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Abstract 

Developing an accurate model is extremely important to design efficient proton exchange mem-

brane fuel cells (PEMFCs) systems. The current work proposes the Whale Optimization Algorithm 

(WOA) for establishing an accurate and reliable PEMFC models. The idea is to increase accuracy 

of the extracted model parameters by minimizing error between the experimental and estimated po-

larization curves. WOA is utilized to mainly mitigate the effect of the local optimum stagnation and 

the premature convergence that appear with most of literature methods applied in this regard. The 

effectiveness of the WOA in modeling the PEMFC generators is demonstrated by the experiments 

using Heliocentris FC50 PEMFC test bench. In contrast to the existing works that characterized the 

behavior of the PEMFCs under fixed temperature values, the performance of developed model in 

providing accurate results is investigated under different operating conditions. The efficacy of the 

WOA is further checked using the data of two PEMFCs available in the literature, namely BCS-

500W, and Ballard V. Moreover, a comparison is done with some challenging literature techniques 

along with the necessary statistical analysis. The final results prove that the WOA has very competi-

tive performance. The proposed WOA has produced the lowest Mean Absolute Error among all 

tested methods, with values of 0.0589V, 0.2323V, and 0.2867V for Heliocentris FC 50, BCS, and 

Ballard fuel cells, respectively. Besides, the constructed Heliocentris FC 50 model yields highly 

accurate results, especially under varying temperature values. Owing to this, it can be stated that the 

WOA a powerful modeling tool. Therefore, it is highly recommended to be employed for creating 

high-quality PEMFC models. 
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Symbols and abbreviations  

ABC Artificial-bee-colony  

DE Differential-evolution 

FC fuel-cell 

MAE Mean-absolute-error (V) 

OF Objective-function (A) 

PEMFC proton-exchange-membrane fuel-

cell 

PSO Particle-swarm-optimization 

GA Genetic-algorithm  

RE Renewable energy 

RMSE Root-mean-square-error 

WOA Whale-optimization-algorithm 

SSD Sum of squared deviations 

Max_it Maximum iterations  

𝐀 Membrane area (cm2) 

�⃗⃗� , �⃗� , 𝐂⃗⃗⃗⃗ Constant coefficients  

b Constant parameter (V) 

𝐂𝐎𝟐Oxygen-concentration 

�⃗⃗�  Distance between agents 

𝐄𝐧𝐞𝐫𝐧𝐬𝐭 No-load voltage (V) 

𝐈Stack current (A) 

i Iteration counter  

𝐉 Stack current-density (A/cm2) 

𝐉𝐦𝐚𝐱Maximum-current-density (A/cm2) 

l Membrane-thickness (cm) 

𝐍𝐬Number of cells collected in series 

𝐏𝐇𝟐 Hydrogen pressure (atm) 

𝐏𝐎𝟐 Oxygen pressure (atm) 

 

𝐏𝐇𝟐𝐎 Water pressure (atm) 

𝐏𝐚 Anode nominal pressure (atm) 

𝐏𝐜 Cathode nominal pressure (atm) 

𝐑𝐇𝐚 Anode relative humidity 

𝐑𝐇𝐜 Cathode relative humidity  

𝐑𝐦 𝐚𝐧𝐝  𝐑𝐜Membrane and metal contact re-

sistances (Ω) 

𝐫  Random number [0-1] 

𝐓 Stack temperature (K) 

𝐕𝐚𝐜𝐭 Activation Voltage (V) 

𝐕𝐜𝐨𝐧 Conductivity voltage (V) 

𝐕𝐨𝐡𝐦 Ohmic-overpotential (V) 

V/I Voltage-current points 

�⃗⃗� (𝐢),�⃗⃗� (𝐢 + 𝟏) Agent position and agent updat-

ed position 

𝐗∗⃗⃗⃗⃗ (𝐢)Best position/ Optimum-solution 

GO Global-optimum 

LO Local-optimum 

 𝛒𝐌Membrane resistivity (Ωcm) 

𝛏𝟏,𝛏𝟐, 𝛏𝟑, and𝛏𝟒Parametric coefficient (-) 

𝛌 The-quality-of water content (-) 

𝛃 constant factor (V) 

𝛈 Efficiency of the method (-) 

    𝐎𝐅𝐦𝐢𝐧Best objective function recorded during 

the experiment  

𝐎𝐅̅̅ ̅̅  Average value of the all recorded objective 

function values                                                                                                          

 

1. Introduction  

The growing environmental concerns, in addition to the rapid depletion of fossil fuel reserves 

have provoked many governments worldwide to invest more in renewable energy sources (RES) 
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[1]. Among available RES, wind and PV energies are envisaged as promising candidate solutions 

which can meet the present and future energy requirements with zero emissions [2-4]. However, the 

power provided from these two energy sources is intermittent due to weather variability [5-7]. An 

unexpected change in the environmental conditions can significantly affect the productivity of the 

such power sources [7, 8]. For instance, the generated power by PV arrays decreases as solar irradi-

ance decreases, and it could even drop to zero in case of cloudy days [2]. Similarly, wind generators 

remain inactivated as long as the local wind speed is lower than the cut-in speed of the turbine [2]. 

The association of backup support systems like batteries and hydrogen storage becomes, therefore, 

necessary to maintain high reliability [9, 10]. 

