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ABSTRACT 30 

 31 

Wearable physical activity (PA) monitors have improved the ability to estimate free-living total 32 

energy expenditure (TEE) but their application during arduous military training alongside more 33 

well-established research methods has not been widely documented. This study aimed to assess 34 

the validity of two wrist-worn activity monitors and a PA log against doubly-labelled water 35 

(DLW) during British Army Officer Cadet (OC) training. For 10 days of training, twenty (10 36 

male and 10 female) OCs (mean ± SD: age 23 ± 2 years, height 1.74 ± 0.09 m, body mass 77.0 37 

± 9.3 kg) wore one research-grade accelerometer (GENEActiv, Cambridge, UK) on the 38 

dominant wrist, wore one commercially-available monitor (Fitbit SURGE, USA) on the non-39 

dominant wrist and completed a self-report PA log. Immediately prior to this 10-day period, 40 

participants consumed a bolus of DLW and provided daily urine samples, which were analysed 41 

by mass spectrometry to determine TEE. Bivariate correlations and limits of agreement (LoA) 42 

were employed to compare TEE from each estimation method to DLW. Average daily TEE 43 

from DLW was 4112 ± 652 kcal·day-1 against which the GENEActiv showed near identical 44 

average TEE (mean bias ± LoA: -15 ± 851 kcal.day-1) while Fitbit tended to underestimate (-45 

656 ± 683 kcal·day-1) and the PA log substantially overestimate (+1946 ± 1637 kcal·day-1). 46 

Wearable physical activity monitors provide a cheaper and more practical method for 47 

estimating free-living TEE than DLW in military settings. The GENEActiv accelerometer 48 

demonstrated exceptional validity and could be useful for assessing TEE in large-scale, 49 

longitudinal military studies.  50 

 51 

KEY WORDS: Doubly-labelled water; Wearable technology; Physical activity, Army; 52 

Accelerometry   53 
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INTRODUCTION 54 

In military populations, measurement of the physical activity (PA) profile of personnel is 55 

important for monitoring health and training outcomes. Quantifying energy expenditure (EE) 56 

can inform evidenced-based interventions to optimise training volume, recovery, management 57 

of energy availability and injury risk mitigation strategies. Military training involves highly 58 

arduous physical exercise, unusual field-based activities such as heavy load carriage, digging 59 

and casualty extraction in addition to types of technical drill and weapons handling. The scope 60 

of unique activities performed in a range of environments, sometimes during periods of energy 61 

deficit and sleep disruption, mean it is challenging for investigators to employ experimental 62 

techniques required to accurately determine physical demand.  63 

The doubly-labelled water (DLW) method is well-established as a ‘gold-standard’ 64 

process for determining free-living total EE (TEE) in humans 1. The DLW technique has 65 

previously been used to quantify TEE in military cohorts (of approximately 19.6-19.8 MJ.day-66 

1 per individual (4380-4550 kcal.day-1) 2. However, the DLW method imposes significant 67 

challenges to investigators such as high financial cost, requirement for specialist materials, staff 68 

and analysis and participant burden which means that it can only be feasibly administered in 69 

small group samples over a short time period. Recent advances in wearable technologies have 70 

improved the ability to estimate free-living TEE in humans while limiting financial cost and 71 

user burden, and may be a solution to objectively assessing TEE in larger military cohorts 2.   72 

Research-grade activity monitors that use movement data alone (i.e. accelerometers) 73 

have demonstrated varied success when compared to the DLW method, with TEE prediction 74 

models ranging from weak to strong (R=0.13-0.86) 3. Accelerometers have shown efficacy 75 

when distributed to large military cohorts for physical demands monitoring 2,4,5. However, 76 

research in military settings has led some researchers to caution that activities such as loaded 77 

marching or weapons handling could be misclassified as other movements or misinterpreted 78 
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by TEE estimation algorithms as these are derived from typical human movements in the 79 

general population 6. Multi-sensor activity monitors, which attempt to improve TEE estimation 80 

by combining accelerometry with physiological monitoring (e.g. heart rate), are available as 81 

relatively inexpensive consumer-grade monitors ranging to sophisticated research tools. 82 

