
The Creative Design-Engineer Divide: Modular

Architecture and Workflow UX

Brian Packer1 [0000-0003-2105-0042], Simeon Keates2 [0000-0002-2826-672X], Grahame Baker1

1 University of Greenwich, Chatham Maritime, ME4 4TB, UK
2 University of Chichester, Bognor Regis, PO21 1HR, UK

B.W.Packer@greenwich.ac.uk

Abstract. There are competing priorities between creative freedom and the need

for robust, stable software frameworks to facilitate the rapid implementation of

creative ideas in game development. This may result in a disparity between sys-

tem and user requirements. Qualitative data extracted from seminars at the Game

Developers Conference informs the design of several interviews with veteran

game-system designers to explore this phenomenon. A survey of modular soft-

ware plug-ins from the Unity Asset Store then validates the interview findings

and explores the benefits of modular software architectures. Findings indicate

that modifications to the native user experience (UX) design of Unity and plug-

ins that reengineer for different workflows are most popular. The most popular

workflows provide for data, asset, and project management. Discussion reflects

on how modular architecture can alleviate points of failure within a game en-

gine’s architecture whilst providing customized usability for different user needs.

Keywords: Game design, workflow, user experience, qualitative analysis

1 Introduction

Video game development stands at the intersection between the disciplines of creative

design, system design and software engineering [1]. The software used to develop

games must provide a robust framework by which ideas and content can be rapidly

implemented. So-called “game engines” (also called “Integrated Game Development

Environments” (iGDEs), so as to not conflate the development software suites with the

extrinsic (primarily graphical rendering) libraries that compile and execute a game)

must provide a flexible software architecture to facilitate this with maximum technical

accessibility for less technically trained system/art designers.

The artistic nature of games demands that neither limit nor consensus be enforced

on what defines “a game” [2] [3], yet this poses a unique challenge to the design man-

agement of such software and the traditional requirements gathering process for iden-

tifying how to deliver an intuitive user experience (UX) for uninhibited implementa-

tion. Furthermore, developing video games is a multi-discipline task, demanding a

range of artistic and technical skills which may benefit from varied UX needs [4].

Until the emergence of more purposefully accessible “all-in-one” visual editors in

the early 2010s [5], common practice was to build toolchains to interface third-party

tools and bespoke development environments (figure 1). But the advent of, and shifting

publication/access rights to, engines like Unity and Unreal have opened the discussion

of whether it is better to build an engine for a game or build a game using engines that

comes with much of the engineering precompiled and abstracted.

Fig. 1. An example architecture of a so-called “Game Engine”, highlighting the distinction be-

tween the iGDE and Game presentation layers.

This investigation sought to profile 3 sources of qualitative data from game designers

relating to tool engineering by using content analysis. Whilst each source has limits in

isolation, cross-referencing 3 distributed sources to inform generalized findings about

tool engineering was thought to allow for a better understanding of the specific modules

game designers most need engineers to reflect upon. The first analysis looks at seminars

presented at the Game Developers Conference, the second analyzes transcript data from

interviews with 3 veteran game system designers and the third is a survey of the tools

and plug-ins commercially available on the Unity Asset Store.

2 Game Developers Conference Content Analysis

Prior requirement analysis derived from content analysis of "Game Tool" case-studies

indicated that tool engineering with a focus on quality assurance (QA) and iterative

design was a major concern amongst both game designers and tool engineers on small

to medium-sized development teams [6]. The findings were generalized and only iden-

tified broad trends between disciplines of game developers and different studio struc-

3

tures. This prompted further investigation to better identify specific functional require-

ments and possibly identify aggregate trends in game engine design management. Rep-

licating these methods and cross-referencing for either tooling or production key-

phrases resulted in some indicative observations, including:

 “Editor” was the most repeated key word, appearing 8.9 magnitudes (V) of standard

deviation above the average frequency (5.1+6.3V) across all 701 meaningful key

words or phrases. This indicates it is the “inductive generic”, the word most descrip-

tive of the sample.

