental and 

predicted PL values obtained while Table 4 shows the 

indoor PL measurements in this study. 

 
Figure 8. PL prediction with Live Nodes (L1). 

 

Table 2. Average Experimental and predicted PL 

Distance (m) Avg. Experimental 

PLm (dB) 

Avg. predicted PLp (dB) 

1 43.83 43.83 

5 62.60 61.96 

10 67.83 70.52 

15 77.67 75.32 

20 79.97 78.66 

25 82.47 81.34 

30 86.50 83.36 

35 87.53 85.15 

40 83.40 86.70 

45 86.53 88.06 

50 89.57 89.28 

55 85.63 90.39 

60 92.30 91.39 

 

Table 3. Average measured and predicted PL 

Distance 
(m) 

Avg. measured 
PL (dB) 

Avg. Predicted PL 
(dB) 

1 44.90 44.90 

2 56.53 52.94 

3 63.67 57.82 

4 61.50 61.28 

5 62.83 63.96 

6 64.73 66.15 

7 62.83 68.01 

 
Figure 9. PL prediction Vs experimental with Live Nodes. 

   
         Table 4. Average indoor environment PL for IoT TelosB nodes. 

Distance Avg. PL 

(dB)  

Node 1 

Avg. PL 

(dB) 

Node 2 

Mean PL 

(dB) 

Node 3 

Mean PL 

(dB) 

Node 4 

                  



1 44.6 52.0 38.1 44.90 

2 58.5 57.3 53.25 56.53 

3 74.1 60.4 56.5 63.67 

4 57.0 67.7 59.8 61.50 

5 68.5 57.7 62.3 62.83 

6 70.2 64.0 60.0 64.73 

7 57.3 72.5 58.7 62.83 

 
Figure 10. PL prediction with Live Nodes (L2). 

B. Energy Depletion Analysis 

The First-order radio energy dissipation model was explored 

in [49] and later used in other research to investigate the 

energy consumption pattern. E91-AA alkaline battery model 

and its operational characteristics were used to estimate the 

transceivers' battery life. The receiver uses energy to power 

the radio electronics, while the transmitter uses energy to 

run the radio electronics and power amplifier as shown in 

Table 5 and Table 6 respectively. Energy depletion cycles 

are shown in Table 6 which highlights significant energy 

drain during active states. 
 

Table 5. Average Energy Depletion Cycles for IoT TelosB Nodes. 

Distance Time 

(min) 

Battery 

voltage 

for IoT-
PLC 

Node 1 

Battery 

voltage 

of IoT-
PLC 

Node 2 

Battery 

voltage 

of IoT-
PLC 

Node 3 

Ave. 

Battery 

voltage of 
IoT-PLC 

Node 4 

1 2 2.781 2.722 2.813 2.772 

5 4 2.779 2.720 2.810 2.770 

10 6 2.777 2.717 2.807 2.767 

15 8 2.775 2.716 2.805 2.765 

20 10 2.772 2.712 2.802 2.762 

25 12 2.771 2.712 2.801 2.761 

30 14 2.770 2.710 2.798 2.760 

35 16 2.764 2.706 2.793 2.754 

40 18 2.763 2.705 2.793 2.754 

45 20 2.762 2.704 2.792 2.753 

50 22 2.761 2.702 2.789 2.751 

55 24 2.756 2.700 2.783 2.746 

60 26 2.752 2.694 2.780 2.742 

 
Table 6. Average Energy Depletion cycles for  IoT TelosB nodes. 

Distance Time 

(min) 

IoT-PLC 

Node 1 

Depletion 
Rate 

IoT-PLC 

Node 2 

Depletion 
Rate 

IoT-PLC 

Node 3 

Depletion 
Rate 

IoT-PLC 

Node 4 

Depletion 
Rate 

1 2 0 0 0 0 

5 4 0.002 0.002 0.003 0.002 

10 6 0.004 0.005 0.006 0.005 

15 8 0.006 0.006 0.008 0.007 

20 10 0.009 0.010 0.010 0.010 

25 12 0.010 0.010 0.011 0.011 

30 14 0.011 0.012 0.014 0.012 

35 16 0.017 0.016 0.019 0.018 

40 18 0.018 0.017 0.019 0.018 

45 20 0.019 0.018 0.020 0.019 

50 22 0.020 0.020 0.023 0.021 

55 24 0.025 0.022 0.029 0.026 

60 26 0.029 0.028 0.032 0.030 

 

 
Figure 11. Energy Optimisation with Live Nodes (L2). 