Recently, hydrogen-based storage systems have received increasing interest from researchers, es-

pecially with the significant improvements in fuel cells (FCs). Many research works [10-12] con-

sider that the combination of FCs along with other energy sources is an excellent option that can 

play a crucial role in achieving 100% reliability. Since its discovery in 1889 [13], FC has evolved 

remarkably over time, and it has been applied to a broad variety of areas in order to profit from its 

positive image. There are various commercial kinds of FCs available in the market [13]. Among 

them, PEMFC, which has gained the spotlights due its compact design, lightweight, solid electro-

lyte, low operating temperature, zero emissions, and high-efficiency [20, 21]. These valuable fea-

tures have let the PEMFC horizon extend to many vital sectors including the transport domain [15, 

16], distributed generation systems [17, 18], electronic industry [19], and other applications to re-

place fossil fuel-based energy generation systems. For proper design, analysis, and effective control 

of PEMFC systems, accurate modeling and simulation are required [12]. In this regards, the math-

ematical mode of Amphlett [22] is viewed as one of the most convenient models for predicting the 

outputs of the PEMFCs. This approach uses semi-empirical equations to evaluate the effect of vari-

ous influencing factors such as stack temperature, humidity, and anode & cathodes pressures on the 

performance of the PEMFC, without examining in-depth the physical, thermal, and electrochemical 

phenomena involved in the system. However, before simulating the behavior of a specific PEMFC 

using Amphlett model, there are a number of unknown parameters that have to be accurately deter-

mined. These parameters are strongly coupled with each other, rendering the PEMFC parameter 

identification process a challenging task. Dozens of techniques have been proposed in the literature 

to appropriately identify the unknown parameters of the PEMFCs. These techniques can be split 

into two main categories, namely (i) traditional methods and (ii) meta-heuristic algorithms. The tra-

ditional methods like GRG [23], fractional-order model [24], impedance-spectroscopy [25], and 

impedance-characterization [26] can hardly define the model parameters effectively, since the sys-
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tem is highly nonlinear and has a large number of variables. Thus, to overcome the difficulties asso-

ciated with the aforementioned techniques, meta-heuristic optimization methods have been applied.   

Meta-heuristic methods are nature-inspired and population-based search techniques. They have an 

excellent ability to effectively resolve global-optimization problems [27]. They have been success-

fully applied to solve a wide range of real-world problems [27-31], including parameter identifica-

tion tasks. A comprehensive literature review showed that a good number of meta-heuristic methods 

have been applied in the context of PEMFC modeling. Ohenoja et al. [32] in 2010 proposed the ge-

netic-algorithm (GA) to enhance the modeling of the PEMFC by fitting its model parameters with a 

set of experimental data. They analyzed the influence of parameter range on the performance of 

their proposed method. Their results indicated that the parameter boundaries employed need careful 

consideration. The same method (i.e., GA) was hybridized with the Nelder–Mead search technique 

by Mo et al. [33] to improve its performance. They found that the hybridized GA performed more 

efficiently compared to the original GA, especially for steady state conditions. The cuckoo-search-

algorithm, on the other hand, was combined with the adaptive explosion operator strategy to main-

tain the diversity of the individuals all over the search space [34]. Their numerical results proved 

that the proposed method by them has better performance regarding convergence and accuracy. 

Likewise, Chenget al. [35] have analyzed the performance of the Differential-Evolution (DE) meth-

od in the process of PEMFC parameters extraction. The effectiveness and robustness of their pro-

posed method were compared with other competitive literature approaches. Their results showed 

that among all tested methods, the DE has a great flexibility in avoiding local optimum stagnation 

and extracting accurate results. The work done in Ref. [36] was similar to this study in some as-

pects. However, the data used in the this article is extracted from different FCs and under else oper-

ating conditions. Also, many of the aforementioned works have studied the performance of their 

PEMFC under fixed temperature values. However, in this paper we consider the output voltage of 

the system under varying temperature values. Moreover, the behavior of particle-swarm-

optimization (PSO) algorithm was discussed by Ye et al. [37]. They compared the results with some 

traditional optimization methods and found that the PSO is an effective approach for defining the 

parameters of the PEMFC even if the data is noisy, or the set initial boundaries have a broad range. 

Menesy et al. [38] applied the Chaotic Harris Hawks optimization for estimating the accurate oper-

ating parameters of four commercial PEMFCs. This method is new and it is being increasingly used 

in various applications to solve their optimization problems. The authors in the above-said study 

tested the stability and reliability of the method in comparison with some existing optimization 

techniques. Their method has showed good performance in developed reliable PEMFC models. Sul-

tan et al. [39] proposed an improved salp swarm algorithm to reduce the local optimum trapping 
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behavior when optimizing the parameters. They validated the effectiveness of the new method in 

modeling the PEMFC using statistical benchmarks. Their simulation results proved the stability and 

reliability of method. Recognizing the advantages of heuristic modeling techniques, many addition-

al methods have been applied in this regard, some of which are: seeker-optimization algorithm [14], 

P system based optimization algorithm [21], salp-swarm optimizer [15], harmony search [40], bird 

mating optimizer [41], grasshopper optimizer [42], grey-wolf optimizer [43], flower pollination 

[44], manta-rays optimizer [45], neural-network optimizer [46], atom-search [47], hybrid adaptive 

DE [48], and artificial-bee-colony (ABC) [49], improved TLBO method [50], biogeography algo-

rithm [51], backtracking search algorithm [52]. 

