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This thesis aimed to investigate and model the V02 response to exhaustive constant intensity running of a
short duration.
Study 1 was a Douglas bag based study that compared the V02 response of physically active subjects to 2, 5

and 8 minute bouts of constant intensity exhaustive exercise performed in both cycling and running. Nine
male subjects took part and each completed a ramp test in addition to the three constant intensity tests in both
modes of exercise. In the 5 and 8minute tests the subjects achieved 97.0 ± 4.2 and 97.5 ± 2.0 % for cycling,
and 98.5 ± 1.8 and 99.2 ± 2.3% for running, of the ramp test V02peak. In the 2 minute test, a significantly
lower percentage was attained (89.9 ± 5.5% and 91.8 ± 2.5% for cycling and running respectively). In
cycling V02 was still increasing over the final minute of the test, whereas in running there was no difference
between the last two 30 second samples (P=0.98). It was concluded that in severe intensity exercise of a
short duration V02 may not achieve its maximum and that in running it may plateau at this sub-maximal rate.
Study 2 validated the QP9000 for the measurement of V02 during running on a breath-by-breath basis. Six

male subjects performed a ramp test and tests at rest and at moderate and severe intensities. Each test was
performed twice, once using the QP9000 and once using a Douglas bag system. No difference was found for
V02 between the two systems (P=0.358). The SO of the differences between the systems across exercise
intensities was 97 ± 57 ml.min·l. It was concluded that the QP9000 provides a valid measure of V02 at all
exercises intensities.
Study 3 investigated the V02 response of trained runners to 800 m pace running, following a track based

time trial. Eight male subjects (V02max 68.8 ± 5.6 ml.kg'lrnin') took part in the study. That V02 reached a
plateau below V02 was confirmed by a gradient of -29 ± 275 rnl.min" during the final 30 seconds of exercise.
The asymptotic V02 was only 85.3 ± 6.6 % of the V02peak from a ramp test and the response was shown to
be extremely fast (time constant ('t) of 10.7 ± 3.4 seconds). These breath-by-breath data confirmed the
response indicated in Study I.
Study 4 explored the single exponential model used to describe the V02 response and the nature and level of

breath-by-breath noise in severe intensity running. Five male subjects performed a ramp test to determine the
speed at anaerobic threshold (AT). Each subject then performed five 8-minute runs at a speed corresponding
to 90% of the AT and five exhaustive runs at a speed that would elicit exhaustion in about 2-minutes.
Analysis of the noise to signal ratio of the severe intensity data showed that the noise was Gaussian and that
averaging data over repeated transitions reduced this ratio. Computer simulations of noise equivalent to the
noisiest subject's data demonstrated that the use of two repeated severe intensity transitions would give 95%
confidence limits of < ± 1.2 seconds for 'to
Study 5 examined the effect of prior supra AT exercise on the V02 response to exhaustive severe intensity

running. Ten middle and long distance runners each completed a ramp test to determine AT and V02peak.
Subjects then ran exhaustive transitions, lasting approximately 2-minutes, that were preceded by moderate
(90% AT) or heavy (50% of the difference between AT and V02peak) intensity running. Each transition was
repeated. Increased metabolic acidosis (from prior heavy intensity exercise) did not increase the asymptotic
V02 (P = 0.226), and this figure represented only about 90% of V02peak from the ramp test. The mean
response time (MRT) (time to reach 63% of the overall response) was faster following heavy exercise (20.9 ±
1.9 s vs. 18.9 ± 1.0 s, P<0.05). This was however due to a reduction in the duration of the initial
(cardiodynamic) phase of the response rather than a speeding of the primary (phase 2) kinetics.
Study 6 analysed the differences in this response between sprint and endurance runners. Six male athletes

were recruited for each group based on best times for 100 m and 10 000 m. Subjects performed repeated
transitions at a speed that would elicit exhaustion in approximately 2-minutes. No difference was found in
the model of the V02 response between groups. When all subjects were analysed however a strong negative
relationship was demonstrated between V02peak (from a ramp test) and the percentage of this V02peak that
was reached in the constant speed test (r = -0.811, P = 0.001). It was concluded that the V02 response was
dependent on the aerobic capabilities of the individual.
In conclusion the thesis demonstrated a V02 response in trained subjects during exhaustive severe intensity

running that was different to that which is suggested by the majority of the literature. The V02 response
tends neither to V02 required nor to vo-max, but rather tends to a plateau that is sub-maximal. This thesis
was unable to identify the mechanisms that might result in such a shortfall in the response. However there
appears to be a close link with the aerobic capabilities of the individual.
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CHAPTER 1

INTRODUCTION

Models of the determinants of running performance can be traced back to the

groundbreaking work of A.V. Hill in the 1920s. Hill et al. (1924) suggested that

performance was dependent on three factors. These were the energy demand (V 02

required), the maximum rate of oxygen uptake (Vo-rnax) and the anaerobic capacity.

Whilst the methods used by Hill et al. (1924) were primitive by modem standards and the

measurement of anaerobic energy release grossly over estimated anaerobic capacity, the

energy supply and demand model described by these three factors is the foundation on

which current models of performance are built.

Hill et al. (1924) realised that there was inertia in the oxidative systems to meet the V 02

required and that consequently an oxygen deficit (02 deficit) would be incurred as

anaerobic systems assisted to meet the energy demand at the onset of exercise.

Furthermore Hill et al. showed that oxygen uptake response (V 02 kinetics) tended to the

V02 required in an exponential fashion, taking approximately 2.5 minutes to reach a

steady state. Whilst this delay in V 02 achieving the V02 required was not incorporated

into Hill's model, it is apparent that he was aware that this was a weakness of that model.

Hill was also aware that V 02 kinetics would differ at high exercise intensities. Indeed he

noted that at high levels of lactate production a steady state in V 02 would not be

achievable (Hill and Lupton 1923).

Both the rate and the magnitude of V 02 kinetics will have an impact on the relative

aerobic and anaerobic energy contributions to exercise (Whipp 1994a). Specifically the

rate of increase in V 02 will determine the magnitude of the O2 deficit (reflecting

anaerobic energy production) at the onset of exercise. The relative aerobic and anaerobic

contributions to exhaustive exercise have traditionally been evaluated using the maximal

accumulated oxygen deficit (MAOD) (Medbo et al. 1988). The majority of this research

has used the Douglas bag method of gas collection. Whilst such systems are adequate for

calculating total oxygen consumption, potentially useful information regarding the time

SB Draper (2002)
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course of the \1 02 response is not available. With the advent of reliable systems for the

measurement of \1 02 on a breath-by-breath basis, the kinetics of the \1 02 response may

be plotted and modelled (Lamarra and Whipp 1995).

At intensities where the V02 required falls below the anaerobic threshold (AT)1 the V02

response has been shown to be similar to that described by Hill et al. (1924). After an

initial delay phase (due to muscle to lung transit time) V02 tends in an exponential fashion

towards V02 required, and reaches this asymptote within about 3 minutes (Whipp and

Wasserman 1986). Intensities that have a v02 required greater than the AT demonstrate a

more complex response however (Barstow and Mole 1991). During these exercise

intensities a delayed phase (termed slow component) becomes manifest after

approximately 3 minutes that takes V02 to a steady state that is greater than the predicted

V02 required (as predicted from a sub AT V02-exercise intensity relationship) (Whipp and

Ward 1990). At higher exercise intensities where blood lactate cannot stabilise but

continues to rise during the exercise, this \102 slow component does not reach a steady

state but continues to rise until V02max is reached (Poole et al. 1988, 1990).

In short duration exhaustive exercise the \102 required may even exceed \102max (Medbo

et al. 1988). During such exercise (when the \102 required exceeds \1 02max), Whipp

(1994a) argues that the \102 response will tend exponentially to \102 required but will be

'cut short' at \1 02max. The presumption is then that all exercise where the \102 required

is close to or greater than \102max, will result in the achievement of \1 o-max (Hill &

Ferguson 1999), unless the exercise is of such a short duration that there is insufficient

time to reach \102max (Whipp 1994a). This assumption is widely accepted (Gaesser and

Poole 1996) and has become fundamental to current understanding of \1 02 kinetics and

exercise intensity (Poole 1998; Ward 1999).

Mathematical models of exercise performance aim to provide sound physiological

descriptions of the bio-energetic systems and their observed performance ability (Billat et

IThe term AT is used in this thesis to describe a 'threshold' determined from either ventilatory or blood
lactate measures. It is recognised that there are many conceptual difficulties with such a threshold and the
use of the word anaerobic is not intended to imply that such a threshold is the result of insufficient O2

supply.

SB Dra er 2002 2
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al. 1999a). It was quickly recognised by those modelling the determinants of running

performance that the V 02 response, missing from the model of Hill et aI. (1924), needed

inclusion (Sargent 1926). Current models, having the advantage of the large body of

research into V02 kinetics, have incorporated exponential functions to describe the V 02

response at the onset of exercise (Di Prampero 1986; Cappeli 1999). A similar exponential

function is used in models of both running (Ward-Smith 1985) and cycling (Olds et aI.

1983) performance. Based on current thinking about V 02 kinetics at very high intensities,

these models assume that exhaustive exercise of a short duration will always tend to, and

provided the duration is sufficient will result in the achievement of, \I 02max. The

definition of this duration differs between models (Di Prampero 1993; Peronnet and

Thibault 1989), however all current models agree that exhaustive exercise of duration of

less than 7 minutes will result in \l02max. The lower limit of this range (i.e. intensities

where there is insufficient time for the V02 response to reach \l02max) varies from about

50 to 150 seconds between models.