C. Frequency Comparision with mmWave IoT-PLC devices 

From Figure 12, ignoring the directional antenna gain implies 

that mmWave IoT-PLC devices experience more severe PL 

than conventional Wi-Fi access point devices. IoT-PLC 

beamforming and directional antennas have been shown to 

have significantly lower PL than comparable Wi-Fi devices 

for short distances, though this is only true for 

omnidirectional antennas [48], [51]. These facts indicate that 

the IoT-PLC nodes that use Wi-Fi frequencies are tended to 

transmit messages to farther nodes, which results in more 

propagation loss (and a greater likelihood of message errors 

and a reduction in delivery ratio), while the IoT-PLC nodes 

using mmwave is tended to transmit messages to closer nodes 

and with narrow beams and high directional gains, which 

results in less propagation loss. 

 
Figure 12. PL Frequency comparison. 

 

Finally, additional effort is introduced to verify edge 

network scenarios and compare these scenarios. The idea is 

to see whether the proposed routing protocol in SPLCN 

performs better when utilising mmwave than when using 

the sub-6GHz band. 

D. Optimisation Evaluation 

In this subsection, a highly provisioned closed-loop method 

was adopted for data collection from the IoT network in the 

study areas. When deploying the optimisation algorithm for 

the network system, observations were recorded on a log 

file using the TelosB application developed in Section V-C. 

This was installed on the Corei3, 2.4GHz, 8G laptop. The 

NodeID is used to initiate different network data 

transmissions with testbed integration. The recorded data on 

the TelosB log files are later processed with excel CSV for 

further analysis. LMRP optimisation algorithm was then 

                  



employed to enhance the developed PL model for better 

performance.  The PL test routes and measured data for 

locations L1, L2, and L3 are shown in Tables 4 and 5, 

respectively. 
 

                 Table 6. Optimisation Transmission Parameters 

Transmission Parameters 

Carrier Frequency 2.4 GHz 

Data rates 250kbps 

Antenna Integration Onboard 

Battery Model 2X AA batteries 

Sensors Visible light, 
Humidity, 

Temperature, 

Resolution, RSSI, Link 
indicator, 

Transmission Power 43 dBm 

Transmitter height 60 m 

Transmitter Gain 2.0 dBi 

Receiver Gain 1.8 dBi 

RF Power -24dBm to 0 dBm 

Receive Sensitivity -90 to -94 dBm 

Outdoor range 75 to 100m 

Indoor range 20 to 30m 

Multi-path 

propagation 

OFDM 

 
 

Table 7. IoT Test locations 

(Locations) Area in FUTO zone 

L1    Sonic Fast Food 

L2     Old SEET Block 

L3     SEET Complex  

 

Using the scenarios described in Tables 3 and 4 for PL 

optimisation estimations, this article explored the case of 

one Genetic algorithm described in [30], [50] and particle 

optimisation [32], [34]. The PL is characterised by the 

dispatched IoT nodes, but the objective is to evaluate the 

Optimisation impact and how it could reduce losses at the 

edge. This is useful for Fog devices in Figure 2 during 

active routing operation. We assume that all the IoT Nodes 

within these locations are served by only one cluster head 

like LoRaWAN or any other LP-WAN infrastructure [36]. 

Each node connects the sinking facility as shown in Fig. 1. 

We assume the SPLCN just like the LoRaWAN network is 

stable. The datasets are generated uniformly distributed 

random variables using the MATLAB tool. The 

optimisation schemes are evaluated with results summarised 

in Table 8. 