With regards to the above literature review, it is apparent that considerable efforts have been un-

dertaken to improve the PEMFC modeling through the use of various optimization methods. How-

ever, there are some opportunities to attempts new algorithms, since the meta-heuristic optimization 

domain is still evolving over time. In addition to that, and apart from the promising results attain in 

this regard, the no-free-lunch theorem made a precise remark that it is always beneficial to try out 

different/new optimization techniques when solving engineering problems. Because one method 

can be useful in solving one set of problems, but not necessarily effective with other sets of prob-

lems [53]. In other words, there still room to propose other methods and achieve further enhance-

ments. For these reasons, the authors have the motivation to apply the Whale Optimization Algo-

rithm (WOA)  for improving the modeling of the PEMFCs. 

 The WOA is a new generation heuristic optimization method. It was proposed in 2016 by Mir-

jalili [54] to simulate the social behavior of humpback whales. The method has revealed superiority 

in solving complex engineering problems, for instance identifying the undefined parameters of the 

solar PV cells [55], dispatching the reactive power of the grid [56], sizing renewable systems [57], 

and forecasting regional wind speeds [58]. As such, the WOA is implemented in the present work in 

an attempt to improve the modeling of the PEMFCs, and its efficacy is investigated in detail. 

The aim this paper is to develop a high-quality model for PEMFCs by increasing accuracy of the 

extracted model parameters. The efficacy of the WOA is tested in three PEMFC case studies. For a 

fair comparison, the performance of the proposed method has been tested against that of various 

state-of-art algorithms. The major contributions, and the significant difference between this work 

and previous studies are illustrated in the following points: 

(i) An accurate, reliable, and low-cost PEMFC simulation model for Heliocentris-FC50 

PEMFC has been developed.  
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(ii) In contrast to the approaches employed in the existing works, which are difficult to pro-

gram due to their complexity, a simple, and efficient stochastic search algorithm is pro-

posed to determine the unknown parameters of the PEMFC. 

(iii) Application of WOA method is proposed to mitigate the issues of local optimum stagna-

tion as well as premature convergence. The method generates high degree of randomness 

so that the population is distributed all over the space, thus, the chance of getting trapped 

in one of local optimums is minimized. 

(iv) Unlike the previous work performed by El-Fergany [36], which was similar to this paper 

in some extent, in this study, the effects of temperature variability on the performance of 

the developed model by WOA is investigated in depth.  

The rest of the article is organized as follows: Section (2-3) defines the mathematical model of 

the tested FCs and formulate the objective function. Section (4) explains the optimization procedure 

in detail using the WOA algorithm. Sections (5-6) analyzes and discusses the outcomes of the work. 

Finally, Section (7) summarizes the key outcomes of the paper and outlines the future works. 

2. PEMFC mathematical model  

A typical PEMFC is depicted in Fig. 1. The electrochemical generator consists of three main 

elements, which are: a solid membrane (often NafionTM material) and two metallic plates called 

anode and cathode. These last mentioned are the places where hydrogen and oxygen react, 

respectively [13]. Hydrogen atoms split into electrons and protons to generate an electrical current 

when an external load is connected. Also, the device releases heat and water steam as products of 

these electrochemical reactions. The overall equation that evaluates the output voltage produced by 

the stack is given in Eq.(1) [15]:  

 

 

 

 

 

 

 

  

Fig.1- Inner view of PEMFC 
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V = Ns× [

{1.229-0.85×10
-3

×(T-298.15)+4.3085×10
-5

×T×ln(PH2×√PO2)}

+{[ξ
1
+ξ

2
×T+ξ

3
×T×ln(CO2)+ξ

4
×T× ln(I)]}

+{β × ln(1 − J Jmax⁄ ) }-{(Rm + Rc) × I}

]                                    (2) 

Where, V is the output voltage of the PEMFC generator, and Ns is the number of cells assembled 

in series. Enernst is the no-load voltage in an open circuit thermodynamic balance. Vact is the activa-

tion voltage resulted from the sluggish kinetics reactions taken place on the surface of the anode and 

cathode. Vcon is the concentration voltage drop. Vohm is the ohmic voltage drop caused by the re-

sistance of membrane and metal contacts, Rm(Ω) and Rc(Ω). T is the cell temperature (K), and  ξ
1
-

ξ
4
 are semi-coefficients based on electrochemistry. PH2 and PO2 are the hydrogen and oxygen partial 

pressures (atm) enters the anode and cathode, respectively. I and J are the current (A) and current 

density (A/cm) of the PEMFC stack, respectively. CO2 is the concentration of oxygen on the surface 

of catalysis (mol/cm3). β is an empirical parametric coefficient in volts. Jmax is the maximum allow-

able currently density. The concentration CO2 and resistance Rm calculated using Eq.(3) and Eq.(4), 

respectively [12, 13, 35, 44]:  

CO2= 
PO2

5.08×106 ×exp(498 T⁄ )                                                                                                                     (3) 

Rm=
l×ρM

A
=

181.6[1+0.03(
I

A
)+0.062(

T

303
)
2
(

I

A
)
2.5

]×l

A×[λ-0.634-3×(
I

A
)]×exp[4.18(

T-303

T
)]×A

                                                                                           (4) 

ρ
M

 stands for the resistivity of membrane (Ωcm), and l is the thickness of membrane (cm). A is 

the activation surface of stack (cm2), and λ is an adjustable fitting parameter influenced by the 

material properties of membrane [15, 44]. 