Current understanding of V 02 kinetics in short duration exhaustive exercise and models of

performance in such events such as 800 and 1500 m running are in agreement in relation to

the \102 response. Both suggest that \102 will rise in an exponential manner (tending to

either Vo-max or \102 required) and \l02max will be attained. However, whilst research

into exercise at such high intensities is far from extensive, there are data that question this

assumption.

There is evidence to suggest that at very high intensities \I 02 will tend neither to V o-rnax

nor to the \102 required, but instead reach a plateau below its maximum rate. Astrand and

Saltin (1967) examined the \I 02 response at the onset of high intensity cycling exercise.

The data from the shortest duration tests (which lasted - 2 minutes) showed that some

subjects achieved a plateau in \I 02 that was lower than that achieved in the longer tests,

although this was not commented on by the experimenters. This phenomenon has been

more clearly demonstrated in middle distance runners, running at 800 m race pace on a

motorised treadmill (Spencer et al. 1996; Spencer and Gastin 2001). These aerobically

trained individuals sustained a plateau in V 02 that was below V 02max for approximately

half of the run, despite the V 02 required being well in excess of V 02max. These data

SB Dra er
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suggested that V 02might not tend to either V o-max or V 02 required, and furthermore

that this shortfall was not due to an insufficient duration for the response to fully develop.

However, since this plateau below Vo-rnax was not apparent in all Astrand and Saltin's

(1967) subjects, and as Spencer et al. did not use genuine constant intensity exercise, this

phenomenon remains to be properly established. Furthermore, whether the clearer

demonstration of this (plateau) response in the studies of Spencer et al. and Spencer and

Gastin was due to the mode of exercise (running), or due to the superior level of aerobic

training in those subjects compared to those of Astrand and Saltin is unknown.

The majority of research into V02 kinetics has used cycling (Whipp & Wasserman 1972;

Poole et al. 1988; Barstow & Mole 1991; Patterson & Whipp 1991; Barstow et al. 1996;

Gerbino et al. 1996; McDonald et al. 1997; Zoladz et al. 1998), and the models we have of

the V 02 response to different exercise intensities are based on this mode of exercise.

Recent breath-by-breath studies of the V02 response to treadmill running have shown

differences in the V 02 response between the two exercise modes, during supra AT

exercise (Billat 1998a; Jones et al. 1998).

Furthermore most studies have used untrained subjects. Elite distance runners have been

shown to have different V 02 kinetics to untrained individuals (Billat 1997; Lucia et al.

2000). However whether this is due to training status (Womack et al. 1995; Phillips et al.

1995), mode of exercise (Billat et al. 1998a; Jones et al. 1998), or differences in muscle

fibre type recruitment and distribution (Barstow 1996), all of which have been shown to

affect V 02 kinetics, is unclear.

As mentioned previously, the V 02 response to exercise has been shown to be different and

more complex in exercise intensities above AT, (Barstow & Mole 1991). Subjects

exercising at these intensities demonstrate a delayed phase in V 02, occurring after about

three minutes, that results in either an elevated steady state or a continual rise to

exhaustion (Gaesser & Poole 1996), dependent on the severity of the exercise. This

phenomenon has been termed the V 02 slow component and debate exists over the

underlying physiological mechanisms. Research into V 02 kinetics during exercise at

these intensities has therefore been extensive (Diamond et al.1977; Hagberg et aI. 1978;

SB Ora er 2002 4
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Barstow 1994; Billat et al. 1998). Conversely few studies have examined the V 02 kinetics

of exercise at intensities that would result in exhaustion in a short duration (3 minutes or

less). The nature of the response to the latter type of exercise is therefore unknown.

This thesis aimed to address the issues surrounding the V02 response to exhaustive

running of a short duration. There were a number of questions that could not be resolved

with reference to the current body of research and so the thesis had several aims.

• First it was necessary to examine the effect of mode of exercise on the V 02 response

to exhaustive exercise of a short duration in aerobically fit subjects. It is unclear, at

present, whether the response shown for middle distance runners (Spencer et al. 1996),

was due to the mode of exercise or the aerobically trained subject group.

• Second to investigate the incidence of a sub maximal plateau in V 02 during

exhaustive running ofa short duration using both off- and on-line analyses. Previous

research demonstrating a sub maximal plateau has used only Douglas bags for cycling

(Astrand and Saltin 1961) and a mixing chamber (Spencer et al. 1996) for running.

• Third to model the V 02 response to exhaustive running of a short duration, using

breath-by-breath data.

• Fourth to test the assumptions underlying the model used, to calculate confidence

limits for the resulting parameter estimates and determine how many repeated

transitions data should be averaged over to give desired confidence limits for these

parameter estimates.

• Fifth to investigate the effect of prior supra AT exercise on the V 02 response to

exhaustive running of a short duration. Prior supra AT exercise has been shown to

effect exercise of a lesser intensity (Gerbino et al. 1996).

• Finally to investigate the effect of aerobic capability on the V 02 response to

exhaustive running of a short duration. The sub maximal plateau seen in V02 for short

duration exhaustive exercise has only been clearly demonstrated in the aerobically

trained (Spencer et al. 1996).

Answers to these questions, it was hoped, would help to determine the physiological

mechanisms that determine the V 02 response to short duration exhaustive running.

5
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CHAPTER2

REVIEW OF LITERATURE

2.1 The challenge of high intensity running

2.1.1 Middle distance running

The term middle distance has been applied to all track-running events between the

distances of 800 and 3000 m (Brandon 1995), taking between approximately 2 and 10

minutes to complete (Camus 1992). Whilst research into the determinants of, and

physiological mechanisms underlying, success in distance running events has been

extensive (CostillI967, 1971; Costill et al. 1973; Daniels 1974; Fink et al. 1977; Conley

and Krahenbuhl, 1980; Pollock et al. 1980; Noakes et al. 1990), middle distance events

have received little research attention (Padilla et al. 1992). The middle distance events lie

between the sprint events where the energy requirement will be largely met by anaerobic

sources and the largely aerobic distance events. Middle distance running requires a

significant contribution from both aerobic and anaerobic energy pathways (Hill 1999), and

the interplay between the two systems is thought to be an important aspect of performance

(Daniels 1985).

The shorter of the middle distance events, the 800 and 1500 m, have a ",,02requirement

that is close to or above V 02max (Spencer et al. 1996). The relative contribution from

aerobic and anaerobic energy sources has been the cause of considerable debate and

difference of opinion amongst the scientific and coaching communities (Lacour et al.1990;

Gamboa et al. 1996; Hill 1999; Gastin 2001).

2.1.2 Assessment of the anaerobic contribution and anaerobic capacity

Laboratory assessment of the anaerobic energy contribution to exercise and the evaluation

of the total capacity for anaerobic energy provision have proved difficult. All of the

methods available for whole-body exercise involve a number of assumptions and problems
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that should be understood and identified if they are to be accepted as valid and reliable

research tools.

The level of post exercise lactate concentration has been used to estimate the anaerobic

energy yield (Margaria et al. 1963a). Problems exist in the assumption that blood lactate

concentration is equivalent to muscle glycolytic rate, and even if it is a reasonable guide to

glycolytic energy production it does not represent total anaerobic energy yield from all

systems (Saltin 1989).

It has long been thought that the deficit in aerobic energy production, i.e. the anaerobic

contribution to the exercise metabolism, is 'paid off as excess V 02 during recovery and

was termed oxygen debt (02 debt) (Hill and Lupton 1923). This 02 debt was considered a

measure of the anaerobic contribution to exercise, based on the assumption that the 02 debt

following exercise equalled the 02 deficit that was incurred due to the inertia in aerobic

energy production at the onset. The fast and slow phases in the recovery of V 02 were

later divided into the alactic (ATP and PCr) and lactic (glycolitic) O2 debts representing

the recovery of those systems (Margaria et al. 1933). These assumptions were flawed

(Gastin 1994), as shown by the dissociation between 02 deficit and 02 debt during any

exercise that resulted in elevated blood lactate concentrations (Patterson and Whipp 1991).

The majority of lactate produced during exercise is used as a substrate for oxidation and

not for glycogen resynthesis (Gaesser and Brooks 1984) and more energy is required to

oxidise this lactate than is liberated when lactate is produced (Saltin 1986). Other factors

(not directly related to the anaerobic energy production) such as temperature and

catecholamines may also influence the 02 debt. Consequently the O2 debt is likely to

grossly overestimate anaerobic energy production during exercise (Green and Dawson

1993) and is more variable than the other available measures (Graham and Andrew 1973).