Research-grade multi-sensor tools have been shown to improve TEE estimation over 83 

accelerometry alone 7,8 and demonstrate good agreement with criterion measures of TEE 9. 84 

However, more-affordable consumer-grade monitors have shown varied validity based on the 85 

output variables analysed (e.g. steps, active minutes) and activity intensity (e.g. sedentary, 86 

moderate, vigorous) 10,11. 87 

The large cohort sizes often studied in the military setting have resulted in researchers 88 

adopting relatively low-cost alternatives to DLW and activity monitors such as self-report 89 

logging of PA 5,12. The use of self-report PA can introduce potential error via subjectivity and 90 

recall bias 5,13,14. While objective measurement of activity using wearable activity monitors 91 

may seem a viable solution to these barriers, many have been designed specifically for the 92 

general population and for use by an individual user. Therefore, the comparative efficacy of 93 

using different methods of PA monitoring in a military environment remains unclear. In 94 

addition to data validity, a monitor’s physical robustness and ability to handle and give easy 95 

access to data from large cohorts are vital considerations for suitability in this setting. It was 96 

hypothesised that the agreement between TEE estimated from DLW during a 10-day military 97 

training period and estimates from a research-grade wrist-worn accelerometer would be 98 

superior than estimates from a wrist-worn multi-sensor consumer-grade activity monitor and a 99 

self-report PA log.  100 

 101 

 102 

 103 
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METHODS 104 

Study design 105 

During 10 days of military training the DLW technique was used to measure TEE in 20 British 106 

Army Officer Cadets (OCs) at the Royal Military Academy Sandhurst (RMAS), UK. During 107 

the same 10 days, participants also wore two wrist-mounted physical activity monitors – a 108 

research-grade accelerometer (GENEActiv (Original), Activinsights Ltd., Cambridge, UK) and 109 

a multi-sensor consumer-grade monitor (Fitbit Surge HR, Fitbit, USA) and completed a daily 110 

PA log.  The observed training period encompassed a selection of typical military activities, 111 

including classroom-based lessons, physical training, technical drills and field-based exercise 112 

such as combat training and load carriage.  After a written and verbal brief participants provided 113 

written consent to take part in the study. The investigation was approved by the Ministry of 114 

Defence Research Ethics Committee (MoDREC; 780/MoDREC/16).  115 

Preliminary measures 116 

Body mass (Aria® scales, Fitbit, USA) and stature (Leicester Stadiometer, Seca, Hamburg, 117 

Germany) were measured at the beginning of the data collection period. Participants were each 118 

given the Fitbit to wear on their non-dominant wrist (as it could also act as a watch) and a 119 

GENEActiv to be worn on the dominant wrist. These wrist allocations were performed to 120 

reduce participant burden of wearing two devices.    121 

Doubly-labelled water 122 

The DLW method used in the present study has been described previously 15. Briefly, on the 123 

evening prior to the 10-day collection period, participants provided baseline urine samples 124 

before consuming a measured bolus of hydrogen (deuterium 2H) and oxygen (18O) stable 125 

isotopes as water (2H2
18O). The dose was calculated to provide 150-180 mg of 18O per kg of 126 

body mass and 50-80 mg of 2H per kg of body mass. Post-dose urine samples were obtained 127 
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for the subsequent 10 days, avoiding the first void of each day. Urine samples were frozen at -128 

20°C to be stored for later analysis by an independent laboratory (Medical Research Centre 129 

Elsie Widdowson Laboratory (MRC EWL), Cambridge, UK). Isotope disappearance rates 130 

were determined through mass spectrometric analysis and used to calculate TEE using the 131 

multi-point method described previously 15 and where respiratory quotient was assumed to be 132 