Furthermore, the pressures PH2 and PO2 can be determined by Eq.(5) and Eq.(6), respectively: 

PH2= 0.5×RHa×PH2O
* × [{exp (

1.635×(I/A)

T1.334 ) × (
RHa×PH2O

*

Pa
)}

-1

-1]                                                             (5) 

PO2=RHc×PH2O
* × [{exp (

4.192×(I/A)

T1.334 ) × (
RHc×PH2O

*

Pc
)}

-1

-1]                                                                      (6) 

log
10

(PH2O
* )=2.95×10

-2
×(T-273.15)-9.18×10

-5
×(T-273.15)2+1.44×10

-7
×(T-273.15)3-2.1            (7) 

Here PH2O
*  is the water pressure in atm, which can be calculated by Eq.(7). While, RHa and RHc 

are the relative humidity's at the surface of the anode and cathode, respectively. Pa and Pc are the 

inlet pressures of anode-cathode, respectively[12, 44]. 
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3. Objective function 

In the equivalent model of the PEMFC given above, several parameters must be determined. The 

constants Ns, A and l are known and can be found in the manufacturer datasheet. Also, the quanti-

ties T, PH2 and PO2 can be measured during the experiment, while the remaining unknown parame-

ters i.e.,  ξ
1
, ξ

2
, ξ

3
, ξ

4
, λ, β, RC & Jmax largely depend on the status of PEMFC, and they require pa-

rameters fitting using an optimization method. 

To ensure an accurate estimation of the above-mentioned parameters, we need to change the 

problem into an optimization task. An objective function (OF) should be created to minimize the 

error between the true and estimated polarization curves. The unknown parameters are set as deci-

sion variables to be then tuned until a good matching is obtained. In this study, the Mean Absolute 

Error (MAE) between the experimental and output model voltages is defined as an OF, which can 

be written as follows: 

OF (Vexp, Iexp, x) =MAE = 
 ∑ |Vexp(k)-Vest(k)|N

k=1

N
                                                                                    (8) 

Where, x= [ξ
1
, ξ

2
, ξ

3
, ξ

4
, λ, β, RC & Jmax] is the parameter vector to be tuned. Vexp(k) and Vest(k) are 

the kth experimental and estimated voltages, respectively. N is the number of samples contained in 

the kth group. Moreover, worth mentioning that the unknown parameters were bounded according ti 

the values in Table 1. 

                 Table 1– Parameter boundaries [46] 

Parameter Lower-bound Upper-bound 

ξ
1
 -1.1997 -0.8532 

ξ
2
  1.0000E-3 5.0000E-3 

ξ
3
  3.6000E-5 9.8000E-5 

ξ
4
  -26.000àE-5 -9.5400E-5 

λ  13 23 

β   0.0136 0.5000 

Rc  0.1000E-3 0.8000E-3 

Jmax 0.4000 0.5000 
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4. Principle of the WOA  

The WOA is a probabilistic and population-based search method. It was proposed in 2016 by 

Seyedali [54] to simulate the social-behavior of humpback-whales. The technique has been success-

fully applied in many engineering problems, since it is efficient in locating the global-optimum, 

easy to program, and requires few controlling parameters. The optimization procedure is conducted 

by three main steps as described above [54]: 

4.1. Encircling the prey  

This step is important for predicting the potential position of the prey. Since food position is un-

known at the beginning for predators, the best agent X*⃗⃗ ⃗⃗  
in the swarm is taken as the target and the 

distance between any agent and the best agent is calculated by Eq.(9). The remaining particles now 

must follow the best agent as expressed in Eq.(10). Here, X*⃗⃗ ⃗⃗  
 should be adjusted at every-iteration if 

there is a better solution. 

D⃗⃗ = |C⃗⃗ .X*⃗⃗ ⃗⃗  
-X⃗⃗ (i)|                                                                                                                                   (9) 

X⃗⃗ (i+1)=X*⃗⃗ ⃗⃗  
-A⃗⃗ .D⃗⃗                                                                                                                                (10) 

Where, X*⃗⃗ ⃗⃗  
 is the best agent found so far and X⃗⃗ (i+1) is the updated position vector. D⃗⃗  represents 

the distance vector between the agents and best position. A⃗⃗  and C⃗  areconstant vectors, which can be 

calculated by using Eq.(11)-Eq.(12) respectively.  

A⃗⃗ = 2.a . r − a                                                                                                                                     (11) 

C⃗⃗ =2r                                                                                                                                                  (12) 

Where, a  is a linear decreasing number from 2→0 over-the-course of iterations, and(r) is a ran-

dom value that lies in ∈ 0≤ r ≤1.0. 