 Tool-engineering key phrases: "Script(ing)" (μ+7.9σ) and "Code" (μ+1.7σ), "Data"

(μ+5.1σ), "Animation" (μ+4.3σ) and "Kinematic" (μ+2.9σ) and "Modular" (μ+1.8σ),

were also notably repeated above average across the sample.

 Iterative design and QA key phrases included "Iteration", "Bug", "Debug(ging)",

"QA" and "Test", and these made up 33.2% of all key phrase distribution.

 Collectively, the sample of key phrases relating to users, user-experience, creativity,

productivity, and workflow comprised 36.3% of all key phrases.

 Some seminars were in the context of utilizing general-purpose game engines

(Unity, Unreal, Frostbite) combined with bespoke modules/libraries to support their

specific design requirements. Other seminars discussed entirely proprietary (“in-

house”) game engines or bespoke, self-contained, and automated tools built to sup-

port the development, or even procedural generation, of specific games.

It is difficult to validate generalized knowledge from one sample of content analysis.

These key phrases could, however, be used to inform the design of further investigation.

Combined, each investigation could then be cross-referenced with these preliminary

findings to build a better representative aggregate of user needs.

3 Industry Interviews

Triangulation is the process of sampling multiple relevant data sources and cross-ref-

erencing the findings of each analysis. This can be used to confirm theoretical models

and add detail to those models [7] [8]. Since, by nature, archival footage cannot provide

elaboration on any findings observed, interviews with suitably experienced participants

may provide stronger evidence to inform better design of game tools.

3.1 Interview Design

Interview questions were designed to use sentiment-evoking keywords to pre-contex-

tualise the participant’s answers towards different categories of observation, as de-

scribed in table 1. Responses could then be codified as independent variables [9]. The

selection criteria of the candidates can be considered multiple factors of linear regres-

sion, with the most common sentiment mined from semantic coding of each response

serving as a dependant variable which can be measured. Participant selection criteria

act as coefficients of regression, adding to the experiment power, meaning a small num-

ber of interview participants can be used to strongly contribute to the observable criteria

for a third investigation [10] [11]. The selection criteria for participation included:

1. Primary discipline of system designer (as opposed to Artists)

2. AAA Studio and Small-Medium Enterprise (SME) studio work experience

3. Professional experience shipping a game using a proprietary engine.

4. Professional experience with either Unreal or Unity engines.

5. Worked on the development of at least 1 released game either operating as a service

for at least 5 years or perpetual open-access development for 5 years.

Table 1. Open-ended interview prompts and their respective semantic context-clues.

Q1.
What technical limitations have you found most limiting when trying to

implement new ideas?

Semantic Keywords: Technical, limitation, implementation, ideas

Q2a.
What do you feel is the biggest loss in efficiency, sometimes referred to

as bottlenecks, in your development and iteration process?

Semantic Keywords: Efficiency, iteration

Q2b.
What do you feel is the biggest loss in efficiency in training new design-

ers?

Semantic Keywords: Efficiency, training, designers

Q3a.
With 7 being high and 1 being low, what impact do you think this issue

has on your creative expression?

Semantic Keywords: Creative expression

Q3b. (Optional) What are your thoughts of contextual development interfaces?

Semantic Keywords: Context-sensitive, interfaces

Q4. What does creativity mean to you as a systems designer?

Semantic Keywords: Creativity, system design

The reason system designers were selected over artists is due to the lack of con-

straints on the scope of what system designers do within game design. It was thought

this would give the broadest perspectives on many tools, rather than the specialized

tools different disciplines of artists tend to use. The need to have worked at both AAA

and smaller studios was informed by the findings that tool needs and priorities differed

depending on the expectation that a studio will have more general-purpose roles or the

scope for large-staffed dedicated departments. Experience working with both proprie-

tary and modular, general-purpose engines helped to control the bias towards one or the

other. Finally, the requirement to have such extensive development experience on a

single game was to control for participants who may have used tools still in early-de-

velopment or not reasonably functional for fair measure.