0.85 for all participants.    133 

Research-grade accelerometer 134 

The GENEActiv (Original) is a wrist-worn tri-axial seismic acceleration sensor, with a 135 

sensitivity level of ± 8 g. Accelerometers were configured for each user using GENEActiv 136 

software version 3.1 (Activinsights, Cambridge, UK) by inputting age, body mass, height and 137 

whether the monitor is worn on the dominant or non-dominant hand. Raw acceleration data 138 

were collected at 100 Hz and converted to summarise data over 60-s data epochs. The gravity-139 

subtracted sum of vector magnitudes (SVM) for each minute were analysed using a macro-140 

spreadsheet available from Activinsights to estimate metabolic equivalents (METs) using 141 

thresholds (Table 1) previously validated for GENEActiv accelerometers 16. These were 142 

summed for each training day to produce MET minutes (MET·mins). In addition, sum of 143 

minutes spent in ‘sleep’ according to GENEActiv monitors were summed for each day. 144 

Minutes per day with zero values were replaced with 0.9 METs to establish a low baseline of 145 

estimated metabolism. The summed MET.mins were converted to estimated kilocalories using 146 

equation 1:  147 

𝑀𝐸𝑇. 𝑚𝑖𝑛𝑠 × 3.5 × (𝐵𝑀/200)  (Equation 1)  148 

Where BM is body mass in kg 17.  149 

 150 

 151 
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Table 1. Activity intensity level thresholds utilised in energy expenditure estimation 152 

methods  153 

  TEE estimation tool 

 PA log  GENEActiv 

Activity intensity level MET guidelines  (METs)  (SVM) 

 

Sedentary 0.9 - 3.1  2.05  <386 

Light 3.2 - 5.3  4.25  386 – 542 

Moderate 5.4 - 7.5  6.45  542 – 1811 

Vigorous 7.6 - 12.0  9.80  ≥1811 

Note: Activity levels and MET guidelines described previously 18. TEE is total energy 154 

expenditure, SVM is gravity-subtracted Sum of Vector Magnitudes at 100 Hz sampling 155 

frequency; METs are Metabolic Equivalents. 156 

 157 

Consumer-grade monitor 158 

The Fitbit Surge HR is a multi-sensor monitor which has a digital clock user-interface and 159 

houses a tri-axial accelerometer, gyroscope, compass, ambient light sensor, global positioning 160 

system and photoplethysmographic heart rate monitor. In order to extract daily TEE data, Fitbit 161 

monitors were synchronised to individual accounts where participant characteristics (age, sex, 162 

body mass, height) were inputted to individualise EE and basal metabolic rate (BMR) 163 

estimation to each participant. Data were extracted using an online data management platform 164 

(Fitabase, San Diego, USA) in order to batch-download daily TEE for all monitors in kcal.day-165 

1. 166 

Physical activity log 167 

Each day, participants completed a PA log which asked for amount of time spent per day asleep, 168 

sedentary and in light, moderate or vigorous activity.  The instructions for how to define these 169 

activity thresholds and examples of activities that could fall into these categories were given to 170 

participants within the activity log (Table 2). The activity intensity levels were given a MET 171 

value at the central point of previously defined ranges (Table 1; 18) and multiplied by the 172 
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reported duration of activity to produce MET.mins from the PA log. As with the GENEActiv, 173 

equation 1 was used to convert MET.mins to kilocalories.  174 

 175 

Table 2. Descriptions of activity intensity levels given in the physical activity log 176 

Activity intensity 

level 
 Descriptions  Examples 

Vigorous  Activities that require 

hard physical effort and 

cause rapid breathing and 

large increases in HR; too 

high or too intense to 

chat/converse. 

 Running, jogging, 

hiking/marching/patrolling 

(heavy load-webbing, 

weapon, Bergan), 

obstacle/assault courses, 

circuit training, cycling 

uphill, competitive team 

sports (football, rugby, 

hockey). 

Moderate  Activities that require 

moderate physical effort 

and cause a noticeable 

increase in breathing or 

HR. 

 Hiking/marching/patrolling 

(light load e.g. webbing & 

weapon), walking 

briskly/marching/drill, 

lifting & carrying stores, 

digging, cycling (level), 

boxing (punch bag), 

reactive sports (cricket, 

tennis). 

Light  Activities that involve 

effort but that do not 

cause an increase in 

breathing or HR. 

 Standing with kit, walking 

at a slow pace, getting 

washed – showering, 

ironing kit. 

Sedentary   Activities that involve 

sitting or reclining on or 

off duty, getting to and 

from places via 

transportation, but does 

not include time spent 

sleeping.  These activities 

do not require physical 

effort. 

