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Title: Whole-body precooling attenuates the extracellular HSP72, IL-6 and IL-10 responses 1 

after an acute bout of running in the heat.    2 

 3 

Running title:  eHSP72 and inflammatory responses following precooling 4 

Abstract 5 

The impact of whole-body precooling on the extracellular heat shock protein 72 (eHSP72) 6 

and cytokine responses to running in the heat is undefined. The aim of this study was to 7 

determine whether precooling would attenuate post-exercise eHSP72 and cytokine responses. 8 

Eight male recreational runners completed two 90-minute bouts of running at 65% V̇O2max 9 

in 32 ± 0.9°C and 47 ± 6 % relative humidity (RH) preceded by either  60-minutes of 10 

precooling in 20.3 ± 0.3°C water (COOL) or 60 minutes rest in an air-conditioned laboratory 11 

(20.2 ± 1.7°C, 60 ± 3% RH; CON). eHSP72, TNF-α, IL-6, IL-10 IL-1ra were determined 12 

before and immediately after exercise. The elevation in post-exercise eHSP72 was attenuated 13 

after COOL (+0.04 ± 0.10 ng.mL-1) compared to CON (+ 0.29 ± 0.26 ng.mL-1; p < 0.001). No 14 

changes in TNF-α were observed at any stage. COOL reduced the absolute post-exercise 15 

change in IL-6 (p = 0.011) and IL-10 (p = 0.03) compared to CON. IL-1ra followed this trend 16 

(p = 0.063). A precooling-induced attenuation of eHSP72 and proinflammatory cytokines 17 

may aid recovery during multi-day sporting events, but could be counterproductive if a 18 

training response or adaptation to environmental stress is a desired outcome.  19 
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Introduction   1 

During prolonged strenuous exercise in warm (>30°C) conditions, blood flow is redistributed 2 

to the working muscles and peripheral circulation to enable oxygen supply and enhance heat 3 

loss, leading to splanchnic hypoperfusion and ischemia (Dokladny, Zuhl, & Moseley, 2015; 4 

Ter Steege & Kolkman, 2012; van Wijck et al., 2012). As thermoregulatory strain progresses, 5 

a widening of epithelial tight junction spaces increases intestinal permeability (Lambert, 6 

2009; van Wijck et al., 2012), leading to endotoxaemia and an over-exaggerated systemic 7 

cytokine response (Camus et al., 1998). An exercise-induced increase in core body 8 

temperature > 1° C results in elevated levels of classic pro-inflammatory (TNF-α, IL-6, IL-9 

1β) and a compensatory anti-inflammatory (IL-10, IL-1ra) cascade observed when compared 10 

to conditions in which body temperature remains normothermic (Cosio-Lima, Desai, Schuler, 11 

Keck, & Scheeler, 2011; Gill, Hankey, et al., 2015; Gill, Teixeira, et al., 2015; Rhind et al., 12 

2004; Selkirk, McLellan, Wright, & Rhind, 2009). Exercise in hot environments is also a 13 

potent stimulus for release of heat shock protein 72 (HSP72) into the extracellular space 14 

(eHSP72) compared to exercise without hyperthermia (Fehrenbach, Niess, Veith, Dickhuth, 15 

& Northoff, 2001; Gibson et al., 2014; Moran et al., 2006; Whitham, Laing, Jackson, 16 

Maassen, & Walsh, 2007).  17 

 18 

Elevated eHSP72 has been suggested to act as an immunological signal for later cytokine and 19 

inflammatory responses and increased levels of endoxtemia and the associated cytokine 20 

cascade has been implicated in heat illness and heat stroke (Asea, Kabingu, Ann Stevenson, 21 

& Calderwood, 2000; Campisi, Leem, & Fleshner, 2003; Leon & Helwig, 2010Lim & 22 

Mackinnon, 2006). A reduction in systemic inflammation after exercise in the heat could 23 

have implications for enhancing recovery after single and multi-day sporting events in hot 24 

climates, as well as occupational or military exercises conducted under extreme heat 25 
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conditions. Concomitantly, infection risk and the incidence of gastrointestinal discomfort 1 

during and after exercise-heat stress may be reduced (Gill et al., 2015).  2 

 3 

Precooling is a simple and practical method that can be completed prior to exercise in the 4 

heat, and has been shown to be effective in reducing physiological strain, prolonging 5 

performance and improving perceptual tolerance during exercise-heat stress (Cuddy, Hailes, 6 

& Ruby, 2014).  Current evidence indicates that cold water immersion (CWI) may be the 7 

most effective method of precooling for enhancing endurance performance in hot conditions 8 