So far, a prototype edge communication network testbed 

based on the limited IoT MSP430 platform is discussed. It 

runs in an indoor setting using TelosB ITU-T G.9903 API 

interfaces. Fragmentation and reassembly are active at run 

time on the network since the maximum translation unit 

(MTU) for ITU-T G.9903 alongside IPv6 MTU is enabled 

at run time. This IoT environment incorporates PL network 

infrastructure capabilities. Edge-to-Fog datastream delivery 

and lightweight overhead were determined to be at a 

reasonable level using Algorithm II. The shortest path 

communication during routing is achieved with Algorithm I. 

In contrast to the previous work [47], the ITU-T G.9903 

MTU permits a lower PL transmission fragmentation than 

in GA [30], [50] and PSO networks [32],[34], while the 

IEEE 802.15.4 network does not need fragmenting the 

signature [50]. However, TelosB's lightweight energy 

consumption is significantly lower than the energy 

consumption in most open-source hardware discussed [46], 

[47], [53]. This allows for longer active operational 

deployments even in production environments. It is 

important to note that the energy depletion rates during PL 

traffic (i.e., signal data steam) propagation remain at a low 

level while PL incidents under lightweight optimisation 

remain equally lower than other schemes. Since the 

software structures used are flexible and modular, the 

system is still up for enhancement in an ongoing container 

platform for driverless or connected vehicular computing. 

 

 
Figure 13. PL Optimisation validation with Live Nodes (L1). 

 
Figure 14. PL Optimisation validation with Live Nodes (L2). 

 
Figure 15. PL Optimisation validation with Live Nodes (L3). 

 
Table 8. Optimisation results for live site experiments 

(Locations) Optimisation 

Schemes 

Average 

indicator (%) 

L1 GA 
PSO 

Proposed LMRP 

33.98 
33.25 

32.77 

L2 GA 33.81 

                  



PSO 

Proposed LMRP 

33.57 

32.62 

L3 GA 

PSO 

Proposed LMRP 

33.65 

33.41 

32.94 

 

At the network planning level, PL is a crucial factor in 

determining the quality of service (QoS) for RPL edge 

communication. The reason for the reduced PL from Table 

8 is that we decreased the absorption losses at the 

deployment sights while guaranteeing minimum diffraction 

at the edge layers, which caused the PL to decrease. To 

prevent RF attenuation, the topography, buildings, and 

plants were all heavily managed during the routing of 

sensed payloads.  

VI. EXPERIMENTAL VALIDATIONS 

A. Comparative Analysis 

In this section, the validation of the lightweight scheme for 

k-shortest path multi-hop routing from the edge to the sink 

location is presented. In context, clustered slave nodes 

(N=1000, SN1, SN2,…, SNn-1) were built from Riverbed 

C++ API library. This validation used a simple master-slave 

network topology to assess the developed routing plan given 

PL incidents. The requirement for the sensing edge layer to 

collect data with IoT formed a PL case study. A real-time 

data stream is transmitted while ensuring active and reliable 

data stream events. The setup is provisioned for end-to-end 

latency and data stream offloading between nodes. The use 

of edge application layer protocols in various use cases is to 

allow for network and application layer investigations. This 

is optimal for end-to-end throughput and is equally needed 

to dynamically accelerate PL convergence. IoT lightweight 

protocols improve reliable real-time communications. Since 

the LMRP addresses routing reliability even under ITU-T 

G.9903 policy, we then compared the performance with 

earlier reviewed lightweight schemes including CoAP [20], 

MQTT [21], AMQP [22], XMPP [23] and RESTful-API 

[24]. In this case, to determine the impact of the proposed 

LMRP, an application layer comparison is made 

considering minimal PL incidents. The validation study 

considered data stream latency, end-to-end reliability, and 

computational complexity. The edge communication 

network is then tested for distributed lightweight routing 

decisions. For simplicity, the proposed lightweight resource 

allocation policy is verified with the network nodes 

accommodated at the edge clusters in subnets. To make it 

easier to route sensed data to the sink, we spaced the sensor 

nodes 20 meters apart and added a cluster head (CH) every 

40 meters. A bandwidth of 200 Mbit/s to 1.5Gbit/s, 50 ms 

max latency, and 200m max transmission distance is 

enabled. Initially, each upstream node generates sensed data 

using the proposed LMRP technique. This sends the 

information to the subsequent cluster head, which then 

passes it to a sink. Each sensor transmits a maximum of 

1500 datastream (or translation units) to the CH in a multi-

fashion manner.  The selected metrics are discussed below. 