 Sitting, lectures, relaxing, 

completing paperwork, 

studying, eating. 

 177 

 178 

 179 
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Exclusion criteria 180 

Wear-time criteria were used to exclude specific days (per individual) if a monitor did not 181 

appear to be worn for sufficient duration on that day. A wear-time criterion of 75% of the 24-182 

day was set for both activity monitors concurrent with previous research 19,20. In addition, from 183 

any tool, if any 10-day mean extended beyond three standard deviations from the population 184 

mean, these were treated at outliers and removed from the analysis for that tool. 185 

Statistical analysis 186 

Calculations of energy expenditure from each tool and measures of central tendency and 187 

variance (i.e. means, standard deviations) were completed in Excel (Office 2016, Microsoft, 188 

USA) and statistical analyses were performed using SPSS version 23.0 (IBM, USA). Bivariate 189 

correlations (Pearson’s) were performed between average daily TEE from the DLW method 190 

and each PA monitoring tool. Bland and Altman plots were constructed to assess the agreement 191 

between DLW and each other TEE estimation method, comprising mean bias and 95% limits 192 

of agreement (LoA) 21. To further analyse the comparative agreement of the evaluated 193 

estimation tools, 95% equivalence testing was also performed 9,22. In this analysis, if the 90% 194 

confidence intervals (CI) of the tool-measured mean are contained entirely within a given error 195 

zone of the criterion mean (in this case, ±10%) those measures are typically considered 196 

“significantly” equivalent. Paired t-tests were used to compare mean TEE estimation from each 197 

method individually against measurement from DLW. To compare all methods, a repeated-198 

measures analysis of variance (ANOVA) with post-hoc Bonferroni correction was conducted 199 

on participants with data across all methods. Statistical significance was set at an alpha value 200 

of p<0.05.     201 

 202 

 203 
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RESULTS 204 

Participants 205 

Twenty (10 male and 10 female) OCs (mean ± SD: age 23 ± 2 years, height 1.74 ± 0.09 m, 206 

body mass 77.0 ± 9.3 kg) participated in the study. Exclusion criteria meant that one participant 207 

was removed from the GENEActiv analysis (insufficient wear-time), and eight participants 208 

were removed from the PA log (outliers, n=2; insufficient completion of log, n=6). Average 209 

daily wear-time was 88 ± 6% for the Fitbit and 87 ± 17 % for the GENEActiv.  210 

 211 

Agreement against the doubly-labelled water method 212 

Bland and Altman plots (Figure 1) show the agreement between estimated daily TEE from each 213 

estimation method against the criterion standard (DLW). The agreement between tools is 214 

illustrated using mean bias and 95% LoA. The research-grade accelerometer showed best 215 

agreement but moderate LoA with a mean bias ± 95% LoA of -15 ± 851 kcal.day-1. Agreement 216 

with DLW was poorer for the Fitbit (-656 ± 683) but with the narrowest LoA. The PA log 217 

performed least well, substantially overestimating TEE in comparison to DLW with large LoA 218 

(1946 ± 1637 kcal·day-1). Only the GENEActiv could be deemed statistically equivalent to the 219 

criterion measure (DLW), demonstrated by the 90% CI of the measured mean being contained 220 

within the recommended equivalence zone of ±10% of the criterion-measured mean (Figure 221 

2). 222 
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 223 

Figure 1. Bland-Altman plots for total energy expenditure estimation. Agreement (mean (black dashed line) ± 95% Limits of Agreement 224 

(LoA; grey dotted line)) between 10-day mean daily total energy expenditure (TEE) estimated from doubly-labelled water (DLW) and (A) Fitbit 225 

(n=20), (B) GENEActiv (n=19) and (C) PA Log (n=12) 226 
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 227 

Figure 2. 95% equivalence testing of total energy expenditure. Equivalence test of each 228 

TEE estimation with 90% CI from Fitbit (Square), GENEActiv (Triangle) and PA Log (circle) 229 

against ±10% of DLW-estimated mean (grey shaded area).  230 

 231 

Energy expenditure 232 

The daily energy demand (mean ± SD) of the 10-day period from the DLW method was 4112 233 