(Jones, Barton, Morrissey, Maffulli, & Hemmings, 2012). In the 2015 IAAF World Athletics 9 

Championships approximately 10.8% of middle distance runners, and 8.5% of long distance 10 

runners employed CWI prior to competition (Périard et al., 2016), highlighting it’s use in 11 

applied settings. However, there is limited information regarding the impact of precooling on 12 

both the eHSP72 and systemic inflammatory response post endurance exercise. Data using a 13 

range of precooling methods applied to intermittent sprint activity show no effect on IL-6 14 

(Duffield, Steinbacher, & Fairchild, 2009), eHSP72 (Castle, Mackenzie, Maxwell, Webborn, 15 

& Watt, 2011) or CRP (Minett, Duffield, Marino, & Portus, 2011, 2012) with a blunting of 16 

creatine kinase (CK) noted in some investigations (Minett et al., 2011, 2012).  17 

During prolonged endurance exercise it is plausible that precooling may delay the attainment 18 

of the critical temperature thresholds required for eHSP72 release and preserve perfusion to 19 

the splanchnic region. The preservation of splanchnic perfusion may serve to reduce the 20 

magnitude of systemic cytokine increase following prolonged exercise in the heat (Dokladny, 21 

Zuhl, & Moseley, 2015). Therefore, the aim of this study was to determine whether a period 22 

of precooling prior to an acute bout of endurance running exercise in the heat would attenuate 23 

post exercise eHSP72 concentrations and markers of the systemic cytokine response (TNF-α, 24 

IL-6, IL-10, IL-1ra). It was hypothesized that precooling preceding prolonged endurance 25 
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exercise in the heat would reduce eHSP72 and plasma cytokines TNF-α, IL-6, IL-10 and IL-1 

1ra.  2 

Methods 3 

Participants  4 

Following ethical approval from the Coventry University Ethics Committee, eight male 5 

recreational runners (mean ± SD age: 28 ± 6 years; height: 1.76 ± 0.08 m; body mass: 72.6 ± 6 

12.5 kg; body surface area: 1.88 ± 0.19 m2; absolute maximal oxygen uptake (V̇O2max): 3.82 ± 7 

0.57 L.min-1; relative maximal oxygen uptake: 53 ± 6 mL·kg-1·min-1) provided both written 8 

and verbal informed consent prior to completing the study. Each participant completed 90 9 

minutes of treadmill running at 65% V̇O2max in the heat (32.4 ± 0.9°C and 47 ± 6% relative 10 

humidity) on two occasions separated by at least 1 week in a randomised, counterbalanced 11 

crossover design.  12 

Pre-experimental standardization  13 

To minimise the known confounds on eHSP72, participants were non-smokers who abstained 14 

from caffeine and alcohol consumption for 48 hours before each trial.  General 15 

supplementation, prolonged thermal exposures, hypoxic exposures and hyperbaric exposures 16 

were also avoided for the duration of the study (Anbarasi, Kathirvel, Vani, Jayaraman, & 17 

Devi, 2006; Lu, Lai, & Chan, 2008; Hillman et al., 2011; Selkirk et al., 2009; Taylor et al., 18 

2011; Taylor, Midgley, Sandstrom, Chrismas, & McNaughton, 2012). Participants abstained 19 

from physical activity in the 48 hours preceding each trial and recorded their dietary intake 20 

throughout this period. The diet was then replicated in preparation for the second 21 

experimental trial.  22 
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Participants attended the laboratory after an overnight fast and ingested a volume of 5 mL·kg-1 

1 body mass; 363 ± 63 mL) of room temperature (~18°C) water 2 h before the trial, and an 2 

additional 7 mL·kg1 body mass (508 ± 89 mL) of 18ᵒC water (~18l 7 mL·kg-1 body mass) ad 3 

libitum during exercise. All trials were performed at the same time of day to minimise the 4 

circadian variation in internal body temperature.  5 

 6 

Procedures 7 

All procedures were conducted in accordance with the Declaration of Helsinki (2013 8 

Edition). On arrival at the laboratory nude body mass (NBM) was recorded, a flexible 9 

translucent PVC rectal probe (Grant Instruments, UK) was inserted, and stainless steel 10 

mounted skin thermistors (EUS-U-VS5-0, Grant Instruments, UK) attached to the belly of the 11 

pectoralis, triceps brachi, vastus lateralis, and gastrocnemius on the right side of the body. 12 

Rectal and skin temperatures were recorded continuously using a data logger (Squirrel 13 

SQ2040, Grant Instruments, UK). Mean skin temperature (Tskin) was subsequently calculated 14 