 

B. Throughput dynamics 

After parameter configurations with G.9903, the throughput 

model based on CQARPL [18] is used to validate the 

LMRP method considering the edge-to-Fog PLC network. 

In this case, similar lightweight algorithms such as REST, 

CoAP, and MQTT were compared with the proposed 

scheme. The idea is to enhance edge computing 

dependability in a production IoT-PLC deployment. Recall 

that the application layer is the interface between edge 

nodes and the Fog network communication. It manages 

datastream presentation, and formatting and acts as a link 

between what a node is doing and how the data it generates 

is transferred across a network. It is shown that the 

datastream throughput from the edge cluster to the 

application layer is consistent and optimal at 43.47% as 

detailed in Table 9. This implies that the routing capabilities 

for IoT-enabled services are fully optimised, unlike REST, 

CoAP, and MQTT which had 8.70%, 26.09%, and 21.74% 

respectively. Another way of looking at Figure 16 is that it 

demonstrates the impact of varied edge-node density in the 

context of network permeability. Even though the 

throughput increases as the number of nodes do, yet the 

results reveal that LMRP performed better with additional 

nodes. This illustrates that the proposed scheme had greater 

success with improved QoS routing capacity. 

Figure16: Edge-to-Fog throughput comparison with node increments. 
 

C. Delay Provisioning (Latency Phase) 

The delay in the raising phase seen in Figure 17 is because 

of the payload overhead which introduces inherent 

propagation convergence latency before the transmission 

upstream phase. This study reveals convergence time 

through network latency whenever a new node is added or 

removed. This converges within a few seconds due to the 

lightweight routing provisioning at the edge. If a node is re-

established or loses connectivity, it must converge within 

0.2 seconds which is better than RPL [1], CQARPL [18], 

and CLRPL [54]. Also, if no nodes have dropped in its 

subnet location, the convergence becomes much smaller < 

0.2s. This leads to lower CPU and memory utilisation cycles 

when considering computational complexity. Therefore, 

end-to-end latency is used to validate the convergence time 

for data stream propagation considering CoAP, MQTT, 

AMQP, XMPP, and REST via node synchronous request-

response in Table 10. Because increasing the datastream 

traffic rate leads to channel congestion, this directly affects 

edge network traffic. Nonetheless, LMRP experiences less 

latency (at least 3.04%) than the other protocols as the 

traffic rate rises. This suggests better LMRP performance 

with more data stream traffic and optimal PL. This could be 

used to forecast impulsive congestion and direct traffic 

along the shortest least-congested routes. 

                  



 
Fig. 17. Edge-to-Fog latency provisioning with node increments. 

 

From Figure 18, the minimum overhead with lightweight 

routing under impulsive noise is 16.67% compared with 

similar lightweight protocols like CoAP and MQTT having 

37.04% and 46.29% respectively in Table 11. Every IoT-

PLC node is linked to the edge grid network with inherent 

impulsive noise. With Middleton's class A model [54], and 

LMRP optimisation strategy, the noise is reduced by at least 

16.67%.  As shown in the plot, the dropping of the peak 

noise spikes is useful. The Middleton's class A median filter 

reduces remove impulse noise. Hence, the proposed scheme 

equally serves as an impulse noise filter. This improves the 

robustness of the edge network channel. A practical 

application is in adaptive control and IoT pattern 

recognition systems.  

 
Figure 18: Edge-to-Fog reliability overhead with node increments. 

 

For the established edge communication network to 

maintain stability, dynamic reliability is needed to make 

both node integration and routing possible. Network 

adjacencies must use the RPL to harvest link states in 

nearby nodes. Each full-duplex path in the edge network 

must avoid routing loops. The implication of the SPLCN 

architecture under the proposed routing scheme is that 

transactional provisioning of the datastream workload is 

guaranteed.  