The O2 deficit itself is widely used as a measurement of total anaerobic capacity (Medbo et

al. 1988; Gastin and Lawson 1994) in exhaustive exercise and to calculate the anaerobic

contribution to exercise of a given duration (Van Ingen Schenau 1992; Craig et al. 1993;

Craig et al. 1995; Spencer et al. 1996). The concept of an oxygen deficit has been in

existence for some time, being first introduced by Krogh and Lindhard in 1920, after their

initial observations of the delay in oxidative metabolism at the onset of exercise (Krogh
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and Lindhard 1913). The concept was reintroduced in 1969 by Hermansen, but calculation

of O, deficit in exhaustive short duration exercise as a measure of total (and maximal)

anaerobic capacity was not formally suggested until 1988 (Medbo et al. 1988). There are

few arguments against the use of oxygen deficit to assess the anaerobic contribution to sub

AT exercise (Saltin 1986). However, in supra AT exercise the Y02- work rate (WR)

relationship is both non-linear and time dependent, therefore calculation of the V02

required (and 02 deficit) becomes problematic (Ward 1999). Two major assumptions

underlie the calculation of the 02 deficit: firstly that the ~02 requirement for all intensities,

including those above that eliciting Y 02max, can be calculated by extrapolation of a linear

V 02-WR relationship; secondly that this energy demand will remain constant throughout

exhaustive exercise (Bangsbo 1996a). It has now been established that the V 02-WR

relationship is not linear above the AT (Bangsbo et al. 1993; Zoladz et al. 1995, 1998;

Bearden and Moffatt 2001 a). Oxygen uptake has been shown to increase in a non-linear

manner above the AT (Hansen et al. 1988), with values exceeding those predicted from the

sub AT V02- WR relationship. This additional V 02 is delayed in onset (Whipp and

Wasserman 1972) and therefore the nature of the V02-WR relationship is dependent on

the test protocol and the timing of the expired gas samples. Recent studies using a one

legged exercise model suggest that the second assumption may also be flawed and the

energy demand may vary during the course of a constant load bout of exercise (Bangsbo

1996b).

A further conceptual problem exists, in deciding what physiological systems contributing

to the O2 deficit are representative of the anaerobic energy yield or anaerobic capacity.

Anaerobic energy provision is largely from the glycolytic system and some is via the ATP

and per systems (Saltin 1989). However, also incorporated into the O2 deficit is a certain

amount of aerobic energy production. Oxygen bound to haemoglobin and myoglobin is

reduced at the onset of exercise (Saltin 1986), and the 02 deficit measured via pulmonary

ventilation may not therefore represent that of the working musculature (Spriet et al. 1992;

Graham 1996). Oxygen bound to myoglobin, although representing aerobic energy yield,

is present within the muscle at the onset of exercise and blood stores of O2, largely bound

to haemoglobin, are provided by pulmonary gas exchange, albeit prior to the exercise. The

question then arises of whether a measure of anaerobic capacity should represent purely
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anaerobic energy yield, or all energy not directly gained via pulmonary ventilation during

that exercise. The O2 deficit and anaerobic capacity have never been clearly defined

(Green 1994), and the investigator needs to consider the various energy producing

elements that make up the total 02 deficit.

The debate about the validity of the O2 deficit has been intense (Bangsbo et al. 1990;

Bangsbo 1996a, Medbo 1996). However, it is still widely used and considered to be a

promising ifnot perfect measure of anaerobic metabolism (Gastin 1994). Oxygen deficit

does also provide a useful index of V 02 kinetics at the onset of exercise, since any

speeding of V 02 kinetics will result in a smaller O2 deficit for a given ~02 required

(Walsh 1992; Grassi et al. 2000). Furthermore it should be recognised that, consistent with

research showing the 02 deficit to be unchanged across all exhaustive exercise lasting

longer than 2 minutes (Medbo et al. 1988), current mathematical models of running have

incorporated a fixed anaerobic capacity that will be exhausted in all middle distance

events.

2.2 Models of athletic performance

2.3.1 Early models

Throughout the 20th century, scientists have sought to model the limits of human

capability, particularly in athletics and especially for the running events (Billat et a1.

1999a). In the early part of the century models were purely empirical and concentrated on

defining the speed-time relationship (Kennelly 1906; Meade 1916) based on world best

times ofthe day. However, later models have attempted to explain performance based on

the physiological processes underlying it (Morton and Hodgson, 1996).
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2.3.2 The contribution of A. V. Hill

A.V. Hill (1925) praised the work of Kennelly. However, he recognised the need to

identify the physiological determinants of fatigue to properly understand the speed-

distance relationship. Hill et al. (1924), acting as their own subjects, ran around a 90 m

grass running track, while collecting expired gases into Douglas bags, with a colleague

calling out lap times to ensure an even paced run. In this way they investigated both

the V 02 response and the v02 required at various running speeds. This work was

important for two reasons: firstly it was the first attempt to produce a model of

performance based on the underlying physiology; and secondly, the suggested

determinants remain central to contemporary models of performance,

Hill et al. (1924) suggested that the average running speed that could be maintained for a

given distance was dependent on three factors. These were (first) the overall energy

demand, (second) V02max and (third) the anaerobic capacity of the runner. It is testament

to Hill that contemporary models of performance are still based on these three aspects of

energy supply and demand.

Hill's subjects had to carry Douglas bags and respiratory tubing weighing approximately

10 pounds (4.5 kg), while running around a small circular track that made running at high

speeds problematic. Despite these technical limitations the conclusions drawn from this

work were impressive. Itwas observed that \/02 would rise in an exponential fashion

towards a steady state that could be achieved in about 2.5 minutes at low exercise

intensities. Hill and Lupton (1923) also realised that at higher exercise intensities a steady

state in V 02 might not be achieved and linked this to the rate of lactate production and

removal. This they argued meant not only that it was problematic to evaluate V02 required

at high intensities, if a steady state could not be achieved, but also that the exercise could

not be maintained for a prolonged period of time due to fatigue.
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2.3.3 Refinement of Hill's model

Whilst Hill et al. (1924) had realised that V 02 would take time to achieve a steady state

and an oxygen deficit (referred to as oxygen debt) would be incurred, this was not included

in the resulting performance model. However, Sargent (1926) developed the model, and

took into account that "\;02 would take time to reach its peak, addressing an assumption

that Hill knew to be flawed in his proposed model. He assessed the oxygen demand at a

variety of speeds in a single trained individual. Sargent's subject held his breath during the

final 120 yards of each run and gas was collected on finishing until '\102 had reached

resting values; both '\102 and 02 debt were calculated from post exercise '\102. Theoretical

times were calculated over a range of distances for this runner that agreed closely with

actual times recorded. Whilst Sargent wrote of the striking agreement between predicted

and actual times it should be remembered that only a single subject was used.

It was not until Henry in 1954 that the exponential increase of "\;02 at the onset of exercise

(suggested by Hill et al. (1924)) was incorporated into a model of performance. Henry's

paper used the world record times of 1952 and was based on the findings of Sargent

(1926). Unfortunately, Sargent (and Hill before him) had used the O2 debt to calculate

anaerobic capacity, and therefore a grossly overestimated figure of 18 litres was used. A

typical figure for anaerobic capacity would be 5.5 litres, and even in athletes with a large

anaerobic capacity, 18 litres represents more than double the figure that might be expected

(Medbo et al. 1988; Medbo and Burgers 1990).

Lloyd (1966) (as had his predecessors) saw world records as important scientific data since

(as in the acquisition of scientific data) a high degree of care and accuracy was required in

the measurement, and similarly based his findings on best times of the day. Using the

energy demand and O2 debt calculations of Margaria el al. ( 1963b), Lloyd (1966, 1967)

sought to test the model proposed by Hill. Margaria had realised that previous models of

performance had overestimated the anaerobic contribution and concluded that the V 02-

speed relationship was linear in treadmill running (acknowledging that air resistance would

alter this relationship in outdoor running). Lloyd (1966) produced a comprehensive model

that incorporated the exponential rise in "\;02 used by Henry (1954). In addition, Lloyd

described the anaerobic energy reserve decreasing as an exponential function of duration,



PhD Thesis Chapter 2

i.e. he proposed that the anaerobic capacity would not be fully exhausted in events of a

very short duration. The model laid the way for contemporary models that describe this

relationship between anaerobic and aerobic energy release at the onset of strenuous

exercise in a similar fashion (Capelli 1999). Whilst contemporary models base this

relationship on published results measured using breath-by-breath gas collection, Lloyd

(1967) was tentative in his use of an exponential function.

2.3.4 V02 kinetics and models of performance

During the 1970s, the advent of systems capable of calculating \;02 on a breath-by-breath

basis resulted in considerable research into the kinetics of V02. Consequently those

attempting to model performance at the end of this decade were more confident to describe

the inertia between rest and steady state \;02 using an exponential term. The term;

Et (l-exp (-t / t»1 t (2.1)

was used to describe the rise in aerobic metabolism during constant intensity cycling

(Wilkie 1980). Where E represented the steady state for Y02, t was time and t was a

constant. However, Wilkie was surprised that this model (when applied to data from

trained cyclists), estimated a time constant (t) of just 10 seconds, when a value of 30-40

seconds was expected. He explained this discrepancy as being the difference between

working muscle Y02 and V 02 measured at the mouth. Recent research indicates that a

difference does not exist between muscle Y02 kinetics and that measured at the mouth,

however (Whipp et al. 1999).

The use of this exponential function to describe the aerobic and anaerobic energy cost at

the onset of exercise has changed little, but has been refined. Ward-Smith (1985) praised

Lloyd (1966) for including factors to describe anaerobic and aerobic energy transfer.

Ward-Smith sought to improve on the model suggested by Lloyd based on principles of

energy balance rather than mechanical efficiency. Aerobic energy production was

modelled to increase exponentially towards an asymptote at V02 required for all intensities

SB Draper (2002) 12
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below V02max, or at V02max for all intensities where \-02 required exceeded ~02max.

This increase in aerobic energy production was in tandem with an exponential decrease in

anaerobic energy production, and Ward-Smith linked v02 to the rate of phosphagen

degradation.