(Ramanathan, 1964). A heart rate monitor (Polar RS400, Polar Electro Oyo, Kempele, 15 

Finland) was worn around the chest.  16 

Following instrumentation participants began either a 60-minute period of precooling 17 

(COOL) by means of water immersion up to the sternal notch (20.3 ± 0.3°C; (Hasegawa, 18 

Takatori, Komura, & Yamasaki, 2006), or 60 minutes of seated rest in an air conditioned 19 

laboratory (20.2 ± 1.7°C and 60.2 ± 2.5% RH) wearing shorts. On leaving the water 20 

participants were towel dried and donned a t-shirt (within 10 minutes of the end of 21 

precooling, standardised between the first and second trial) before commencing 90 minutes of 22 

treadmill running at 65% V̇O2max on a 1% gradient. Rectal and skin temperatures were 23 

monitored throughout the resting/cooling period and recorded at 30-minute intervals. During 24 
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the 90-minute exercise bout HR, Trectal, and Tskin were recorded, and 6-20-point rating of 1 

perceived exertion (Borg, 1976) and 7-point thermal sensation (TS -3 (cold) to +3 point (hot); 2 

(ASHRAE, 2004) scores were sought at 15 minute intervals. The Physiological Strain Index 3 

(PSI), that quantifies physiological strain between 0 (no strain) and 10 units (very high strain) 4 

where 0 represents no strain and 10 represents very high strain, was calculated from heart rate 5 

and Trectal (PSI; Moran et al., 1998). Sweat rate was calculated from the change in NBM (pre 6 

to immediately post-exercise) with the volume of fluid ingested and fluid voided as urine 7 

over the course of the trial added to the final value. The Trectal area under the curve (AUC) 8 

was calculated using the modified trapezium rule (Hubbard et al., 1977) when Trectal exceeded 9 

38.5°C (Cheuvront et al., 2008). AUC for Trectal >38.5°C was calculated as: 10 

AUC Trectal >38.5°C (°C min-1) = ∑ time interval (min) x 0.5 (°C > 38.5°C at start of interval + °C above 38.5°C 11 

at the end of the time interval).   12 

 13 

Blood sampling  14 

Venous blood samples (7mL) were collected from an antecubital vein immediately before the 15 

60 minute resting period into an EDTA treated vacutainer (Vacuette, Greiner Bio-One, 16 

Stonehouse, UK), and again at the termination of exercise. Haemoglobin and haematocrit 17 

were determined in triplicate via a B-Haemoglobin Photometer (Hemocue Ltd, Angleholm, 18 

Sweden) and centrifuged capillary tubes (Hawksley Micro Haematocrit Centrifuge, Hawksley 19 

and Son, Lancing, UK), measured using a haematocrit reader. Plasma volume changes were 20 

then calculated according to the equations of Dill and Costill (1974). All later analysis for 21 

TNF-α, IL-6, IL-10, IL-1ra and eHSP72 were corrected for any observed changes in plasma 22 

volume from pre to post exercise. The remaining blood sample was centrifuged for 10 23 

minutes at 3000RPM and plasma aliquoted for storage at -80°C prior to analysis for plasma 24 
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lactate, creatine kinase (CK), and C-reactive protein (CRP; Randox Daytona, County Antrim, 1 

Ireland).  2 

 3 

Circulating TNF-a, IL-1ra, IL-6 and IL-10 were determined in duplicate using commercially 4 

available high sensitivity sandwich ELISA kits (R&D systems, Minneapolis, USA) which 5 

were sensitive to 0.19 pg.mL-1, 0.18 pg.mL-1  0.11pg.mL-1 and 0.17pg.mL-1 respectively. The 6 

inter-assay variability for TNF-a, IL-1ra, IL-6 and IL-10 was 3.1, 4.0, 1.5 and 1.8% 7 

respectively.  8 

 9 

Circulating eHSP72 was assessed using the commercially available Amp'd® HSP72 high 10 

sensitivity ELISA kit (ENZ-KIT-101-001) according to the manufacturer’s instructions (Enzo 11 

Lifesciences, Lausen, Switzerland). The ENZ-KIT is sensitive to 0.007 ng.mL-1 with a 12 

working range of 0.039-5.00 ng.mL-1. This assay was found to be more sensitive than the 13 

traditionally used EKS-715 high sensitivity kit (Lee et al., 2015). Samples were diluted 1:4 14 

with assay diluent prior to analysis (Lee et al., 2015) and the inter-assay variability was 1.8%.  15 