4.2. Bubble net attacking 

Humpback whales have special hunting mechanism called bubble-net feeding. It was noticed that 

the foraging process is done by generating special bubbles along ‘9’shaped path. This behavior 

could be simulated by using Eq.(13): 

X⃗⃗ (i+1)= {
X*⃗⃗ ⃗⃗  

-A⃗⃗ ×D⃗⃗                             if p<0.5

D'⃗⃗  ⃗×eb×l× cos(2π×l) +X*⃗⃗ ⃗⃗  
    if p⩾0.5

                                                                                  (13) 

Where, p is a random numeric ∈[0,1],  D'⃗⃗ ⃗⃗  is the distance-between current whale and best solution 

as defined in Eq.(9). Moreover, b is a fixed digit (b=1.0), and l is a random number that lies in-
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1.0≤l≤1.0. It is worth noting that if p in Eq.(13) is greater than 0.5 a spiral equation is launched to 

simulate the ‘9’shape motion.  

4.3. Seeking for the prey 

In the WOA search method, all agents must contribute to the search process. To make sure that a 

global search is performed in all space, the agents are forced to move far-off the reference whale as 

described mathematically in Eq.(15).  

D⃗⃗ =|C⃗⃗ .Xrand
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(i)-X⃗⃗ (i)|                                                                                                                         (14) 

X⃗⃗ (i+1)=Xrand
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(i)-A⃗⃗ .D⃗⃗                                                                                                                        (15) 

Where, Xrand
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(i) is position, which randomly  taken from the current swarm. A pseudo-code for 

WOA is introduced below to minimize method. 

Algorithm1. Pseudo code for WOA algorithm [54] 

01:Initialize the whales population (1, 2, ..., total number) 

02:Calculate the OF of the population by Eq. (12) 

03:set X∗⃗⃗⃗⃗  ⃗ as the position corresponds to the  minimum fitness (best fit ) 

04: while (Stop criteria is not met) 

05:for each search agent 

06: Update a, A, C, l, and p  

07:if1 (p<0.5)           

08:if2 (|A| < 1)      

09: Update the current agent using Eq. (10) 

10:else if2 (|A|≥1 ) 

11:Choose a random agent (Xrand ) 

12: Update the current agent using Eq. (15) 

13:end if2 

14:else if1 (p ≥ 0.5) 

15:Update the current agent using Eq. (13) 

16:end if1 

17: end for 

18:If any agent goes out-of the search space rectify it 

19:Compute the fitness of every agent 

20:Update X∗⃗⃗ ⃗⃗   if there is a better solution 

21: end while 

22:Go back to X∗⃗⃗ ⃗⃗   
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5. Experimental steps and analysis 

As mentioned, the main goal of the study is to develop a low-cost, easy access, and reliable emula-

tion model for Heliocentris-FC50 test bench installed in LAGE lab (Electrical engineering laborato-

ry), Ouargla university. The platform is used to characterize, analyze, and validate the different con-

trol algorithms that ensures optimal operation of the PEMFC-based systems. As shown in Fig. 2, 

the test bench consists of a 40W PEMFC, hydrogen bottle (capacity of 225 liters, with 10 bar in 

nominal pressure), pneumatic valve, cooling fan, and programmable electronic load. In addition, the 

unit is equipped with a data acquisition station to monitor and store all the relevant information.  

 

 

 

 

 

 

 

 

Fig. 2 - Experimental platform for Heliocentris FC50 

Before addressing the set target, the performance of WOA with some of the FCs studied previ-

ously in the literature is examined. To be more specific, the data of BCS-500W and Ballard Mark V 

PEMFCs collected from [46, 60] have been used to investigate the efficacy of the WOA in defining 

the optimal model parameters, and then the method is used to establish the required model.  

Moreover, for a fair study, a comparison has been done with some competing state-of-the-art 

methods, namely differential-evolution (DE) [35], particle-swarm-optimization(PSO) [37], and arti-

ficial-bee-colony (ABC) [49]. These algorithms have shown good performance in previous studies. 

Their control parameters were set as recommended in their original papers (see also Appendix 1). 

The developed code was executed 100 times, independently, during 1000 iterations. The best result 

among all candidate solutions was taken as the desired solution. Also, the number of agents were set 

equal to 50 in each evaluated algorithm. The computations were performed on one single computer 

with the following configuration: Name Intel (R) Core(TM) i77500 CPU. RAM: 8.0GB. Processing 
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tank 
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Regulator 
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frequency: 2 GHz. Hard drive: 500 GB. Operating system: Software: MATLAB R2018a (Windows-

10, 64bits). 

     Furthermore, since swarm-based search methods are random in nature, it is important to assess 

their stability and robustness using some statistical indicators. The Mean-Absolute-Error, StE, and 

method efficiency (η) , which are given in Eq. (8), Eq. (16), and Eq. (18), respectively are applied 

in this study to measure the significance difference between used methods [46, 60].   

StE=√SSD
2
-MAE

2
                                                                                                                          (16) 

SSD= ∑ [Vexp(k)-Vest(k)]
2N

k=1                                                                                                            (17) 

η=
OFmin

OF̅̅ ̅̅ ×100                                                                                                                                    (18) 

OF̅̅ ̅̅ = ∑ OFi
100
i=1 /100                                                                                                                            (19) 

Where, Vexp(k) and Vest(k) are the experimental and estimated stack voltages, respectively. OF̅̅ ̅̅  is 

the average-value of 100 computed objective-functions, and OFmin is the minimum OF among all 

computed ones. Here, the smaller the values of MAE and StE, the more robust the method is. Also, 

the closest the value of efficiency to 1, the better the method could perform. 