5

3.2 Interview Analyses

After removing interviewer interjection or clarification there was 47 minutes and 35

seconds (2855 seconds) of participant data at an approximate average rate of 2.67 words

per second. Continuing to replicate the methods used in the Interpretive Content Anal-

ysis model; Layers 1, 2 and 3 (Literal, Contextual and Observational) were supple-

mented using 3 methods of content analysis: Lexicography, Coding and Distillation.

Layer 4 (Meta-factor Analysis) was predetermined by the design of the interview ques-

tions and participant criteria.

Lexicographical Analysis. There are some limitations to using the same word-pair

analysis used on the GCD data for interviews. The open nature of the interview ques-

tions resulted in more topical variance than GCD seminars. This, combined with the

smaller sample of word data, means the data distribution was weaker with fewer im-

pactful trends. Furthermore, the context-clue keywords from the question design had to

be removed from the data to avoid inflating their value: “Technical”, “Ideas”, “Limita-

tion”, “Implementing”, “Efficiency”, “Iteration” and “Context” are "leading" words.

The transcriptions removed the interviewer's speech to further mitigate this effect.

Words were grouped by how many magnitudes of standard deviation they appear above

the average (table 2).

Table 2. Frequency (f) of which key words or word-pairs occurred in the interview transcripts,

grouped by prominence as determined by magnitudes of standard deviation from the mean.

Very Prominent

(f >= μ+3σ)
More Prominent

(f >= μ+2σ)
Prominent

(f >= μ+1σ)

Key Phrase f Key Phrase f Key Phrase f
Key

Phrase
f Key Phrase f

Game 59 New 36 Interesting 19 Space 14 Character 12

Engine 52 Make More 27 Context 19 Working 13 Animation 11

Tool 46 Time 26 Creativity 18 Developer 13 Level 11

Work 41 Team 24 Feel 17 Unity 12 End Up 10

Different 39 Designer 23 WoW 17 Object 12

"Game Engine", "Engine" and "Tool(s)" are again a primary focus by a large margin.

This is reflective of the GDC findings and highlights concurrency between data. Strong

focus on "team" and "designers" indicating a level of generalization reflective of expe-

rienced collaborative designers. "Making more" and "time" reflect the main metrics by

which productivity is measured. "Context" and "Feel" were almost exclusively used in

the context of tool user experience. The phrase "Space" lacks context in abstraction, but

reviewing the source data showed that it was often used as short-hand for "3D Space",

"head space" (sic) and "work space" (sic). "3D space" references usability or function-

ality within a level or scene, whereas "headspace" and "workspace" allude to concepts

of user experience or productivity [12] [13], whilst “Object”, “Character”, “Animation”

and “Level” each represent different workflows for game designers (Level Design, An-

imation and Character, and System Design). Finally, the phrase "end up" typified a

sentiment of resignation with systems that do not work as expected, or desired, but can

be used imperfectly to achieve a goal.

Finally, “WoW” was used as short-hand for the MMORPG “World of Warcraft” and

was the context for a bespoke game engines with a relatively long product life cycle,

18 years, maintained for a single game-as-a-service. For comparison, Unity is men-

tioned slightly less and represent a more modern modular engine. Unreal was rarely

mentioned.

Interview Coding. Coding is the process of assigning meaning to qualitative data in a

systematic way. Distillation is the process of recursively categorising semantic data into

less discrete groups of data, inferred from commonality between the meaning of key

phrases [14]. The data was reviewed, and timestamps placed denoting interview struc-

ture (breaks, questions, clarifications) and subject categorisations (figure 2).

Fig. 2. Example of the coding process, starting with cataloguing the raw interview audio data

labelling and chaptering.