± 652 kcal·day-1. Figure 3 illustrates the average 24-hour EE from each estimation method and 234 

individual participant estimated 10-day means. Estimated TEE from both the Fitbit and the PA 235 

log differed significantly from DLW on individual comparison (p<0.05) and these results were 236 

corroborated by repeated-measures comparison between all methods via ANOVA using all 237 

participants with full data for each tool (n=11). Linear correlations between TEE from DLW 238 

demonstrated that the association between criterion measurement (Figure 4) and both the Fitbit 239 

(r=0.904, r2=0.817, p<0.01) and GENEActiv (r=0.790, r2=0.624, p<0.01) were stronger than 240 

with that of the PA log (r=0.570, r2=0.325, p>0.05). 241 
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 242 

Figure 3. Average daily energy expenditure for each estimation method. Bars are means 243 

across the 10-day period computed from all participants for each tool, with error bars 244 

representing SD, and data points for each individual. Horizontal parentheses denote significant 245 

difference from criterion measurement (DLW; p<0.05).    246 

 247 

 248 

 249 

 250 

 251 
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 252 

Figure 4. Correlational analysis between estimation methods. Average daily energy 253 

expenditure (kcal.day-1) assessed by DLW against estimations by Fitbit (Black, squares; 254 

r=0.904, p<0.01), GENEActiv (Grey, upward triangles; r=0.790, p<0.01) and PA log (Black, 255 

circles; r=0.570, p>0.05) with lines of best fit. 256 

 257 

 258 

 259 



This is the pre-peer reviewed version of Siddall et al. 2019. SJMSS. DOI: 10.1111/sms.13488 

15 
 

DISCUSSION  260 

This study examined the validity of three different methods to estimate TEE during military 261 

training by comparison with the ‘gold-standard’ DLW technique. The research-grade 262 

accelerometer was the most valid tool examined, exhibiting near identical group average TEE 263 

to DLW and with reasonable absolute agreement. In comparison to DLW, the consumer-grade 264 

activity monitor exhibited acceptable LoA but significantly underestimated TEE while the self-265 

report PA activity log substantially overestimated TEE. These findings suggest that the 266 

research-grade activity monitor is sufficiently accurate for use during military training and a 267 

suitable alternative to DLW to measure TEE in this setting.     268 

 Accurately measuring the physical activity profile of military personnel in training or 269 

on operations is valuable for informing evidenced-based interventions to optimise training, 270 

quantify energy availability, and strategies to enhance recovery and mitigate injury risk. The 271 

present study is the first published use of the GENEActiv in a military population and supports 272 

previous findings of excellent validity of accelerometry-based TEE prediction algorithms in 273 

laboratory-controlled 23,24 and free-living conditions in civilian populations 25–27. Results from 274 

this wrist-worn monitor are consistent with previous physical activity monitoring studies in the 275 

military using hip-mounted accelerometers, demonstrating practical suitability for large 276 

military cohorts 2,4,28 while capturing their activity with sufficient accuracy. Other research-277 

grade accelerometers have been used in free-living conditions opposite DLW to successfully 278 

build EE predictions models 3, with several examples in military populations 2,6. Our data 279 

suggest that the GENEActiv can also be used to provide objective measurement of the TEE of 280 

unique and arduous physical activity in military settings.  281 

Within research-grade monitors, a multi-sensor approach typically improves TEE 282 

estimation over accelerometry alone. In laboratory trials, several models of the Fitbit have 283 
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underperformed when compared to research tools, either by underestimation of HR and EE 29 284 

or high inter-individual variation among similar tasks 9. In free-living trials, Fitbits have 285 

demonstrated strong correlations with accelerometers but typically when analysing steps alone, 286 

and less accurately with absolute EE 10,30. In the present investigation, the Fitbit was highly 287 

correlated with the criterion measurement with moderate limits of agreement, suggesting that 288 

subsequent corrections could be employed to make reparations for poor estimation of TEE but 289 

would require further investigation. Some of the inaccuracy in TEE could be explained by the 290 

heart rate detection technology (photoplethysmography) employed by the Fitbit which uses a 291 

light emitting diode positioned at the back of the wrist measuring tissue light propagation 292 

changes to detect blood flow. At moderate intensities of activity this has shown good agreement 293 

with chest-mounted heart rate monitors in laboratory trials, but validity is poorer at higher 294 

intensities of exercise 31. In addition, accuracy, reliability and detection itself depends on wear 295 

tightness, position and other factors that could be violated in other testing environments 32,33. 296 