5.1. Case of BCS-500W 

Data for this generator were collected from Refs [46, 60]. The aforementioned PEMFC has a rat-

ed power of 500W, with 32 cells stacked in series. The maximum-current-density (Jmax) is 0.469 

A/cm, while the membrane thickness and the cell active area (A) are 178 µm and 64 cm2, respec-

tively. Moreover, the nominal anode & cathode pressures as well as temperature of this stack are 1 

bar, 0.2095 bar, and 333K, successively. Based on the above, the WOA was implemented to define 

the appropriate parameters of the stack. The results can be found in Table 2. 

Fig. 3 depicts the (I/V) curves generated from the WOA model together with experimental meas-

urements. A very good matching is shown between the estimations & real data. The accuracy of 

WOA is evidenced by the generated MAE value, which is 0.0530 V. This value obtained by WOA 

is the smallest MAE value among all the studied methods, as Table 2 reveals.  

The convergence speed of this stack is displayed in Fig. 4. It is observed that the WOA quickly 

converges to the steady state value, and its accuracy improves as the number of iterations increases. 

The optimum result was reached after merely 81 iterations. Moreover, the robustness as well as pre-

cision of the studied methods were assessed by computing the following statistical benchmarks: 

MAE, StE, and method efficiency. The outcomes are listed in Table 4. A closer look in Table 4 

(first column) shows that the suggested WOA algorithm has outperformed the other methods with 
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its low deviations as well as its high efficiency. These salient remarks also prove that the proposed 

WOA method is more robust, and more stable than others. ABC has ranked second, with error value 

of MAE=0.0543,StE=0.0888 and efficiency of 95.24%. Whereas, PSO and DE have ranked third, 

and fourth, respectively, with relatively considerable deviations.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 – V/I plot of BCS-500W using WOA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4–Convergence rate of BCS-500W V using WOA 

 

5.2. Case of Ballard Mark V 
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In this section, a Ballard Mark V fuel cell, with the specifications listed below has been tested: 

rated power =5KW, cell area (A=50.6 cm2), Jmax (1.5 A/cm), Pa/Pc (1/1 atm), T (343K) [46, 60]. 

The extracted optimal parameters for this PEMFC are also summarized in Table 2. The obtained 

parameters were used to construct the (V/I) characteristic, as shown in Fig. 5. From Fig. 5, it is ob-

served that the estimates of the WOA coincide considerably with the true (V/I) curves. The generat-

ed MAE value by the WOA is 0.1859 V, which is the lowest value among all. The convergence 

graph of this case study is depicted in Fig. 6. The WOA approach has converged rapidly. The best 

solution has been reached after only 52th cycles. In order to measure the accuracy and stability of 

WOA algorithm, the MAE, StE, and efficiency of this specific fuel-cell have been calculated again 

and displayed in Table 4 (second column). In this case, the error values obtained from all methods 

are close to each other. However, the WOA outcomes seems to be slightly better than those ob-

tained by the approaches found in literature. The assessed statistical measures reveal the robustness 

of WOA again with this type of PEMFC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5 – V/I plot of Ballard Mark V using WOA 
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Fig 6 –Convergence rate of Ballard Mark V using WOA 

 

                            Table 2 – Optimal parameters using WOA 

 

Parameter BCS-500W Ballard 

Mark V 

Heliocentris  

ξ
1
  -1.0823 -1.1515 -1.0837 

ξ
2
  0.0032 0.0038 0.0024 

ξ
3
  6.5897E-5 5.6875E-5 5.8816E-5 

ξ
4
  -2.0107E-4 -2.1472E-4 -2.1106E-4 

λ   13.4558 13.7117 16.5558 

β   0.0228 0.0485 0.0353 

Rc  7.6505E-4 8.0000E-004 6.3813E-4 

Jmax 0.4690 1. 5000 0.4996 

MAE  0.0530 0.1859 0.0506 

 

5.3. Case of HeliocentrisFC-50 
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The data for this generator were obtained after implementing a series of experiments on the plat-

form as depicted in Fig. 2. This PEMFC has 40W nominal power, with 10 cells connected in series. 

Cell area of 25 cm2, and membrane thickness of 27 µm. The maximum operating temperature and  

anode pressure are 50 °C and 0.6 ±0.1 bars, respectively [59].  Moreover, the characterization pro-

cess is conducted at the operating conditions of (Pa/Pc=0.60/0.90 bar, and T=26°C), 

(Pa/Pc=0.60/0.90 bar, and T=34 °C), and(Pa/Pc=0.60/0.90 bar, and T=46 °C). The first specified 

conditions were used to define the stack parameters, while the rest were kept for validation. 