 16 

Statistical analysis 17 

The primary outcome variable of this study was the eHSP72 and cytokine response following 18 

each bout of treadmill running. The difference in post-exercise change in eHSP72 between 19 

control and cooling after the running period was assessed using a two tailed randomization 20 

test with 1000 resamples of the data set (Colquhoun, 2014). The same approach was used to 21 

assess post-exercise absolute changes in TNF-α, IL1ra, IL-6, and IL-10.  22 

In order to control for the false discovery rate and correct for multiple comparisons, two 23 

families of hypotheses were tested according to the method of Benjamini and Hochberg 24 

(1995); 1) the eHSP72 and cytokine responses; 2) physiological and perceptual responses. 25 
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Physiological data were analyzed using a 2 x 7 repeated measures linear model, with fixed 1 

effects for trial (CON and COOL) and time (0, 30, 60 minutes of rest; 0, 30, 60, 90 minutes 2 

of exercise). Mean and peak exercise data were also compared via two-tailed randomization 3 

tests (Colquhoun, 2014).  4 

All data are reported as means ± SD for n = 8 for each trial unless otherwise stated. Precise p 5 

values are reported and Cohen’s D (with 95% confidence intervals) effect sizes presented to 6 

indicate the magnitude of observed effects for the main outcome variables (Colquhoun, 7 

2014). Effect sizes of 0.2, 0.5 and 0.8 are considered small, medium and large respectively.  8 

 9 

Results 10 

Physiological and perceptual measures 11 

There was no difference between trials in pre-trial body mass (CON = 71.96 ± 12.2kg, COOL 12 

= 72.04 ± 12.15) or fluid ingested during exercise (CON = 510 ± 106 ml; COOL = 461 ± 122 13 

mL). Similarly, there was no difference in post-exercise change in body mass (CON = 1.8 ± 14 

0.6 kg; COOL = 2.1 ± 0.4 kg) or sweat rate (CON = 19.7 ± 6.2 g.min-1; COOL = 22.9 ± 4.2 15 

g.min-1). Heart rate (p = 0.92), thermal sensation (p = 0.31) and perceived exertion (p = 0.69) 16 

were not different between trials at any point (Table 1).   17 

 18 

Thermoregulatory responses to precooling  19 

Baseline Tskin (CON = 30.79 ± 0.70; COOL 30.78 ± 0.85) and Trectal (CON = 36.88 ± 0.36°C; 20 

COOL = 36.98 ± 0.37°C) were similar prior to the pre-cooling or rest period commencing. 21 

The reduction in Tskin and Trectal during the pre-exercise period was greater during COOL than 22 

CON (Figure 1, time x trial interaction, p < 0.01 for both) such that there was a between trial 23 

difference at the onset of exercise. The reduction in Trectal persisted until 30 min of exercise 24 

was completed, however due to a greater rate of rise in rectal temperature (Figure 2A), there 25 
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was no difference between conditions at the conclusion of the exercise bout. A similar 1 

response was observed for Tskin (Figure 2B). Mean exercise Trectal was lower in COOL 2 

compared to CON (p = 0.03, d = -1.0, 95% CI = -2.0 to -0.1), however the AUC and total 3 

time >38.5°C was not different between CON and COOL (AUC: p = 0.30, d = -0.2, 95% CI -4 

1.2 to 0.7; Time > 38.5°C; p = 0.21 , d = -0.4, 95% CI = -1.4 to 0.6). PSI was lower in COOL 5 

until 45 minutes of exercise, with no differences between conditions in the remaining 45 6 

minutes of exercise (Figure 2B, d = -0.6, 95% CI -1.6 to 0.45). Post-exercise plasma blood 7 

lactate concentrations were no different between CON (2.65 ± 0.51 mmol-1) and COOL (2.35 8 

± 0.51 mmol-1; p = 0.061).  9 

 10 

Extracellular HSP72 and circulating cytokines 11 

Resting eHSP72 was similar between trials (CON = 0.32 ± 0.38 ng.mL-1; COOL = 0.31 ± 12 

0.33 ng.mL-1).  Exercise led to an increase in eHSP72 concentrations post-exercise in CON 13 

(0.77 ± 0.58 ng.mL-1; d = 0.7, 95% CI = -0.4 to 1.6) but not COOL (0.35 ± 0.29 ng.mL-1; d = 14 

0.1, 95% CI = -0.9 to 1.1, Figure 3A). Post-exercise concentrations in eHSP72 were related to 15 

final Trectal temperatures in both CON (r = 0.56, p = 0.15) and COOL (r = 0.63, p = 0.09). The 16 

absolute change in eHSP72 was lower following COOL compared to CON (p < 0.001; d = -17 