Justifiably, the algorithms used by Fitbit or other large-scale device manufacturers are not 297 

freely available and so it is not possible to determine to what extent heart rate detection 298 

influenced overall TEE estimation. All participants in the present study were instructed on how 299 

best to position and wear the monitors. However, these participants are a realistic and 300 

representative sample of military personnel who would, notionally, wear the monitor in this 301 

manner. Therefore, any loss of estimation accuracy and data fidelity that did occur would likely 302 

be carried over into a larger-scale cohort.   303 

Concurrent with several previous studies, the self-report methods for TEE estimation 304 

demonstrated low user-compliance, high inter-individual variability and overestimation of 305 

activity which has been observed in both civilian 34 and military populations 5. Unfortunately, 306 

self-report methods inherently introduce subjectivity and can have a tendency to overestimate 307 

activity and underestimate sedentary time 34,35. Previously, this has been explained as being a 308 
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product of poor user compliance and recall bias 14 and of floor and ceiling effects, where 309 

responses cluster near the top or bottom of a particular variable (such as many hours sedentary 310 

and few minutes of vigorous activity), reducing variability in the data 13. Participant burden 311 

can also cause boredom and inaccurate reporting in addition to participants wanting to give 312 

socially acceptable answers (i.e. reporting a high volume of highly intense training). While 313 

every effort was made for participants in the current study to complete the log daily and 314 

honestly, each of the above limitations to subjective profiling of physical activity may occur in 315 

these free-living settings. The current study used a relatively small sample size but also 316 

experienced low user adherence, resulting in data reduction of eight participants. Participants 317 

cited lack of time and difficulty remembering to complete paperwork during field-based 318 

training operations as reasons for lack of completion. Understandably, in comparison to 319 

wearing activity monitors, the completion of questionnaires represents a burden additional to 320 

the busy work and training schedule of OCs. If PA logging is required in future military studies, 321 

housing the questions on an electronic device with a notification service for questionnaire 322 

completion at specific, suitable times may improve compliance, but would not necessarily 323 

improve the overestimation of TEE observed.   324 

Physical activity profiles from research-grade accelerometers are computed from raw 325 

acceleration data, from a combination of a) multiple, ranked thresholds where the summed 326 

magnitude of accelerations in a specific time-frame denote different intensities of movement 327 

and b) movement classification algorithms, which identify types of movement or action to 328 

either filter or retain for TEE estimation. Despite exhibiting equivalence to criterion-329 

measurement in the current study, researchers have raised concerns that wrist-worn 330 

accelerometers may present barriers to accurate estimation of TEE when studying military 331 

populations and could explain why the LoA were not narrower 6. Specifically, hand movements 332 

such as weapons handling or drill and the action of carrying a rifle while running may be 333 
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misinterpreted by activity monitors and limit their validity in military settings 6. In addition, 334 

computation of physical activity data from GENEActiv raw acceleration files is based on 335 

activity thresholds derived from a civilian population with a range of habitual activity levels 336 

16. Despite these possible concerns, in the present study the GENEActiv remained suitably 337 

accurate in estimating TEE for the cohort over the 10-day time-frame but individualised 338 

outcomes may require further precision. Given that current TEE algorithms for GENEActiv 339 

are based on a non-military population but are freely accessible to researchers, with further 340 

data collection and further processing in military cohorts, it could be possible to adjust these 341 

algorithms specific to military activities and improve limits of agreement. This could be 342 

performed by adding an adjustment factor to TEE or by altering the activity intensity thresholds 343 

(sedentary, light, moderate, vigorous) based on the military group being monitored. 344 

The military training environment has the advantage of being a free-living setting with 345 

some elements that are fixed (to some extent) across the population sample such as training 346 

routines, diet and working hours. While this could result in lower inter-individual variation in 347 