• V/I characteristics 

The comparison of the simulation results between the proposed method and other competing ap-

proaches are summarized in Table 3. The best extracted parameters were fed into the model to pre-

dict (V/I) curves. Fig. 7-8 represent the (V/I) plots for all algorithms together with the experimental 

measurements. A very good matching is observed between the points predicted by the WOA and 

measurements across the entire-operating range. However, the estimations from the state-of-the-art 

methods show different degree of deviations as the magnified picture in Fig. 8 shows. The out-

comes of the statistical measures in Table 4 confirm the validity of these observations. The pro-

posed WOA has generated the least MAE and StE error values (i.e., MAE=0.0506& StE=0.0969). 

ABC ranked second with values of MAE=0.0547 & StE=0.0996.PSO has ranked third 

(MAE=0.0551 & StE=0.1049), and DE was ranked last, with MAE = 0.0601 & StE = 0.1136. 

Moreover, from the statistical results, it can be viewed that the WOA and ABC exhibit the highest 

efficiency values in comparison to others, meaning that the named methods are more stable and ro-

bust compared to PSO and DE. 

The excellent performance provided by the proposed WOA technique is due to its inherent ex-

ploration and exploitation mechanisms, which enable the distinction between-the global and local 

optimum values. In addition, the WOA algorithm spreads its individuals over the search space more 

intelligently, so that the probability of falling into one or more local optimums (LO) is significantly 

reduced. These features are not observed with other state-of-literature approaches. In fact, the litera-

ture methods have less flexibility and limited exploitative-exploratory capacities, which have result-

ed in LO stagnation occurrence, especially for DE technique. 
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Fig. 7 – V/I characteristic at 26°C 

 

 

 

 

 

 

 

 

 

 

Fig. 8 – Magnified V/I curve 

 

 

 

 

                   Table 3– Parameter fitting results for Heliocentris FC-50 
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WOA
ABC
PSO
DE

PSO
X=276
Y=0.0551

ABC
X=234
Y=0.0547

WOA
X=119
Y=0.0506

DE
X=309
Y=0.0601

Parameter WOA ABC PSO DE 

ξ
1
  -1.0837 -0.9776 -1.1624 -1.0659 

ξ
2
  0.0024 0.0017 0.0026 0.0025 

ξ
3
  5.8816E-5 3.6142E-5 5.6314E-5 7.2906E-5 

ξ
4
  -2.1106E-4 -2.0922E-4 -2.0806E-4 -2.0464E-4 

λ   16.5558 15.6116 13.0530 13.0612 

β   0.0353 0.0334 0.0403 0.0309 

Rc  6.3813E-4 3.5027E-4 1.5794E-004 6.3562E-4 

Jmax 0.4996 0.4741 0.5000 0.4568 

MAE 0.0506 0.0547 0.0551 0.0601 

Iteration 119 234 276 309 

Classification 1 2 3 4 

• Convergence speed 

The convergence speed of the suggested WOA algorithm in comparison to literature approaches 

is investigated in this section. Fig. 9 depicts the OF evolution versus the number of iterations, with a 

closer view illustrated in Fig. 10. It can observed from Fig. 9 that the WOA technique has the fast-

est-convergence-rate. The least value was reached in just a few iterations, which is 119th. The key 

behind gaining a rapid convergence characteristic by WOA is due to its unique search process, 

which seeks for the prey with more intensive exploration process at the beginning. After a while, 

the method exploits its remaining time in local search to improve the quality of the solutions. On 

the other-hand, the reason for the sluggish convergence in ABC & PSO is due to the repetitive LOs 

stagnation occurrence, which is very time consuming to ouvercom.  To be more specific, ABC and 

PSO have stabilized after iterations number of 234 and 276, respectively.  

With respect to DE method, it is hard to determine the key reason way it exhibits slow conver-

gence behavior. One possible reason is that the DE generates individuals with heavy weights, which 

considerably slows down the population adjustment towards the target. 
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Fig. 9 – Convergence graph at steady-state 

 

 

 

 

 

 

  

 

 

 

 

 

Fig. 10 – Magnified picture of convergence graph 

• Validation under varying operation conditions 

This section validates the adaptability of the WOA algorithm, and its ability in modeling the de-

vice characteristics under different operating conditions. The extracted optimal parameters are uti-

lized to generate the (V/I) curves under the following operating conditions: (Pa/Pc= 0.33/0.42 bar, 

and T=34 °C) and (Pa/Pc= 0.41/0.62 bar, and T=46). The simulation outcomes of this test are dis-

played in Fig. 11. The results exhibit good accordance between-the true-and estimated data for both 

temperature values. The computed MAE values are as follows: 0.0704 V for T=46°C, and 0.0477 V 
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for T=34°C. The above results fully demonstrate the validity and superiority of proposed method in 

enhancing the modeling of the PEMFCs, since the precision of the generated results is not only ac-

curate at nominal conditions, but, also under different temperature levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 – V/I curve under different operating conditions 

 

6. Discussions  

The simulation results for all case studies were subjected to some statistical benchmarks to measure 

the performance of the methods, as depicted in Table 4. From the tabulated results, it is noted that 

the outcomes of the proposed WOA outperform the results of the other models regarding accuracy 

as well as convergence property. The StE and η produced by the WOA confirm the stability of the 

method when solving such problems, since the most accurate parameters findings obtained by 

WOA. Based on statistical indicators displayed in Table 4, it can be seen that the second best result 

was achieved by ABC. While, PSO and DE were ranked third and fourth, respectively. Further-

more, the reader can notice that the outcomes of the proposed WOA are very close to those of the 

literature methods. However, a slight difference can significantly enhance the accuracy of the 

PEMFC model. 