These codes were then assigned to 1 of 5 categories and given semantic tags. For ex-

ample, “3D Navigation” may be the subject, but this may be discussed in the context of

the task of prototyping “3D Block-Outs”. If a specific feature was discussed in this

context, it was noted, with either affirmative (positive) or contradictory (negative) state-

ments assigned to the given statement [15]. Verbatim word-association was used to

divide uninterrupted participant responses into discrete “chunks”. This is known as

“open coding” and allowed the most accurate model representation of the interview

data (table 3).

Once “open coding” was complete, a process of abstraction called “recursive cod-

ing” sought to consolidate semantically similar codes into broader groups. These

chunks are then consolidated and measured for reoccurrence to give a better measure

of the weight assigned to topic across all participants. Continuing with the previous

7

example, multiple participants may discuss specific problems with “3D Block Outs”

but they may each discuss different tools or aspects that clarify their responses. An

aggregate of the task category would come under the discipline of “Level Design”,

whereas the tools may not semantically relate (table 4).

Table 3. An extract of the table used during the “open coding” stage of interview reviews. Each

row is self-contained by code category. Each column represents each expression of sentiment.

Task
3D Block-

Out

Pre-Art

Implementation

Rapid

Implementation

Reengineering

Assets
…

Affirmative

Sentiment

Abstract

Proportions

Fast Concept

Testing

Consistent UI,

by context

“Pro-mode”

3D Designer

UI

…

Contradictory

Sentiment

Too much

freedom

Features

prioritised over

UX

Abstract

Relative

Scaling

(2D/3D)

Snapping

Overrides
…

Experience or

Reflection

Inadequate

requirements

analysis

Requirements

vary by

discipline

Too much

access to

incidental vars.

Not enough

accessibility

to data

structures

…

Feature

Highlight

Relative

Scaling
Snapping

Sandbox

Testing
Prefabrication …

Table 4. An extract of the “selective coding” stage of interview distillation.

Task
Level

Design

System

Design

System

Design

System

Design …

Affirmative

Sentiment

User

Familiarity

System

Testability

User

Profiling

User

Profiling …

Contradictory

Sentiment

Data

Accessibility

User

Profiling

Navigation

Accessibility

Navigation

Accessibility …

Experience or

Reflection

User

Profiling

User

Profiling

Data

Accessibility

Data

Accessibility …

Feature

Highlight
Controls Controls Prototyping Prototyping

…

Given coding is an intermediary step between literal and interpretive analysis, the re-

sults expectedly reflected the lexicographical analysis. Each category of coding had

between 79 and 96 chunks assigned across all interviews. Affirmative sentiments were

focused on designing tools for workflows and “contextual interface” design (47%).

Contradictory sentiments were split between two smaller trends, “data accessibility”

(24%) and “collaborative design” (17%). “Data abstraction” tools, including scripting

and data visualization, were the most discussed feature highlights (37%).

Interview Distillation. Much debate has been presented across most scientific fields

engaged with any analysis of naturalised (human) data about the validity, and practi-

cality, of presenting comprehensive depictions of nuanced user behaviour and opinions

[16] [17] [18]. The more data is abstracted from a verbatim transcription, the more an

observer’s “theoretical priori” orientation may influence their neutrality [19]. With due

consideration to this, some summary findings from the interviews are presented here to

provide context for the data previously presented in abstraction, taken verbatim where

possible:

Question 1. On technical limitations on creative development:

 Engines are built “by programmers, for programmers”, with too much access to var-

iables without the ability to expose only what is meaningful.

 There is “inaccessibility to common tools/formats [in favour of proprietary ones]”.

 “All in wonder” tools (like Unity) limit accessibility by making anything possible

only once you know how to setup and build the underlying game systems.

 Technical limits on live collaboration prevents consistency in design intent between

disciplines.