1.1, 95% CI = -2.5 to -0.3; Figure 3B).  18 

 19 

No main effects or interactions were observed for TNF- α (Table 2), however IL-6 (f = 59.4, 20 

p < 0.001), IL-10 (f = 41.2, p < 0.001) and IL-1ra (f = 6.4, p = 0.02) concentrations were 21 

increased following exercise (Table 2). A similar post-exercise increase in IL-10 (f = 1.5, p = 22 

0.23) and IL-1ra (f = 0.9, p = 0.4) was seen following both CON and COOL, whereas the 23 

increase in IL-6 was blunted after COOL (f = 4.4, p = 0.045). The absolute change in both 24 

IL-6 (p = 0.015; d = -1.0, 95% CI = -1.9 to 0.1) and IL-10 (p = 0.04; d = -0.8, 95% CI = -1.8 25 
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to 0.3) were lower after COOL (Figure 4) whereas no differences in absolute change were 1 

observed for TNF-α (p = 0.11, d = 0.4, 95% CI = -0.6 to 1.3) or IL-1ra (p = 0.06; d = -0.6, 2 

95% CI = -1.6 to 0.4). Post exercise plasma CK and CRP were not different between the 3 

CON (CK 393 ± 275 U.L-1; CRP 0.95 ± 0.87 mg.L-1) and COOL (CK 359 ± 261 U.L-1; CRP 4 

0.70 ± 0.68 mg.L-1) trials. 5 

 6 

Discussion 7 

The aim of this study was to determine whether whole-body precooling would affect the 8 

magnitude of circulating eHSP72 and systemic cytokine responses (TNF-α, IL-6 IL-10, and 9 

IL-1ra) following prolonged running in the heat. We hypothesized that cooling-induced 10 

reductions in heat strain would attenuate post-exercise eHSP72 and plasma cytokine 11 

concentrations. We are the first to show that a 60-minute period of precooling, which 12 

successfully reduced resting rectal and skin temperature for the initial 30 minutes of exercise 13 

in the heat, ameliorated the magnitude of post-exercise eHSP72 increase. Our data also 14 

indicate that the cooling-mediated reduction in thermal stress during the initial phase of 15 

exercise may have some benefits in reducing the post exercise pro-inflammatory responses. 16 

Moderate effect sizes were observed in support for a reduced absolute increase in IL-6 which 17 

was mirrored by the attenuated increases in anti-inflammatory IL-10 after exercise. Data for 18 

TNF-α and IL-1ra were less clear. The blunted increase in post exercise eHSP72 following 19 

precooling occurred despite no marked differences in mean exercise heart rate and final rectal 20 

temperatures between trials. However, a large effect size for the observed reduction in mean-21 

exercise Trectal indicates that a reduced overall temperature signal was experienced following 22 

precooling, despite an increased rate of rise and similar peak Trectal observed between trials. 23 

The results of this study add support to the notion that increases in eHSP72 following 24 
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exercise is not mediated solely by a rise in body temperature, and could be a product of the 1 

overall physiological strain experienced during an exercise challenge.  2 

 3 

Our data show that precooling substantially diminished the post-exercise release of eHSP72 4 

(Figure 3A, 3B) despite each condition ending with similar peak Trectal, suggesting that 5 

whole-body precooling may have an indirect effect on eHSP72 release via reductions or 6 

alterations in the temperature signal required for eHSP72 release. Such a reduction may be 7 

achieved by reducing the total time spent above a critical ‘threshold’ of thermal load or 8 

physiological strain. It should however be noted that the AUC and time spent above the 9 

hypothesized temperature threshold of 38.5°C for eHSP72 release was not different between 10 

conditions, with the small to moderate effect sizes observed for each variable compounded by 11 

wide confidence intervals. However, a period of precooling effectively imparted two different 12 

levels of physiological strain between trials, with Trectal and mean physiological strain being 13 

lower following COOL (Table 1). The rate of Trectal increase was higher in COOL (Figure 14 

2A) as a result of the greater thermal gradient at the start of exercise, with rate of temperature 15 

change proportional to the size of the existing thermal gradient (Taylor, Tipton, & Kenny, 16 

2014). In addition, the precooling induced reduction in Trectal prior to the onset of exercise 17 

delays the vasodilatory and sweat threshold responses, leading to a greater heat storage until 18 

later in the exercise bout when rate of Trectal change matched CON (Figure 1; Marino, 2002). 19 