One noteworthy advantage of the WOA method is the effective time varying mechanism, which 

leads to a good balance between the exploration and exploitation phases. Such a feature is derived 

from the adaptive mechanism that control the adjustment of A coefficient. As long as (|A| ≥ 1), the 

method forces itself to maximize the exploration process. While, if (|A| < 1) the method adjusts it-

self to exploit the discovered solutions and improve them more. 
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Furthermore, the non-linearity of objective function and the presence of the logarithmic term in 

the equations, may lead to potential local optimum stagnation. Consequently, the chance of getting 

trapped into one of the LOs grows. The proposed WOA optimization method alleviates this draw-

back by generating sufficient randomness so that all agents are distributed throughout the search 

space to avoid LOs, which is a feature that other benchmarks methods do not process. 

With regards to the convergence speed, the simulation outcomes indicate that the WOA has the 

fastest convergence rate due to the light weight of the agents generated by the method. In contrast, 

the literature methods show some delay after reaching the minimum values. This slow convergence 

is also attributed to the local optimum stagnation behavior, where the agents need time to rectify 

there position and jump out of LO. Furthermore, to quantify the computational effectiveness of each 

method, the associated running time in seconds after 1000 iterations is measured, and presented in 

Table 4. There is a wide variation in the results of running time. There are a number of factors that 

govern the computational time like the number of (V/I) samples, and the number of variables. How-

ever, an important note that can be viewed is that the difference in running time between one meth-

od and the other is relatively small. Therefore, in cases where the computation time is a primer con-

straint to select an appropriate method, the choice becomes up to the designer to select any of these 

methods, since the difference between them is little, and changes according to the case study.  

The above presented results and analysis demonstrated that the WOA method has superior per-

formance compared to the state-of-literature meta-heuristic algorithms. Therefore, it can be stated 

that the WOA is a powerful optimization technique that can be adopted to establish high quality 

PEMFC model. 

    Table 4 – The outcomes of the statistical test 

PEMFC BCS-500W Ballard Mark V Heliocentris-FC50 

Indicator WOA ABC PSO DE WOA ABC PSO DE WOA ABC PSO DE 

MAE 0.05300 0.0543 

 

0.0544 

 

0.0601 0.1859 0.1869 

 

0.1862 

 

0.1907 0.0506 0.0547 

 

0.0551 0.0601 

StE 0.0776 0.0888 0.0888 

 

0.103 0.7279 0.8594 0.7013 

 

0.7647 0.0969 0.0996 0.1049 

 

0.1136 

Η 96.17 95.24 80.38 77.71 95.69 

 

95.34 79.20 78.21 96.23 95.96 

 

80.11 78.32 

Running 

time in 

1.5291 

 

1.7950 

 

1.6349 1.4453 1.4236 

 

1.6259 

 

1.6307 

 

1.2713 1.1755 1.1819 

 

1.1474 

 

1.1705 
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sec 

 

7. Conclusion  

In this study, the WOA algorithm has been proposed and applied to define the optimal of differ-

ent PEMFC stacks. WOA has been proposed to improve the performance of the semi-empirical 

PEMFC model. A comprehensive statistical analysis has been done to confirm the stability, reliabil-

ity and robustness of the proposed method. In addition, the optimization method have been em-

ployed to establish an accurate simulation model for Heliocentris fuel cell system installed LAGE 

laboratory, University of Ouargla.  The simulation results proved that the WOA can improve the 

accuracy of the model by about 8.10%, with reference to second best result. In addition to the 

above-mentioned advantages, the WOA has demonstrated remarkable ameliorations in terms of 

convergence speed. The WOA technique has ranked first in majority of cases. Also, the efficacy of 

the established model by WOA was tested under varying temperature and oxygen/hydrogen pres-

sures scenarios. The polarization curves obtained by the application of the proposed WOA method 

have revealed a good matching with the experimental curves measured under different operating 

conditions.  

Based on the simulation outcomes, it has been observed that the proposed technique confirmed its 

reliability and efficiency in extracting the precise parameters of the PEMFC stack models compared 

with other literature algorithms. In the future study, the proposed algorithm can be used to solve 

other complex optimization problems like energy management of a hybrid system. 
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Appendix 1: Controlling Coefficients. 

Algorithm  Controlling Coefficients  

DE  -Mutation scaling factor F= 0.8. 

-Crossover rate CR=0.9. 

-Donor is vector V is created by:  

-V=𝑋𝑟𝑎𝑛𝑑_1+ F× (𝑋𝑟𝑎𝑛𝑑_2 − 𝑋𝑟𝑎𝑛𝑑_3) 

-At every generation, the best solution is 

taken as the average-value-of the adapted 

population vector. 

PSO -Acceleration coefficients C1=C2=1.5.  

-Inertia weight ⍵=0.5; 

ABC -Employee bees are set equal to the half 

of population. 

Avilable%20at:%20%3chttp:/heliocentris.com/products/instructor.html
Avilable%20at:%20%3chttp:/heliocentris.com/products/instructor.html


28 

 

 

 

 

 

 

 

 

 

 

 

WOA b=1. 