2.3.5 Current models of running performance

The function describing the interaction between aerobic and anaerobic parameters has

altered little from that proposed by Wilkie (1980). Di Prampero (1986), who had worked

with Margaria et al. (1963b), produced mathematical equations to predict performance in

running, skating and swimming, as well as commenting on other forms of human

locomotion. The models were comprehensive and examined many mechanical factors (air

density, drag, terrain etc.). However, in terms of metabolic energy production the function

was that used by Wilkie (1980). For running, the model was assessed against world record

times for distances between 400 m and 10 000 m and with the exception of 400m a

reasonable agreement was found. Di Prampero assumed a time constant of aerobic

metabolism ('t) of 10 seconds (as had Wilkie 1980) and that the anaerobic energy reserve

would be completely exhausted in all events. This work differed from the previous models

in the conclusion that V02 was not sustainable at its maximum for long duration events

(> 14 minutes). The model was further scrutinised specifically for middle distance running

by calculating theoretical best times for a group of subjects, for distances of 800 to 5000 m

(Di Prampero et al. 1993). The calculated times were close to actual times except in the

800 and 1000 m where the model overestimated the speed a subject could maintain. This

underestimation was explained as an inability to exhaust the anaerobic capacity in short

duration exercise, although this is contrary to previous research that has suggested that the

anaerobic capacity can be exhausted within 2 minutes (Medbo et al.1988, Medbo and

Tabata 1993).

The model proposed by Peronnet and Thibault (1989) does differ from that of Di Prampero

in two key aspects. Firstly, whilst Di Prampero (1993) assumed a constant value for

energy production derived from anaerobic processes, Peronnet and Thibault suggested that

this value would decline with increasing running distance. Peronnet and Thibault based
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this assumption on the work of Gollnick and Hermansen (1973). The second major

difference is that Peronnet and Thibault introduced a factor that takes account of the

decline in aerobic power with increasing duration. A factor (TMAP) was identified that

represents the maximum duration where V 02peak would equal V o-max, and this was

estimated to be at about 420 seconds. This factor has been supported and used by Capelli

(1999) and Ward-Smith (1999). Whilst a higher value has been suggested (Di Prampero

1993), the assumption exists in all current models that v02 will attain V02max if the

duration of the exhaustive exercise is less than 420 seconds.

The other discrepancy among the current models is the value assigned to describe the

speed of the V02 response (r). The differences appear to be a function of whether the

assigned value was based on previous V02 kinetics research, or whether it was based on

the best fit of the model to the data. Peronnet and Thibault assigned a value of 30 seconds

for t, in line with typical values demonstrated in the research (Linnarson 1974). Capelli

used a t of24 seconds based on the work ofBinzoni et al. (1992), who calculated a

similar t using 31P nuclear magnetic resonance spectroscopy. The t of 10 seconds used by

Wilkie (1980) and Di Prampero (1986) was calculated as the best fit for the model, and is

much faster has been previously reported in previous research into V 02 kinetics

(Linnarson 1974). As most models assume that 420 seconds is the maximum duration

where \!02max will be achieved. It is also apparent that if the exercise is very short then

'V02max will not be reached because the response has not had time to reach it. A t of 10 or

30 seconds would equate a minimum duration to achieve -99% 'V02max, of approximately

50 or 150 seconds respectively.

2.3.6 Models of cyclingperformance

The models addressed so far are models that are specifically for running or examine

several forms of human locomotion. Mathematical models specific to cycling performance

have also been produced. These models obviously differ from those for running in that

they include factors specific to cycling such as the mass of the bicycle, drag coefficients of

4
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bike and rider, and rolling resistance. They are however, similar energy supply and

demand based models and use the same exponential function to describe the interplay

between aerobic and anaerobic energy production at the onset of exercise (Olds et al. 1993;

Olds et al. 1995; Olds 2001). These models seem to differ from their running counterparts

only in their readiness to accept oxygen deficit as a reliable measure of anaerobic capacity

(Olds et al. 1993; Craig et a1.l993; Olds et al. 1995; Olds 2001). Olds et al. make the

assumption that V 02would tend to and would be maintained at \; o-max for all events of

10 minutes and under. The time constant of \;02 ('t) was calculated to be 10 seconds by

iteration of the model parameters, rather than by reference to research that suggests a

slower V02 response (Barstow et al. 1996).

Models of performance have changed little from the view of Hill et al. (1924) that

performance was dependent on energy demand, V o-rnax and anaerobic capacity. All

current models (irrespective of mode of exercise) are based on this supply and demand

principle and assume that for any event under 7 minutes duration V02 will tend in an

exponential manner to Vo-max. The models differ only in terms of whether the anaerobic

contribution differs across duration (Peronnet and Thibault 1989) and the speed of the \;02

response (Di Prampero 1993; Capelli 1999).

2.3 Domains of exercise intensity and V02 kinetics

2.3. J Overview

Differences have been demonstrated in \;02 kinetics, dependent on the intensity of the

exercise performed (Whipp et al. 1980). Prior to discussing the V02 response to various

intensities of exercise, it is important to summarise current thinking about exercise

intensity domains and what physiological parameters determine the upper and lower

boundaries of each. In order to compare between research it is also important to identify

the discrepancies that exist, between authors, in this terminology.
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Categorisation of the domains of exercise intensity is often problematic since the definition

of the upper and the lower limits of each domain is uncertain and different laboratory

measures are used to calculate them. Also when exercise intensity is referenced as a

percentage of Vo-max, subjects may differ in terms of the exercise intensity domain they

are performing in (Wetter et al. 1999). As a result, in addition to the terms discussed in

this review, less well defined terms such as sub maximal exercise (Hughson and Smyth

1983), intense exercise (Houmard et al. 1991), and high intensity exercise (Bernard et al.

1998; Gerbino et al. 1996), also appear in the literature.

Within this thesis the terms moderate intensity exercise and heavy intensity exercise are

used to describe intensities that fall below and above the AT respectively. All exercise

intensities where the V02 required is above the maximum intensity where a steady state

may be achieved in blood lactate concentrations, i.e. maximum lactate steady state

(MLSS), are referred to as severe. Identification of whether a given intensity is heavy or

severe is problematic (see Section 2.3.2). However, since the focus of this thesis was

exhaustive exercise and the longest exercise bout studied lasted 8 minutes (most were 2

minutes), it is safe to assume that all the exercise bouts studied must have been performed

above MLSS and may therefore be termed severe intensity exercise.

2.3.2 Demarcation between the domains of exercise intensity

The term moderate intensity has been used to describe those exercise intensities that fall

below the AT (Gaesser and Poole 1996; Xu and Rhodes 1999). Moderate intensities are

consequently described as those that do not result in an increased (above resting levels)

metabolic acidemia (Whipp 1994a). Some researchers have disputed the threshold model

of lactate production and removal and therefore the existence of such a domain (Hughson

and Green 1982; Hughson et al. 1987; Brooks et al. 1991). Controversy also surrounds

the calculation of the AT, as there are various suggested methods, both from measurement

of blood lactate and from respiratory data (Beaver et al. 1985; Beaver et al. 1986; Aunolo

and Rosko 1992; Tokmakidis and Leger 1992). However, the majority of research on V02

kinetics has used respiratory methods to calculate the AT. Despite the controversy

surrounding the detection (or indeed the existence) of the AT (Hughson and Green 1982;
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Yeh et al. 1983), this point has been taken to represent the upper limit of the domain of

moderate intensity exercise. Many studies have used the AT to demarcate between the

moderate and heavy exercise intensity domains (Hughson and Morrisey 1983; Poole et al.

1988; Barstow et al. 1994; McCreary et al. 1996; Koga et al. 1997; Jones et al. 1999)

although each of these studies used a different method to calculate the AT. It is also

apparent that authors are prepared to use the AT to distinguish exercise intensity domain

despite arguing against its conceptual validity (Hughson et al.1987, 1993).

The AT has functional significance not only as the upper limit of the domain of moderate

intensity exercise, but also as the lower limit of the next domain which is heavy intensity

exercise (Patterson and Whipp 1991; Gaesser and Poole 1996). Consequently moderate

and heavy intensity exercise is sometimes referred to as sub threshold and supra threshold

exercise (Whipp and Ward 1990). The kinetics of v02 have been demonstrated to respond

differently in the domain of heavy intensity exercise (Linnarsson 1974), compared with

moderate intensity exercise. Whilst the lower limit of this domain is reasonably well

established (though the method for its calculation is disputed), the upper limit is perhaps

less consistent in the literature. The upper limit of the domain of heavy intensity exercise

is the highest work-rate that will result in a metabolic steady state. That is the highest

work-rate at which steady state is achieved in both v02 and lactate production and

removal (MLSS) (Gaesser and Poole, 1996). Whilst some consensus exists on this point,

there is disagreement about what physiological measure or parameter represents this upper

limit. It has been suggested that the upper limit of the heavy intensity domain is the

asymptote of the hyperbolic work rate-time to exhaustion relationship (Poole et al. 1988;

Poole et al. 1990). This asymptotic value represents the theoretical maximum speed or

power that can be maintained without fatigue (Mori tani et al. 1981) , namely cri tical speed'

(Hughson et al. 1984) or critical power (Monod and Scherrer 1965). There are conceptual

limitations to this approach and it has been suggested that this asymptote will overestimate

the MLSS (McLellan and Cheung 1992).