Question 2. On losses of efficiency, both in a HCI and team-work context:

 Lost context, or noisy UIs, break the comfortable and intuitive headspace of design

task. This can overwhelm new users, distract experienced users, and slow down pro-

ficient users.

 Learning how to do a new task is a huge limit. Especially in proprietary engines

where documentation is limited, and enquiries cannot be crowdsourced externally.

 Game data concurrency, especially in the context of live collaborative development,

can throttle the iterative cycle of design, implement and testing game “feel”.

 Repetitive or chain-tasks often require specific replication of inputs or task se-

quences. Losing interface focus during these sequences often means starting over.

Question 3. The impact on creative expression returned a mean score (μ) of 6 out of 7,

with a standard deviation (σ) of 1.4, suggesting general agreement that responses to

question 2 heavily impact creativity.

Question 4. On the definition of creativity from the perspective of system design.

 Creativity is working within the constraints of a system(s) to develop novel applica-

tion of, or interactions between, those system(s).

 Creativity is about communicating a system to a player through the design and

presentation of data in a way that is immersive and accessible.

9

4 Unity Asset Store Survey

Most content on the Unity Asset Store provides prefabricated art resources, not func-

tionality-adding components. A quick analysis of that repository provided no unex-

pected results. 3D art was more prominent than 2D art, with Sound and Visual Effects

(VFX) being considerably less in supply (figure 3).

Fig. 3. Distribution (%) of art plug-ins on the Unity Asset Store, by art sub-disciplines.

Tools and plug-ins (modules) are a distinct category unto themselves and are further

sub-divided by a moderated tagging system. These tags tend to reflect distinct work-

flows or disciplines within game development, though some describe specific tasks or

functionality standard to most game engines. The distribution of these plug-ins provides

much more relevant data to the design of engine architecture than the artistic plug-ins,

as well as specific (and independently assigned) semantic grouping.

Table 5. Distribution of the sum number of plug-ins (f) in each category.

Category (f) Category (f) Category (f)

Utilities 1638 Game Toolkits 315 Sprites Control 209

GUI 1248 Animation 314 Level Design 150

Integration 1104 AI 297 Visual Scripting 145

Particles & Effects 593 Network 270 Video 89

Input Management 455 Camera 263 Localization 78

Physics 387 Audio 257 Painting 49

Modelling 385 Terrain 234 Version Control 18

There were several categories listed separately to the tool/plug-in that bear inclusion:

 Templates (2774 (f) plug-ins), which includes precompiled Unity project structures,

data configurations, databases which support certain common game systems, tutorial

projects for learning to use Unity, and finally, resource packs for certain themes of

game.

 Services (21 (f) plug-ins), which mainly included plug-ins for connecting game sys-

tems and interfaces to financial transaction services or instant messaging APIs.

 Machine Learning (17 (f) plug-ins), which provide a variety of neural net and com-

petitive agent libraries for programming AI for games.

Across all tool categories, “Utilities”, “GUI” (including Unity GUI Managers) and “In-

tegration” tools were the most prominent categories (table 5), occurring 2.9, 2.0 and 1.7

standard deviations above the mean frequency of all tool categories, respectively, which

was concurrent with data gathered from the interviews.

Whilst “Integration” has clear relevance to the software engineering and compatibil-

ity aspects of game development, “GUI” could refer to both the implementation of

GUIs into games, as well as GUIs for the Unity Engine. Regardless, GUI still has a

clear association relative to an aspect of game-design. “Utilities” is a semantically

vague term, despite it being (speculatively, causing it to be) the largest category of plug-

ins. Deeper investigation of the “utilities” category was carried out by sampling the 50

most reviewed 5* plug-ins. Whilst this could not give a representative semantic assign-

ment to the category, it could provide data relating the most used and positively re-

ceived plug-ins. This can be used to complete the triangulation of the GDC seminar

data and the interview data. Some observations included:

 80% provided modular GUIs to provide functionality not native to Unity.