EE in comparison to civilian free-living studies, this also places importance on the estimation 348 

accuracy of the other factors that comprise TEE. Specifically, the thermal effect of feeding 349 

(dietary-induced thermogenesis; DIT) and BMR were not directly measurable in the present 350 

study, but DIT would be encompassed exclusively within the DLW method. Several previous 351 

activity monitoring studies, particularly laboratory-trials, have measured BMR via indirect 352 

calorimetry and estimated DIT via documenting caloric intake 3. For both the GENEActiv and 353 

self-report methods, BMR estimation was not required since METs already account for resting 354 

metabolism by applying 1 MET per minute of sedentary behaviour. It is possible, though, that 355 

this may introduce errors by a lack of participant-specific individualisation. Similarly, applying 356 

METs to various activity thresholds does not account for differences in relative fitness which 357 

would be a prudent addition to a military-specific EE estimation algorithm in future. With this 358 
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in mind though, the GENEActiv and Fitbit software use anthropometric data at the outset to 359 

personalise TEE estimation, and may have mitigated some of these issues.  360 

From a practical perspective, research-specific tools are typically not designed to 361 

withstand heavy use in harsh, uncontrolled environments but more physically robust, 362 

affordable consumer-grade monitors may not achieve comparative accuracy 9. Inspection by 363 

study researchers and participant feedback revealed that both wrist-worn monitors were 364 

generally robust in the military training environment but are not small enough or possess a low-365 

enough profile from the wrist to avoid damage. Specifically, the brackets fastening the 366 

GENEActiv accelerometer to its wrist-strap are easily damaged and the Fitbit loses 367 

waterproofing when the screen is broken. In the current study, wear-comfort was not a concern 368 

for the majority of participants, but certain advantages become evident if monitors were worn 369 

individually, where the GENEActiv would allow an individual to wear their own watch on the 370 

alternate wrist, and the Fitbit has an interactive interface giving feedback to participants. The 371 

GENEActiv allows open access to raw data and handling with adaptable spreadsheets 372 

programmable by users, which allows researchers to interrogate data, data quality and 373 

customise analyses. However, without sufficient programming capability, data processing and 374 

handling would represent a significant undertaking in a larger, longer-term study. Despite the 375 

Fitbit housing a ‘black box’, commercially sensitive algorithm, access to the data management 376 

platform Fitabase does allow efficient on-mass download from multiple devices but only of 377 

computed daily summary data rather than raw data at the device’s sampling frequency.  378 

The present study used the criterion measurement of TEE via DLW to assess the 379 

validity of three measurement tools to estimate TEE during 10 days of military training. The 380 

research-grade activity monitor demonstrated exceptional validity and practical suitability for 381 

use in the military setting and outperformed the consumer-grade activity monitor and PA log 382 

assessed. Therefore, the GENEActiv could be used in large-scale longitudinal studies in the 383 
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military setting to quantify TEE to inform evidenced-based interventions to optimise training, 384 

quantify energy availability, and strategies to enhance recovery and mitigate injury risk.  385 

 386 

PERSPECTIVE 387 

While there has been substantial improvement in wearable physical activity monitors in recent 388 

years, their validity for estimating energy expenditure in unique and arduous training is under-389 

researched, particularly in comparison to more well-established research techniques and in 390 

military populations. Previous activity monitoring in military settings have cautioned that 391 

movement patterns unique to the military may render data from accelerometry, and particularly 392 

wrist-worn devices, challenging to interpret6, not comparable to direct observation5 or in need 393 

of correction2. The current study directly compares multiple methods of energy expenditure 394 

estimation that could be applied in a field-setting to a criterion gold-standard and is also the 395 

first study to use the GENEActiv in a military context. The findings suggest this research-grade 396 

wrist-worn accelerometer is a valid and practical monitoring tool for this nature of training. 397 

This forms a basis for physical demands analyses and training load study in larger cohorts as 398 

well as the potential to define military-specific activity intensity levels, previously derived from 399 

sample from the general population16, to improve limits of agreement against criterion 400 

measures. 401 
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