2 The term critical speed rarely appears in current literature and critical velocity is generally used (Pepper et
al. 1992; Billat et al. 1998a; Hill and Ferguson 1999). However since the focus of this thesis, and indeed the
majority of such research, was treadmill running, which involves no displacement of the subject. the term
critical speed was used in preference to critical velocity.
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Exercise intensities that occur above those that are termed heavy, that is intensities that are

above MLSS, are termed severe (Billat et al. 1998b; Gaesser and Poole 1996). This

exercise intensity domain has also been termed very heavy intensity exercise (Wasserman

et al. 1967; Stringer et al. 1995). The precise nature of the '102 response in this domain is

discussed in Section 2.3.5; it is however assumed that a steady state cannot be achieved

and that exhaustive exercise in this domain will result in \102max provided it is of

sufficient duration (Whipp 1994a). This means there are a range of intensities that will all

result in Vo2max. Therefore it is unwise to reference work-rates as %V o-max within the

severe or indeed any other domain, since the theoretical work rate at which \1o-rnax is

first achieved must be protocol dependent. Nevertheless, many studies have done so

(Hagberg et al. 1978; Hagberg et al. 1980; Sady et al 1983; Hebestreit et al. 1998).

Due to the conceptual problems with referencing exercise intensity as a % V02max alone,

exercise intensity is often quantified as a percentage of the difference between \102 at the

AT and V02max (Koga et al. 1997; Bearden and Moffatt 2000). This difference is

normally referred to as delta (.1) (Armon et al. 1991; Billat et al 1999b). For example, for

an individual with a V omiax of 4 Lmin" and a \102 at the AT of 2 Lrnin", 50%.1 would

be the intensity associated with a \102 of 3 Lrnin".

Whilst the term severe intensity exercise has been used to describe all work rates above the

MLSS, those intensities where, in addition, the "02 required is greater than Vo-max have

been termed supra maximal by many authors (Katch 1973; Hughson, 1978; Yamaji and

Shephard 1987; Graham and McLellan 1989; Itoh and Ohkuwa 1990; Rowland 1993;

Norton et al. 1995; Laforgia et al. 1997). The term supra maximal is not used in this thesis

since conceptually it is impossible for exercise intensity to be greater than maximal. In

addition, as mentioned above, it is impossible to identify a single intensity that will result

in the achievement of \102max (rather there is a range of such intensities). Consequently

the upper limit to the severe intensity domain has not been established (Hill and Stevens

2001).

In practice few researchers actually identify the demarcation point between heavy and

severe intensity exercise to ensure that exercise is performed in one domain or the other.

8
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Critical speed / power is a controversial measure, and MLSS requires several long exercise

tests to establish it, making it an impractical measure. Rather researchers have used

exercise intensities with V02 requirements that represent a high percentage of V o-max

(Williams et al. 1988; Billat et a1.l988b) or exhaustive exercise that results in fatigue in a

set (and short) duration (Hill and Stevens 2001).

2.3.3 VOl kinetics in moderate intensity exercise

At moderate exercise intensities, after an initial delay, the v02 response is considered to

be exponential (Gaesser & Poole, 1996). The exponential behaviour of V02 kinetics at the

onset of constant intensity exercise was recognised as early as 1923 (Hill and Lupton).

However, with the advent of sophisticated gas analysis systems that allow the calculation

of V02 on a breath-by-breath basis, it has been possible to examine the response in far

greater detail. The whole response has been described as a single exponential function of

the form:

. ( ) -' ( I -(t-6)/t) (2 2)V 02 t - Basehne + GAIN -e .

where V02 (t) is V02 at time t, Baseline is resting V02, GAIN is the asymptotic value of

V02 (above Baseline) at steady state, () is the time delay, and "C is the time constant.

In the moderate intensity exercise domain a steady state in V02 is normally achieved

within 3 minutes in healthy subjects (Gilbert et al. 1967; Xu and Rhodes), giving a time

constant ("C) of about 30 seconds (Whipp and Wasserman 1986). The V02 response to

moderate intensity exercise has three distinct phases: a delay phase, the primary response,

and the steady state. The first phase is essentially a delay, due to muscle to lung venous

return (Whipp, 1994a). However, V02 does increase during this period, principally due to

an increase in cardiac output and therefore pulmonary blood flow (Wasserman et al. 1974).

The exact nature of this first phase is not fully understood however. Blood extracted from

a pulmonary arterial catheter showed a drop in O2 saturation and an increase in the partial

pressure of CO2 during this initial phase (Casaburi et al. 1989a). Such changes suggest
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mechanisms other than just an increase in cardiac output, may influence phase-I V02

kinetics.

The exponential rise to steady state therefore begins as venous blood from the exercising

muscle reaches the lung, and represents muscle oxygen uptake and further increases in

pulmonary blood flow (Whipp, 1994a). The time constant for this rise in V02 (r) is

thought to be relatively unchanged across the range of moderate intensity work rates

(Whipp & Ward, 1990), although recent evidence suggests it may increase with exercise

intensity even in this domain (Brittain et al. 2001). For moderate intensity exercise, a

steady state in both V02 and lactate will follow the second phase, and the V02- WR

relationship is considered to be linear (Gaesser and Poole 1996).

Researchers have tended to model this response as a single exponential function. The

exclusion of phase-l from the modelling process has been justified because of the small

number of data points within this phase (Grassi et al. 1996): phase-l will only last

approximately 15 seconds and breathing frequency will be low early in the transition to

exercise. The modelling of V02 kinetics in this exercise intensity domain has been

achieved in a number of ways. Some investigators have used a single exponential

function, modelled from all data points and including no time delay (8) (Sady et al. 1983;

Sietsma et al.1989). Other groups, recognising that the increase in V02 during phase-l

will influence the modelling of the primary (phase-2) response, have treated phase-l as a

'pure' delay. This involves including 8 in the exponential and removing the phase-l data

points from the analysis (Whipp et al. 1980; Whipp et al. 1982a; Barstow et al 1994).

Another approach has been to use the same model (exponential and delay), but simply

remove the initial 25 seconds of data (Lamarra et al. 1987; Gerbino et al. 1996). More

recently a two-component model has been used (Carter et al. 2002), that models the phase-

1 response using the same exponential function as used to model the phase-2 response.

This function does not contain a time delay (8) for phase-I, but contains an independent

GAIN (GAINO) and time constant (to) for this phase. This gives the equation:

V· ( ) _. (I -litO) (1 -(t-el)/tl) (23)02 t - Basehne + GAINO -e + GAIN 1 -e , .
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where GAIN 1 t 1 and 81 describe the phase-2 response. It should be recognised that the

phase-l response has never been demonstrated to be exponential in nature; the same

exponential function is used for convenience rather than for a sound physiological reason

(Whipp and Ozyener 1998). Even for phase-2 the use of an exponential function has

occasionally been questioned (Taylor et al. 1999), and other mathematical functions

(polynomials) have been used, albeit rarely.

2.3.4 V 02 kinetics in heavy intensity exercise and slow component

At exercise intensities that are above an individual's AT, the V02 response has been

demonstrated to be more complicated and is not adequately described by a simple mono-

exponential function (Barstow and Mole, 1991). The kinetics of the V02 response in the

domain of heavy intensity exercise have been described as a distortion of the basic kinetics

seen in moderate intensity exercise (Whipp, 1994a). The V02 response has been

considered thus since phases-l and -2 occur in a similar manner to those demonstrated in

moderate intensity exercise, but instead of V02 achieving a steady state in phase-2, a third

phase of delayed onset emerges (Barstow and Mole 1991).

The delayed onset of this third phase has led to it being termed the slow component of V02

(Poole 1994; Sloniger et al. 1996; Billat et al. 1998b; Obert et al. 1999). This slow

component, whilst apparent in earlier studies (Astrand and Saltin 1961; Margaria et al.

1965), was not formally identified until 1972 (Whipp and Wasserman 1972). The slow

component of V02 occurs approximately 80-100 seconds after the onset of exercise in

healthy subjects (Poole et al. 1994a). This third phase represents an excess V02 that is

over and above that which would be predicted from a linear V02- WR regression

calculated using sub AT work rates (Whipp and Ward, 1990). The \102 slow component

should not be confused with the O2 drift that may be seen in moderate intensity exercise of

a long duration (Kalis et al. 1988). The slow component is of greater magnitude and

occurs only in exercise intensities that are above AT (Whipp and Mahler, 1980). The slow

component can make a considerable contribution to the total V 02, sometimes as high as

1.5 Lmin', and also seems to have a different origin to 02 drift. Possible physiological

mechanisms that may underpin the slow component will be discussed later in this review.
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The existence of a slow component challenges the widely held belief that the Y02- WR

relationship is a linear one (Astrand and Rodahl 1986; Wilmore and Costill 1994). At

moderate intensity exercise intensities the \102-WR relationship is indeed linear (Gaesser

and Poole 1996). However, for both cycling (Hansen et al. 1988; Zoladz et al. 1995;

Zoladz et al. 1998) and treadmill running (Jones et a1.l999), in the domain of heavy

intensity exercise, the Y02- WR relationship has been demonstrated to be non-linear. Non-

linearity of this relationship has obvious implications for calculating the 02 deficit in the

traditional manner, which relies on the accurate calculation of the \;02 required, and

assumes this requirement to be constant (Bangsbo 1996a); see also Section 2.l.2. Barstow

et al. (1993) found the phase-2 response to be linear even at high work rates, but the third

slow component of delayed onset resulted in a deviation from linearity at intensities above

AT. This non-linearity is often not recognised in incremental tests, as typically a fast

ramp rate is used to bring an individual to exhaustion within approximately 10 minutes

(Buchfuhrer et al. 1983). This does not allow sufficient time for the slow component to

become manifest (Davies et al. 1982). A non-linear relationship has been shown when a

slow rate of increment ation (e.g. 15 W.mino

, in cycling), that allows a slow component to

develop, is used (Whipp and Mahler, 1980; Hansen et al. 1988), however. The Y02- WR

relationship is then not only non-linear but also time dependent. An incremental test with

1 minute stages is likely to produce a very different (and more linear) relationship to one

with 5 minute stages where a slow component would be manifest.