 63% re-engineered GUI elements native to Unity or extended/overwrote the func-

tionality of existing Unity interfaces or tools.

 28% provided interfaces or functionality for managing, reviewing, or controlling

game data and data connected to game-assets. 4% were script-driven.

 60% delivered work-flow enhancement for a given task or discipline. 24% specifi-

cally cited increasing developer productivity as a feature.

─ Examples included interfaces or scripts adding functionality to improve workflow

for tasks including: pooling and asset inspection (9), programming (6) level de-

sign (5), debugging (5), security and data obfuscation (4), and quality assurance,

texturing, animation, and particle effect management (1).

 54% provided methods and interfaces for game project file and asset management,

particularly for optimization.

 28% provided functionality or interfaces for optimization of render and compute

performance, primarily through asset dependency calculation and asset pooling,

though some provided for the implementation of level-of-detail control on art.

 6% provided tools for procedural generation for either 2D or 3D level design.

Reviewing rating to price ratio found that, of the 100 most expensive plugins in each

category (including any plug-ins of equivalent price to the price floor), 36-37% of each

of the 3 top categories did not have ratings, indicating insufficient reviews and (implic-

itly) sales. Utilities had the most favorable ratings (62.7%, 4-5 star ratings), but favor-

ability was level across all 3 categories (62.7%, 56% and 57%, respectively).

11

Notably, quality assurance (excluding performance optimization) was a focus of

very few plug-ins; 1 in the sample of most popular tools, and 10 across all tool catego-

ries. The "Testing" tag also yielded only 34 results. This is less than anticipated given

the relative focus on QA from SME developers at GDC.

Finally, in two samples taken 8 months apart (October 2020, June 2021), there was

a significant reduction in the number of System Templates (-24%, 878 to 667). Filtering

for version-compatibility shows that much of this reduction came from deprecated sup-

port due to versioning. This highlights that the problems with legacy systems, alluded

to in the interviews, are not isolated to long-life proprietary systems/engines.

5 Conclusions

To summarize, across 3 investigations into different sources of game system designer

behavioral patterns and perspectives, there was repeated evidence in favor of designing

game engine user experiences that favor contextual design and optimizes for discipline-

aligned workflows.

The first analysis indicated that Editor design was the most referenced topic across

professional seminars reflecting on tooling or production issues. Scripting, Data, Ani-

mation and Modular (design) were key tasks of focus for tools, but phrases connected

to concepts of productivity, users and usability, creativity and workflow were the most

prominent phrases across all seminars.

The second analysis supported these findings and incorporated them into designing

interviews with seasoned game system designers. Those interviews emphasized con-

textual design for given tasks is greatly preferable and that exposing too much data to

the point of over-accessibility is destructive to the user experience of any engine or

tools, with the caveat that controlling what is or is not exposed is preferable to not being

able to access essential data under any circumstances.

The third analysis highlighted the tools and utilities most used and reviewed by game

designers using the Unity Asset Store. These plug-ins largely override the functionality

and user experience of the Unity engine in favor of workflows optimized for given tasks

or aspects of game development. The most common of these was project and data/asset

management, primarily for performance optimization and project refactorization.

Modular architecture is common in both proprietary and general-purpose game en-

gines as it allows for the agile assessment of the game system designer’s needs. When

development of these modules can be aggregated across larger audiences (such as the

Unity Asset Store) there is an almost evolutionary “survival of the fittest” effect that

delivers enhanced usability. However, data management and abstraction are major re-

strictions on meeting these needs, and further research is needed to understand how

data and creative design can be better interpolated to free up experienced designers and

increase accessibility to initiate designers.

References

1. Lightbown, D.: Designing the User Experience of Game Development Tools. 1st

edition 1st edn. A K Peters/CRC Press (2015)

2. Wolf, M.: The Medium of the Video Game Republished edn. University of Texas Press

(2001)

3. Palazzi, C., Roccetti, M., Marfia, G.: Realizing the Unexploited Potential of Games on

Serious Challenges. Comput. Entertain. 8(4), 1-4 (December 2010)

doi:10.1145/1921141.1921143.