It should be noted that Trectal measurements are not a dynamic measure of core temperature, 20 

with a phase delay in response often observed, therefore the true rate of body core 21 

temperature change may have been masked by this measurement artifact (Taylor, Tipton and 22 

Kenny, 2014). 23 

 24 
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It is possible that the cooling induced reduction in pre-exercise skin and rectal temperatures, 1 

which were maintained until ~30 minutes into the exercise, prolonged the time until the 2 

required thermal signal(s) for eHSP72 release are met.  Our results are supportive of previous 3 

data indicating that multifaceted signals are required for eHSP72 release (Gibson et al., 4 

2014), suggesting that different modes, durations and intensities of exercise elicit a 5 

combination of different thermal and physiological signals for eHSP72 release. The relative 6 

importance of any one signal is difficult to determine and would require investigation specific 7 

to a mode of exercise (e.g. running vs cycling). A measurement of eHSP72 at different stages 8 

of the exercise bout (e.g. 45 minutes) may have provided further information regarding the 9 

precooling dose response. Alternatively, extended periods of cooling during exercise (‘Per-10 

cooling’), such as the application of ice towels or fanning, could further diminish or delay the 11 

signal for eHSP72 release, lessening its role as an ‘immune danger signal’ following 12 

exertional heat stress (Asea, 2006).  13 

 14 

The principle sources of eHSP72 release into the circulation are the hepatosplanchnic, 15 

vascular, and brain tissue, and peripheral blood mononuclear cells (Febbraio et al., 2002; 16 

Johnson & Fleshner, 2006; Lancaster & Febbraio, 2005; Lancaster et al., 2004). Exercise-17 

induced ischemia at the hepatosplanchnic viscera is known to be greater during exercise in 18 

hot conditions compared to thermoneutral conditions due to the preferential redistribution of 19 

blood to the periphery for heat dissipation (Ter Steege & Kolkman, 2012), and may therefore 20 

be one driver of eHSP72 release. Hepatosplanchnic ischemia is also proposed to disturb 21 

intestinal integrity via widening of tight junction spaces (Dokladny et al., 2015), contributing 22 

to the observed increases in classic pro-inflammatory circulating cytokines (e.g. TNF-α), and 23 

anti-inflammatory IL-1ra and IL-10 following exercise in the heat compared to more 24 

temperate conditions (Cosio-Lima et al., 2011; Costa, Walters, Bilzon, & Walsh, 2011; Peake 25 
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et al., 2008; Rhind et al., 2004). Additionally, IL-6, which is described as both pro and anti-1 

inflammatory depending on its site of production and release, is also elevated after exercise in 2 

hot conditions (Gleeson et al., 2011; Gill, Teixeira, et al., 2015; Rhind et al., 2004). 3 

Accordingly, the CON trial resulted in post-exercise increases in IL-6 and compensatory 4 

increases in anti-inflammatory IL-10 and IL-1ra similar to that observed by others using a 5 

comparable level of heat stress (34°C, 32% RH) and workload (60% V̇O2max; Gill et al., 6 

2015) after 2 hours of running. While we did not include a thermoneutral control condition, 7 

others have found no increases in post-exercise cytokine concentration after 2 hours of 8 

running at 70% V̇O2max in temperate conditions (Costa et al., 2011), suggesting that heat 9 

stress is an important mediator in the cytokine response to exertional stress.  10 

 11 

Precooling prior to extended periods of endurance activity in the heat can attenuate the level 12 

of systemic cellular stress experienced by individuals. Such countermeasures would be useful 13 

to already heat acclimated athletes competing over multiple days in hot environments, where 14 

pronounced elevations in pro and anti-inflammatory cytokines have been observed (Gill et 15 

al., 2015), and are associated with symptoms of gastrointestinal distress (Jeukendrup et al., 16 

2000; Lambert, 2008; Lambert, 2009). However, cooling interventions aimed at reducing 17 

body temperature, and by extension the signal required to initiate the heat shock response, 18 

may also diminish the stimuli required for adaptation to either training or the environment. 19 

Whether other more practical cooling approaches which focus on cooling the periphery (ice 20 

vests, cooling packs; Castle et al., 2006; Hasegawa et al., 2006) rather than the deep body 21 

temperatures would have a similar benefit needs investigation. It would also be interesting to 22 

determine whether the performance enhancing effects of precooling, and the alterations in 23 

pacing associated with such interventions (Marino, 2002), would negate any post exercise 24 

reductions in eHSP72 due to the increase in metabolic rate later in an exercise bout.  25 
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 1 