In heavy intensity exercise, the basic kinetics of Y02 (as previously described for

moderate intensity exercise) are distorted and an additional slow component is

superimposed on the model (Whipp and Wasserman, 1972). Typically a slowing of

kinetics is seen. This is may be a reflection of a greater r in the second component, or an

'excess' \102 that will reach a delayed steady state at a level above that predicted from a

sub lactate threshold Y02- WR regression, or both (Patterson and Whipp 1991).

In the domain of heavy intensity exercise a second exponential term is used to describe the

slow component. This term, which tends to a higher asymptote (GAIN2), has a separate

time delay (82) and time constant (t2) to describe the delayed onset;
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V02 (t) = Baseline + GAIN I (l_e-(t-Ol)/tl)+ GAIN2 (l_e-(t-02)/t2) (2.4)

An exponential function has been widely used to describe the slow component (Linnarson

1974; Camus et al. 1988; Barstow et al. 1996; Hebestreit et al. 1998; Bearden and Moffatt

2000). However, there is some controversy over whether the slow component is an

exponential or a linear function (Barstow and Mole, 1991; Patterson and Whipp 1991;

Gaesser and Poole 1996), particularly at the higher (severe) intensities where the

theoretical asymptote may be above Vo-rnax, Some studies have modelled the slow

component rise as a linear function (Armon et al. 1991), whilst others have simply

expressed the magnitude of the slow component as the difference between final v02 and

V02 at 3 minutes (Billat et al. 1999b; Jones and McConnel 1999). This simple approach

has been criticised however for underestimating the magnitude of the slow component

(Bearden and Moffatt 2001b).

Several researchers have also attempted to incorporate the phase-I response into the model

(Barstow et al. 1996; Billat 2000) rather than regard it simply as a delay, since V02 does

increase during this phase. Again an exponential function has been used to describe this

phase of the response, although as phase-I is considered to begin at the onset of exercise

this function does not contain a time delay (6). This gives the equation:

\102 (t) = Baseline + GAINO (l_e-(t)lTo)+ GAIN I (l_e-(t-Ol)1t1) + GAIN2 (l_e-(t-02)/t2)....(2.5)

Given the diversity of approach to modelling in this intensity domain, the willingness of

authors to compare the various parameters between studies is surprising.

Research is also equivocal as to whether phase-2 V02 kinetics are slowed (display a longer

t), in heavy compared with moderate intensity exercise. This debate primarily centres on

two important studies from the same year. Patterson and Whipp (1991) found that the time

constant increased with increasing exercise intensity whereas Barstow and Mole (1991)

report no change. The two studies used slightly different mathematical models but both

used a two-component model, with phase-l regarded as a time delay. Whilst Barstow and
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Mole did not demonstrate the slowing of kinetics shown by Patterson and Whipp, it is clear

from their data that the highest work-rate resulted in the longest time constant. Itmay be

that a small subject group (n = 4) and a large variability in this parameter prevented them

from statistically demonstrating the same effect. Recently Carter et al. (2002), using a

three-component model, showed that the phase-2 t was increased in the heavy compared to

the moderate intensity domain but unchanged across all supra AT work rates.

2.3.5 V 02 kinetics in the severe intensity domain

A key assumption exists surrounding the \102 response to exercise in the severe intensity

domain. Review papers are consistent that for severe intensity exercise, at a constant work

rate, a slow component will be present and will be of a greater magnitude than is seen for

heavy intensity exercise (Xu and Rhodes 1999). The response differs from that of heavy

intensity exercise because V02 is unable to reach a steady state but instead continues to

rise until Vo-max or exhaustion (Whipp and Ward 1990, Whipp I994a, Whipp I994b,

Gaesser and Poole 1996, Xu and Rhodes 1999, Ward 1999). It is apparent, given this

assumption, that a maximum steady state, in both blood lactate and \1 02, is the logical

lower limit for this exercise intensity domain. Research suggests that the highest work-rate

at which a steady state in \102 can be achieved coincides with the MLSS (Poole at al.

1988). However, the terms fatigue threshold and critical speed or power are also used to

describe this same division of exercise intensity domains (Poole et al. 1988, Billat 2000).

When work rate is plotted against time to exhaustion the relationship is a hyperbolic one

(Kennelly 1906; Hill 1925; Wilkie 1980; Billat 2000). When this relationship is plotted for

an individual the asymptote represents the critical speed or power (Moritani et al. 1981).

This asymptote is also often termed the fatigue threshold (Gaesser and Poole 1996; Billat

1999a; Ward 1999). The idea ofa critical speed that represents the highest work rate that

might be sustained for prolonged exercise is not a new concept (Hill 1924). In 1943

Francis (p. 315) described this asymptote (based on world running records) as the "dog

trot" speed for a theoretical "perfect runner" that represented "the speed that he could

maintain indefinitely without tiring (ifit were not for lack of sleep, nourishment, etc.)".

This early reference to critical speed highlights the fundamental flaw in the concept.
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Francis (1943) believed that this intensity could be maintained indefinitely if substrates

were available, whereas in reality time to exhaustion at such intensity is likely to be

between 30 and 60 minutes (Housh et al. 1989; Scarborough et al. 1991).

Monod and Scherrer (1965) first identified the concept of a critical power for a given

muscle. Moritani et al. (1981) then applied this critical power concept to whole body

exercise on a cycle ergometer. Moritani et al. found no difference between critical power

and power at the AT.

The calculation of critical power may be problematic due to the need to complete multiple

tests at very high intensities and the subjective nature of fatigue (De Vries et al. 1982; Hill

1993; Bishop et al. 1997). Furthermore both critical power (De Vries et al. 1982, 1987;

Jenkins and Quigley 1990) and critical speed (Highson et al. 1984) have been shown to be

unreliable in calculating the highest work rate that may be sustained for a prolonged period

of time.

With much controversy surrounding critical speed and power, it is surprising that it is

widely accepted as being the demarcation point between the heavy and severe intensity

domains (Poole et al. 1998; Hill and Smith, 1999). It is assumed to coincide with a

maximum steady state in both blood lactate and V02 (Ward 1999), although there is

evidence to the contrary (McLellan and Cheung, 1992; Billat 1998a).

The physiological significance of the critical speed / power or fatigue threshold has been

investigated, with particular reference to the behaviour of V02. Poole et al. (1988, 1990)

proposed that for any exercise intensity above critical power, the slow component of V02

will drive V02 to Vo-max instead of to a delayed steady state as would be the case in

exercise intensities that fall below this threshold. The hyperbolic intensity-time to

exhaustion relationship has critical power (CP) as its asymptote. The relationship between

intensity and time to reach Vo-max has also been shown to be hyperbolic, yielding an

asymptote that has been termed (CP \ ) (Rowell et al. 1996). This second parameter (CP \ )

theoretically represents the highest work rate that will not result in V02max being

attained, and therefore the highest work rate where a steady state may be achieved. It has

been demonstrated that CP and CP \ are equal in both cycling (Hill and Smith 1999) and
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running (Hill and Ferguson 1999). This has been interpreted as strong evidence that

critical power is a good measure of the threshold between heavy and severe intensity

exercise, and that all exhaustive exercise performed above this threshold will result in the

attainment of V o-max (Hill and Smith 1999).

Billat et al. (1998a) demonstrated that it is possible for highly trained runners to reach a

steady state in \102 above their critical speed. Highly trained runners have also been

shown to incur no \102 slow component above critical speed (Billat et al. 1998b) when the

slow component was calculated as the difference between the final \1 02 and that at 3

minutes. However, Billat et al. have more recently used a three-component model to

describe V 02 kinetics in the severe intensity domain and demonstrated a slow component

of a small magnitude (Billat et al. 2000). There does though appear to be some question

over the assumption that \102 will reach \102max for all exercise intensities above critical

speed, particularly in highly trained populations.

The point that represents the change from heavy to severe intensity exercise is difficult to

identify. This thesis was concerned with exhaustive exercise of a short duration however.

The longest exercise transitions produced fatigue in approximately 8 minutes. Therefore

the term severe was used to describe such transitions, since they must have been performed

above MLSS in order for fatigue to occur in such a short duration.

2.3.6 V02 kinetics in short duration exhaustive exercise

Surprisingly few investigators have focused on the V02 response to exhaustive square

wave exercise of a short duration. Much of the research has focused on very short

duration, all out exercise (Katch 1973; Stevens and Wilson 1986; Kavanagh and Jacobs

1988), rather than the more constant intensity efforts that categorise athletic events such as

middle distance running (Brandon 1995). In this exercise \102 required might exceed

V02max and the third phase in \102 kinetics (slow component) may not have sufficient

time to become manifest (Whipp 1994a).
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It has been established that \102 kinetics are intensity dependent (Whipp, 1994a, 1994b).