 

D. Computational Complexity 

Figure 19 shows the computational complexity of a 

recurrence linear search algorithm  ( )   (   )  

 ( )   ( )  The Big-O is active when considering the 

failure density rate/stability at the edge cluster. MCFP 

optimisation technique in Section III-C alongside the node 

distributed control is very significant and makes the LMRP 

algorithm I and II attractive under ITU-T G.9903. It can 

support enterprise-scaled deployments compared to existing 

lightweight algorithms. It is shown that with an autoscaling 

algorithm in edge-to-Fog layered orchestration (as depicted 

in Algorithm I). The performance response for the proposed 

scheme (LMRP), generic RPL [1], and CQARPL [18] are 

8.98%, 41.07%, and 50.0%, respectively, in Table 12. This 

result shows that minimum time-space complexity is 

favorable for LMRP in terms of read-read input datasets. 

 
Figure 19: Edge-to-Fog computational complexity function comparisons. 

 

With lower computational complexity, this will reinforce 

the confidence of the layered optimisation supports even 

under other edge resources like the smart power pool for 

IoT-PLC edge nodes. Again, the usefulness of the MCFP 

formulation is that the edge clusters gain more stability 

leading to better performance. Finally, the lightweight link-

design for edge networks enhances the overall performance 

of the SPLCN architecture. Computational offloading in 

SPLCN solves latency problems during routing and 

optimises PL. Uniform workload distribution at the edge-to-

Fog layers compensates for cascaded subnet clusters at the 

edge. This notwithstanding, more efforts are needed to 

consolidate access control such as [56], [57].  
 

Table 9. Result summary of Edge network Throughput metric 

Lightweight IoT Schemes Throughput (Bytes/sec) 

REST [24] 8.70% 

CoAP [20] 26.90% 

MQTT [21] 21.74% 

Proposed LMRP 43.47% 

 
Table 10. Result summary of Edge network latency metric 

Routing Schemes Latency Profile (Secs) 

CoAP [20] 19.74% 

AMQP [22] 21.37% 

REST [24] 22.51% 

MQTT [21] 13.05% 

XAMPP [23] 20.06% 

Proposed LMRP 3.04% 

 

Table 11. Result summary of Edge network reliability 

Routing Schemes Reliability 

CoAP [20] 37.04% 

MQTT [21] 46.29% 

Proposed LMRP 16.67% 

                  



Table 12. Result summary of computational complexity metric. 

Routing Schemes Computational Complexity 

RPL [1] 41.07% 

CQARPL [54] 50.00% 

Proposed LMRP 8.93% 

VII. CONCLUSION 

In this article, a layered full-duplex IoT-PLC edge network 

architecture is proposed for supporting lightweight Multi-

hop RPL. For edge devices connected to the network, we 

showed the deployment distribution as a directed graph and 

highlighted the minimum cost flow problem formulation 

(MCFPF). Algorithms for the shortest path and lightweight 

connection policy are presented. Practical path loss and 

radio energy models were derived and demonstrated to 

illustrate edge network deployment context. Path loss 

mitigation and energy depletion of classical TelosB nodes 

further presented edge computing characteristics. With the 

proposed LMRP scheme, better PL and routing optimisation 

responses are achieved. Similarly, when subjected to ITU-T 

G.9903, LMRP performed better than RESTful API, CoAP, 

MQTT, XMPP, and AMQP on four (4) major metrics 

related to IoT-PLC applications.  The application of 

lightweight protocols can be used to reduce complex 

channel traffic density and enhance the lifespan of IoT-PLC 

setups. The proposed algorithm can be applied to minimise 

computational overhead on connection-oriented edge 

interfaces such as smart grids and driverless cars. However, 

the proposed method did not consider other complex edge 

computing network features and parameters. Future work 

will improve the proposed lightweight method and deploy it 

in containerised driverless cars as a use case. Also, edge 

analytics using lightweight spike neural network data stream 

processing will be addressed. 
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