Whilst the present study did not focus on intestinal epithelial permeability, it is possible that 2 

the whole-body precooling period reduced temperatures at the hepatosplanchnic viscera, 3 

creating a temperature sink between the deep core and peripheral tissues. A precooling 4 

mediated delay to vasodilation and warming of the circulating blood may preserve a lower 5 

tissue temperature for a longer period of time, thus delaying the tissue specific thermal signal 6 

for eHSP72 release and downstream cytokine release. Our data show that post exercise 7 

absolute changes in IL-6 and IL-10 were lower following precooling despite a similar overall 8 

thermal burden between trials. Due to the small sample size in the present investigation (n = 9 

8) a type 2 error cannot be ruled out for our observed cytokine responses, with the commonly 10 

high inter-individual variability in the post exercise cytokine response also making firm 11 

inferences difficult. Despite this, our data suggest that whole body precooling decreased the 12 

absolute change in post exercise IL-6 and IL-10. Further investigation into this area 13 

recommended to confirm these findings.  14 

 15 

An alternative explanation/mechanism for cooling-mediated reductions in cytokines is the 16 

known influence of stress hormones on both eHSP72 release, and the circulating cytokine 17 

cascade (Rhind et al., 2004). To determine the relative effects circulating stress hormones 18 

(Rhind et al., 2004) and improvements in tight junction integrity impart upon circulating 19 

eHSP72 and cytokines, future research could utilize the lactulose/rhamnose sugars test in 20 

order to determine effects on intestinal permeability alongside measures of stress hormones to 21 

quantify the relative importance of each. A limitation of the present study was that we were 22 

unable to conduct the control trial in thermoneutral water, thereby potentially introducing 23 

some small bias as a result of different hydrostatic pressure between trials. It is unlikely that 24 

any hydrostatic pressure effects would affect our blood-borne markers as a result of the pre 25 
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and post exercise sample being separated by a 90-minute exercise period. The perturbations 1 

caused by this exercise bout would likely override any small effects caused by different 2 

pressures.   3 

 4 

In summary, our findings suggest that precooling may limit the exertional-heat related 5 

increases in eHSP72 and reduce the post-exercise pro-inflammatory cytokineamia, which is 6 

associated with manifestations of gastrointestinal symptoms during prolonged exercise in the 7 

heat. A reduction in pro-inflammatory mediators, such as eHSP72, may be beneficial in 8 

limiting the development of exertional-heat related sub-clinical and clinical manifestations 9 

during recovery in multi-day events, but could be counterproductive if a training response or 10 

heat adaptation is a desired outcome.  11 

 12 

Abbreviations 13 

AUC; Area under the curve. BLa; blood lactate. CK; Creatine kinase. CRP; C- reactive 14 

protein. eHSP72; extracellular HSP72. HR; Heart rate. HSP; heat shock protein; HSP72; 15 

heat shock protein 72; HSR; Heat shock response. IL-1β; Inerleukin 1β. IL-1ra; Inerleukin 16 

1 receptor antagonist. IL-6; Interleukin – 6. IL-10; Interleukin 10. iHSP72; intracellular 17 

HSP72. kDa; Kilodalton.. NBM; nude body mass. PSI; Physiological strain index. RER; 18 

Respiratory exchange ratio. RH; relative humidity. RPE; rating of perceived exertion. T-19 

AUC; total area under the curve. Tbody; Mean body temperature; TLR; Toll like receptor. 20 

TNF-α; Tumor necrosis factor – alpha.  Trectal; mean rectal temperature. Tskin; mean skin 21 

temperature. 𝐕̇O2; oxygen consumption. 𝐕̇O2max; maximal oxygen consumption. 𝐕̇O2peak; 22 

peak oxygen consumption. W m-2; Watts per meter squared.  23 
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Table 1. Physiological and perceptual responses to 90 minutes running at 65% 

VO2max in hot conditions without prior precooling (HEAT; n = 8) and after 60 

minutes of cold water immersion (COOL; n = 8). Data show the mean ± SD exercise 

data recorded throughout the exercise bout.  