They are generally expressed as a mono-exponential function in such high intensity

exercise, since no slow component will be present (Billat et al. 2000). However, when the

V02 required is greater than V02max modelling the response is problematic. In moderate

and heavy intensity exercise \102 will attain a steady state, providing the asymptote for the

exponential function. In exhaustive exercise of a short duration this cannot occur, and the

experimenter must decide whether this exponential should be expressed as relative to V02

required (Margaria et al 1965), V o-max (Hughson, 1978), or some other asymptotic value.

During the modelling process the asymptote can be constrained to a given value (i.e. V02

required or \102max) or simply allowed to establish its own value from the data set. This

is an important consideration, not only for the establishment of the asymptote, but also for

the evaluation of the speed of the \102 response. If the data set is modelled with the

asymptote constrained to a V02 requirement in excess of V02max, it will display a greater

orthan if unconstrained. Therefore caution should be exercised if such a constraint has been

used, and conclusions have been drawn regarding the speed of the \102 response. In any

case such a constraint is problematic since it is impossible to accurately calculate the V02

requirement by extrapolation of the V02- WR regression (Ward 1999).

The first attempt to examine the V02 response to constant intensity exercise of a short

duration was by Astrand and Saltin (1961). Oxygen uptake was measured during

exhaustive cycling of between - 2- and 8 minutes duration in five subjects. Expirate was

collected into Douglas bags over periods of between 20 and 60 seconds. Astrand and

Saltin (1961) reported that in a motivated subject 2 minutes exhaustive constant intensity

cycling would give a \102 that would be close to Vo-max. However, it is apparent that in

some of their subjects \102 reached a plateau below its maximum in the shortest duration

tests (2 - 3 minutes).

The \/02 kinetics in short duration exhaustive exercise (30-180 seconds) were further

investigated by Margaria et al. (1965). Here a mixing chamber system was used in order

to provide more data points for such short tests. Data were averaged every 10 - 15 seconds

and the response was modelled. A semi-logarithmic function with V02 required (above

V 02max) as its asymptote was used. The results of this modelling suggested that \102
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kinetics were unchanged across all intensities with a half time of approximately 30

seconds. This would equate to a 't of about 43 seconds. There appear to be inconsistencies

in this research however, in that Margaria et al. reported v02 values that were higher

(18%) than the reported V o-max in the most severe intensity exercise (Hughson et al.

2000).

A similar approach to quantifying the V02 response to short duration exhaustive exercise

was used by Katch (1973), although in this case the exercise was a 1 minute 'all out' effort

rather than a constant intensity exercise bout. Unlike Margaria et al., Katch (1973)

considered that V o-max necessarily represented the asymptote. Katch demonstrated a

faster average half time for V02 (18.4 seconds) than reported by Margaria et al. (1965).

This equates to a t of 26.6 seconds and would result in achievement of V02max in about 2

minutes. It should be remembered that this work rate would not be sustainable for 2

minutes, however. In comparing these findings to those of Margaria et al. (1965), it should

be remembered that different mathematical models were used, and the faster time constant

demonstrated by Katch (1973) will be the result of referencing the V 02 response to

V02max rather than to the ~02 required. Gas samples were only collected every 20

seconds however and so whilst Katch (p. 200) described the model fit as "convincing", it

should be realised that the model was fitted to just 3 data points and that the first of these

would have been largely representative of the Phase-l response.

The problem of whether V02 kinetics should be referenced to V02max or the "02

required was recognised by Hughson (1978). In that study subjects cycled to exhaustion at

a power equivalent to 110 - 120% of V02max and the data were fitted with two models

that differed in the asymptotic value (Vo-rnax v "02 required). After 3 minutes of cycling

the average V02 for the seven subjects had reached only 79.5% of the V02 required

(approximately 90% V02max). Hughson (1978) calculated the halftime for the V02

response to be 36.6 seconds if referenced to Vo2max, and 53.4 seconds if referenced to

V02 required (r of 52.8 and 77.1 seconds respectively). When V02 kinetics were

referenced to Vo-max Hughson (1978) concluded, as had Katch (1973), that the response

was well described as a single exponential term. However, Hughson considered that a

single exponential model did not fit the data if referenced to "02 required.
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Hughson et al. further considered the issue of how to model data at such high intensities in

a later study in which subjects completed exhaustive bouts of cycling at 57, 96 and 125

%V02max (Hughson et al. 2000). Data from the 57 %V oimax tests (assumed to be

moderate intensity exercise) were modelled using a two-component exponential model.

Data from the two severe intensities were modelled in two ways: first as a three-

component exponential model; and second as a semi-logarithmic model with V02 required

as its asymptote. When the data were modelled using the exponential functions the V 02

kinetics of the primary phase (phase-2) were shown to be faster at the severe intensities.

Williams et al. (1988) had drawn a similar conclusion. However, since a three-component

model was used in the severe intensity tests, t was referenced to an asymptote that was

below Vo-max. This resulted in the apparent speeding of kinetics. Arguing that such an

asymptote must be as a result of inadequate 02 delivery and did not reflect where the

response was originally tending to, Hughson et al. suggested that V02 kinetics should not

be modelled in this way. Therefore Hughson et al. applied a semi-logarithmic model (as

previously applied by Margria et al. 1965) that was referenced to V02 required. Using this

model Hughson et al. (2000) demonstrated a slowing of V02 kinetics at intensities close to

or above V02max. The model used, and more specifically whether the asymptote is

constrained to the V02 required, will have a considerable impact on the description of the

response. It should also be noted that the semi-logarithmic model requires the accurate

prediction of the V02 required; and, as previously discussed, this is not possible (Bangsbo

1996a).

Hill and Stevens (200 I) also attempted to answer the question of whether V02 kinetics

should be referenced to the V02 required in the severe intensity domain. In this study data

were modelled as an exponential function firstly using the complete data set and secondly

using just the initial 45 seconds of data. Whilst the model using all data points reached an

asymptote that was no different from V02max, the model of the first 45 seconds produced

an asymptote that was no different from the predicted V02 required (calculated from sub

AT exercise). This study gives strong support to the argument that V02 kinetics should be

referenced to v02 required. The authors concluded that V o-max prevents the full
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response from occurring and should not be considered the asymptote of the exponential

response.

There were several limitations to the study of Hill and Stevens (2001) however. The

phase-l data were removed after visual inspection of the Y02 data and breath-by-breath

data were modelled. The (mean ± SD) phase-l duration was 17 ± 4 seconds. It appears

that the initial 45 seconds of data may have been modelled on fewer than 30 seconds of

breath-by breath data points on average. Furthermore, the exercise bouts were only

performed once (rather than averaged over several repeated transitions). It is likely that

the level of noise would be high (Lamarra et al. 1987) although the nature and magnitude

of breath-by-breath noise has never been investigated in high intensity exercise. The SD of

the asymptote for the first 45 seconds of data was also large (64% of the magnitude of the

Y02 response itself). These factors would make it very unlikely for a difference to be

shown between the asymptote and the predicted Y02 required. Finally, whilst Hill and

Stevens claimed that all subjects were involved in physical fitness programmes, the

aerobic ability of the subjects was limited (Y02max of37 ± 11 ml.kg'lrnin").

In a review of V02 kinetics across the range of exercise intensity domains, Whipp (1994a)

argued that V 02 will always tend towards the Y02 required when this is above Vo-max,

Whipp stated that the mono-exponential response would be 'cut off when \;02 reached its

maximum rate, or in very short duration exhaustive exercise fatigue may occur before

V 02max is reached

That short duration exhaustive exercise would always result in the achievement of

V02max was supported by Williams et al. (1988), who exercised subjects at 95, 100, 105

and 110% of the speed at Vo-max on the treadmill. The mean time to exhaustion of these

tests ranged from 126 seconds for the highest intensity to 301 seconds for the lowest. Peak

V02 from these exhaustive constant intensity tests was not different to V o-rnax, as

calculated from an incremental test, supporting the view of Whipp ( 1994a, b) that all such

intensities would result in the achievement of \;02max. However, contrary to the findings

of Margaria et al (1965), Williams et al. (1988) found \;02 kinetics to be affected by

exercise intensity. The highest exercise intensity resulted in a faster time constant (r).
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Williams et al. used a single exponential model that was not constrained to the V02

required however. The view that all severe intensity exercise will result in V 02max was

reinforced by a similar study by the same group of researchers (Hill and Ferguson 1999).

Again no difference in V02peak was found between exhaustive constant intensity exercise

at intensities between 95 and 110% of the speed at V02max and that measured during an

incremental test (Hill and Ferguson 1999). A similar result was demonstrated in children

with no difference found in V02peak between an exhaustive incremental treadmill test and

three severe intensity efforts (Rowland 1993).

The idea that exhaustive exercise of a very short duration results in V02 rising in an

exponential fashion towards the V02 required but being 'cut off' at V o-max (Whipp

1994a, b) has much support (Margaria et al. 1965; Williams et al. 1988; Hill and Ferguson

1999). However, it should be recognised that only Margaria et al. (1965) and Hughson et

al. (2000) have actually modelled this response referenced to the V02 required.

Furthermore, the study of Margaria et al. has received criticism for possible technical

limitations in the data acquisition (Hughson et al. 2000). The data of Margaria et al.

(1965) were certainly modelled based on very few data points since sampling was at 10-15

second intervals and the majority of the tests lasted 1minute or less. However there are

also other published data that question the assumptions made (Whipp 1994a) about V02

kinetics in severe intensity exercise.