4. Meyer, A., Zimmermann, T., Fritz, T.: Characterizing Software Developers by

Perceptions of Productivity. In : 2017 ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM), pp.105-110 (2017)

doi:10.1109/ESEM.2017.17.

5. Haas, J.: A History of the Unity Game Engine. Worcester Polytechnic Institute,

Worcester, USA (March 2014)

6. Packer, B., Keates, S., Baker, G.: Game Developers in the Wild: Trending Perspectives

on Software Limitations. Multimed Tools Appl (2021) Publication Pending.

7. Gibson, W., Brown, A.: Working with Qualitative Data. SAGE, Los Angeles, USA

(2009)

8. Renz, S., Carrington, J., Badger, T.: Two Strategies for Qualitative Content Analysis:

An Intramethod Approach to Triangulation. Qualitative Health Research 28(5), 824-

831 (2018) doi:10.1177/1049732317753586.

9. Wilson, C.: Chapter 2 - Semi-Structured Interviews. In : Interview Techniques for UX

Practitioners: A User-Centered Design Method. Morgan Kaufmann, Boston (2013) 23-

41 doi:10.1016/B978-0-12-410393-1.00002-8.

10. Pribeanu, C., Balog, A., Iordache, D.: Measuring the perceived quality of an AR-based

learning application: a multidimensional model. Interactive Learning Environments

25(4), 482-495 (2014) doi:10.1080/10494820.2016.1143375.

11. Hariyanto, D., Triyono, M., Koehler, T.: Usability evaluation of personalized adaptive

e-learning system using USE questionnaire. Knowledge Management and E-Learning

12, 85-105 (March 2020) doi:10.34105/j.kmel.2020.12.005.

12. Kress, G., Hoster, H., Chung, C., Steinert, M.: Headspace: The Stanford imaginarium.

In : ICDC 2012 - 2nd International Conference on Design Creativity, Proceedings,

Glasgow, vol. 2, pp.261-268 (2012)

13. Ali-Babar, M.: The Application of Knowledge-Sharing Workspace Paradigm for

Software Architecture Processes. In : SHARK '08: Proceedings of the 3rd international

workshop on Sharing and reusing architectural knowledge, Leipzig, pp.45-48 (2008)

doi:10.1145/1370062.1370074.

14. Rowley, J.: Using Case Studies in Research. Management Research News 25(1)

(January 2002) doi:10.1108/01409170210782990.

15. Weston, C., Gandell, T., Beauchamp, J., McAlpine, L., Wiseman, C., Beauchamp, C.:

Analyzing Interview Data: The Development and Evolution of a Coding System.

Qualitative Sociology, Vol. 24, No. 3, 2001 24(3), 381–400 (2001)

doi:10.1023/A:1010690908200.

13

16. Dave, K., Lawrence, S., Pennock, D.: Mining the Peanut Gallery: Opinion Extraction

and Semantic Classification of Product Reviews. In : WWW '03: Proc. 12th Int. Conf.

World Wide Web, Budapest, pp.519–528 (2003) doi:10.1145/775152.775226.

17. Suddaby, R.: From the Editors: What Grounded Theory Is Not. The Academy of

Management Journal 49(4), 633-642 (August 2006)

18. Leroux, J., Rizzo, J., Sickles, R.: The Role of Self-Reporting Bias in Health, Mental

Health and Labor Force Participation: A Descriptive Analysis. Empirical Economics

43, 525–536 (2012) doi:10.1007/s00181-010-0434-z.

19. Flyvberg, B.: Five Misunderstandings About Case-Study Research. Qualitative

Inquiry 12(4), 219-245 (April 2006) doi:10.1177/1077800405284363.