 
Variable CON COOL 

Mean HR (bts.min-1) 159 ± 12 158 ± 14 

Peak HR (bts.min-1) 171 ± 15 169 ± 16 

Mean exercise Trectal (°C) 38.25 ± 0.34 37.86 ± 0.41* 

Mean Trectal final 60 mins (°C) 38.60 ± 0.41 38.47 ± 0.41 

Peak Trectal (°C) 38.88 ± 0.53 38.85 ± 0.51 

Change in Trectal (°C) 2.19 ± 0.64 3.14 ± 1.01 

Rate of Trectal change (90 minutes)  1.56 ± 0.45 2.15 ± 0.72* 

AUC Trectal 38.5°C 11.72 ± 11.76 8.80 ± 12.10 

Time Trectal over 38.5°C (mins:secs) 25:55 ± 23:12 17:30 ± 19:18 

Mean PSI (AU) 6.7 ± 1.1 6.1 ± 1.2* 

Peak PSI (AU) 8.4 ± 1.6 8.2 ± 1.8 

Mean RPE  13 ± 2 13 ± 2 

Peak RPE 16 ± 3 16 ± 3 

Mean TS 2.6 ± 0.6 2.3 ± 0.8 

Peak TS 3.0 ± 1.0 3.0 ± 1.0 

Rate of change was calculated from the Trectal recorded immediately prior to exercise. 
* p < 0.05 
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Table 2. Circulating C-reactive protein, creatine kinase, and cytokine responses to 90 

minutes running at 65% V̇O2max in hot conditions without prior precooling (CON; n 

= 8) and after 60 minutes of cold water immersion (COOL; n = 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* p < 0.05 compared to rest 

† p < 0.01 compared to rest 

 

 

 

 

 
 

 

 Rest After exercise 

C-Reactive protein (mg.mL-1)   

CON 0.95 ± 0.86 0.95 ± 0.87 

COOL 0.79 ± 0.82 0.70 ± 0.68 

Creatine Kinase (U.L-1)   

CON 333 ± 275 393 ± 275* 

COOL 320 ± 295 359 ± 261* 

TNF-α (pg.mL-1)   

CON 3.0 ± 1.1 3.3 ± 1.3 

COOL 2.7 ± 0.8 3.1 ± 0.9 

IL-6 (pg.mL-1)   

CON 0.5 ± 0.5 5.6 ± 2.2† 

COOL 0.5 ± 0.5 3.5 ± 1.9* 

IL-1ra (pg.mL-1)   

CON 142.6 ± 27.9 302.9 ± 244.4† 

COOL 150.6 ± 20.0 212.9 ± 24.4† 

IL-10 (pg.mL-1)   

CON 2.1 ± 1.4 13.4 ± 6.1† 

COOL 2.2 ± 1.4 9.7 ± 4.9† 
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Figure 1. Rectal temperature (A) and skin temperature (B) throughout 60 

minutes of precooling and 90 minutes of running at 65% 𝐕̇O2max (* p < 0.05 

compared to CON). Rectal and skin temperatures increased throughout exercise 

during both conditions (main effect for time: Trectal, F = 17.6, p < 0.001; Tskin F =  

71.6, p < 0.001) and was lower after a period of precooling (main effect for trial: 

Trectal, F = 14.9, p = 0.001; Tskin F = 108, p < 0.001). Both rectal and skin temperatures 

were lower at the onset of exercise following precooling, and remained lower than the 

control trial until 30 minutes of exercise (time x trial interaction: Trectal,  F = 3.1, p = 

0.007; Tskin, F = 3.1, p < 0.001).   

 

Figure 2. Change in rectal temperature (A) and physiological strain (B) 

throughout 60 minutes of precooling and 90 minutes of running at 65% 𝐕̇O2max 

(* p < 0.05 compared to CON). During exercise rectal temperatures increased (main 

effect for time, F = 47.9, p < 0.001), with the rate of increase higher following 

precooling (main effect for trial, F = 19.8, p < 0.001). Precooling increased the rate of 

change in Trectal from 30 – 60 minutes of exercise (time x trial interaction, F = 2.9, p = 

0.011). Physiological strain increased during exercise (main effect for time, F = 16.6, 

p = 0.005) and was lower following precooling (main effect trial, f = 12.0, p = 0.034). 

Lower physiological strain was observed during the initial 45 minutes of exercise 

after precooling, after which (trial x time interaction, F = 14.4, p = 0.026).  

 

Figure 3. Individual changes in eHSP72 (A) and post-exercise absolute change in 

eHSP72 (B) following 90 minutes running at 65% 𝐕̇O2max in hot conditions. 

eHSP72 was increased following exercise (main effect for time, F = 5.8, p = 0.047), 

and was attenuated by a period of precooling (main effect for trial, f = 6.6, p = 0.037), 

with a weak time x trial interaction observed (f = 4.0, p = 0.08). The absolute change 

in post-exercise eHSP72 was attenuated following precooling (p < 0.001).  

 

Figure 4. Individual post-exercise absolute changes in circulatory TNF-α (Panel 

A), IL-6 (Panel B), IL-10 (Panel C) and IL-1ra (Panel D) following 90 minutes 

running at 65% 𝐕̇O2max in CON and COOL.  
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