The data of Astrand and Saltin (1961) that have been discussed previously do not wholly

support these assumptions. It is apparent from this study that some of the subjects, during

2-3 minutes of exhaustive cycling, demonstrated a plateau in V02 that was below

V02max. Subjects performing exhaustive cycling at 110-120% V02max have also been

demonstrated to reach only 90% of V osnax after 3 minutes of exercise (Hughson 1978).

If these data cast some doubt over the assumption that V02 is tending to the V02 required,

data published by Spencer et al. (1996) and Spencer and Gastin (2001) clearly demonstrate

a very different response to that suggested by Whipp (1994a).

Spencer et al. (1996) published a study on trained sprinters and middle distance runners in

which they evaluated the relative contributions of the aerobic and anaerobic systems, using
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the accumulated oxygen deficit method, in the 400, 800 and 1500 m events. Oxygen

uptake was monitored on a breath by breath basis as subjects ran on a motorised treadmill

at speeds equivalent to their best track times. The sprint trained runners ran only the 400

m trial, whereas the middle distance runners were required to run both the 800 and the

1500 m trials. The results of the 800 and 1500m trials were striking. The mean V02

required for the two trials was 112% V02max (800 m) and 102% Vo-max (1500 m), yet

mean graphs of the V 02 response show a clear plateau of V 02 below V02max in both

trials. Peak oxygen uptake was lower in the 800 than the 1500 m trial (-91 v -93

% Vo-peak), In both trials a clear plateau was apparent.

Spencer et al. (1996) also highlighted the intensity dependence of V02 kinetics.

Comparing % V o-max reached after 30 seconds of exercise in the three trials, they

assessed the speed of the aerobic systems to respond to increasing energy demand. Oxygen

uptake was found to be at 94, 69 and 59% Vo-max respectively for the 400, 800 and 1500

m trials. The sprint-trained group, unlike the middle distance runners, was able to get very

close to \!02max in their 400 m trial, despite this being the shortest duration. It should be

recognised that the sprinters were working at a much higher intensity, as expressed relative

to \!02max, than the middle distance runners (170 vs. 112 and 102 %).

The work of Spencer et al. (1996) and Spencer and Gastin (2001), using a specifically

trained population, questions two major assumptions regarding the kinetics of V02 in high

intensity exercise: first that \! 02 will tend in an exponential fashion to the \!02 required

(Whipp 1994a); and second that all intensities above critical speed will result in the

achievement of \!02max. Spencer et al. did not comment on the significance of the V02

response as the focus of the studies was quantification of the anaerobic contribution to the

exercise. An important question remains then, as to whether Spencer et al. demonstrated a

clearer plateau in V 02 (than had Astrand and Saltin (1961», because of the difference in

the mode of exercise or the difference in the level of aerobic training and capability of the

subjects used.

In modelling the \!02 response to short duration exhaustive exercise, as with heavy and

severe intensity exercise the method of mathematical modelling used varies considerably
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between researchers, despite such a small amount of research being conducted in this area.

As previously discussed controversy exists over whether the response should be modelled

as tending to Vo-max (Williams et al. 1988) or the \;02 required (Hughson 2000).

Curiously, even though the 'classic' view of \;02 kinetics in this intensity domain would

describe an initial delay phase followed by the second primary phase that would take V02

to V o-max (Whipp 1994a), no researcher has used a two-component model to describe the

response. The use of a two-component model has even been described as "inappropriate"

(Hughson 1978 p. 43) based on the assumption that the \;02 response should be modelled

as tending to the \;02 required.

Those modelling data in this domain (with the exception of Hughson et al. 2000) have

chosen not to model the initial phase of V02 kinetics. Rather they have chosen to

incorporate this rise in \;02 into a single exponential describing the second phase. The

same two phases are regularly modelled as two separate exponential parameters in

moderate and heavy intensity exercise (Barstow and Mole 1991; Barstow et al. 1996; Jones

and McConnell 1999), yet rarely is this first component incorporated into models of short

duration exhaustive exercise. This anomaly is highlighted in a study where subjects

exercised at 95, 100, 120 and 140% of the speed at which V o-max was achieved in an

incremental test (Billat 2000). In the 100, 120 and 140% trials the data were modelled

using a single exponential (including no 0) to describe the whole response, whereas a

three-component exponential (incorporating separate exponential functions to describe

phase-l and the slow component) was used to describe the 95% trial (Billat 2000). Such

an approach, whilst mirroring what has been used in other studies, makes the comparison

between the exercise intensities difficult. The intention here is not to suggest that the

Phase-l response should be included into the model; it is merely to stress the inconsistency

of approach (even within a single study). The physiology surrounding this phase is poorly

understood, there is a lack of data points early in the transition to exercise, and there is no

reason to assume that the exponential model is appropriate for this purpose (Whipp and

Ozyener 1998). Therefore, it is more appropriate to model phase-l simply as a delay.
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2.4 Physiological mechanisms underlying V 02 kinetics

2.4.1 Evidence for an oxygen delivery limitation

At the onset of exercise the oxidative systems are relatively slow to respond and anaerobic

systems must meet the initial demand for ATP re-synthesis (Boutellier et al. 1984). There

is no consensus on exactly which factors determine the V02 response at the onset of

exercise, with investigators arguing for both central (oxygen delivery) and peripheral

(oxygen uptake at the working muscle) limitations to oxygen uptake (Roca et al. 1989;

Wagner 1991,1996; Poole and Richardson 1997; Richardson 1998; Di Prampero 1999;

Grassi 2001; Hughson et al. 2001a). There is a large body of research that has attempted

to identify the underlying physiological mechanisms that may limit and determine V 02 at

the onset of exercise (Tschakovsky and Hughson 1999). Research has sought to

investigate the factors responsible for both the primary (Phase-2) V02 response (Walsh

1992) and the slow component of V02 that is manifest in heavy and severe intensity

exercise (Gaesser and Poole 1996). The Phase-2 response is representative of the full

response in moderate intensity exercise and also potentially in very high intensity exercise

where the sustainable duration does not allow for a third phase to be manifest.

The Phase-2 V02 response is generally considered to be mono-exponential in nature and

the asymptote of this response is a linear function of work rate (Walsh 1992). The

deviation from linearity seen above the AT is caused by the increasing magnitude of the

slow component (Zoladz et al. 1998). Furthermore, Phase-2 has been shown to be

representative of muscle V02 (Knight et al. 1992). This review will primarily examine the

potential limitations to this phase.

The first phase of V 02 kinetics is regarded as essentially a delay phase that represents the

venous transit time from the working muscle to the lung (Whipp 1994a). Despite this

delay however V02 and V C02 (as measured at the mouth) have been shown to increase

rapidly during this first phase. These changes are thought to be due to an increased

cardiac output resulting in an increased pulmonary blood flow (Whipp and Ward 1990).

The cardiodynamic dependence of V02 at the onset of exercise was recognised early in
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the 20th century (Krogh and Lindhard 1913) and has received support from recent studies.

It has been shown (Cumin et a1.l986) that there are proportional increases in pulmonary

blood flow and V02 during this initial phase, and that V02 increases at the onset of

exercise even when V E is constrained to remain at resting levels (Weissman et al. 1982).

It has also been shown that V02 increases more slowly when stroke volume (and

therefore presumably Q) is above the normal resting level prior to exercise (Weiler-

Ravell et al. 1983; Whipp et al. 1982a), further supporting this hypothesis. A recent study

examining the V02 kinetics of heart transplant patients demonstrated an abnormally slow

Phase-I, due to the patients' inability to rapidly increase cardiac output at the onset of

exercise (Mettauer et al. 2000).

Casaburi et al. (1989a) have presented evidence that questions the apparent consensus on

the phase-1 V 02 kinetics. The study questioned the long standing assumption (Krogh and

Lindhard 1913) that increases in V02 (measured at the mouth) could not be due to a

change in the circulating blood gas concentrations because of the transit delay from the

working muscle. Casuburi et al. (1989a) showed a decrease in pulmonary-arterial oxygen

concentration during this initial phase. The authors proposed that this increase in V02

was due to washout from relatively underperfused areas. Further support for this

hypothesis came from a study that showed no change in pulmonary-arterial blood gases

during this phase when the exercise bout was preceded by light exercise rather than a

period ofrest (Casaburi et al 1989b).

Whilst the increase in V02 that occurs during phase-1 does not represent oxygen

consumption at the working muscle, it is important to recognise that V 02 does increase

during this initial phase. Whether or not the initial phase is modelled may affect the

calculated parameters for the second phase. Phase-1 is often constrained to an

exponential fit (as is used for the following phases) (Barstow and Mole 1994; Barstow et

al. 1996; Jones et al. 1999). However, this has never been demonstrated to be exponential

(Whipp and Ward 1990) and has even been shown not to be exponential in some exercise

transitions (Whipp and Ozyener 1998).
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The principle phase of V02 kinetics that represents oxygen consumption at the working

muscle is Phase-2. Oxygen consumption measured at the mouth has been shown to

correspond to muscle V02 during this second phase (Knight et al. 1992; Poole et al.

1992). Unlike the Phase-l response this second phase has been shown to follow first

order exponential kinetics (Miyamoto et al. 1982; Gaesser and Poole 1996). This is

perhaps surprising considering the number of complex reactions and steps in the oxygen

pathway from atmosphere to mitochondria (Wagner 1992). That the primary V02

response follows first order exponential kinetics and also has a linear relationship with

work rate suggests that there may be a single rate limiting step in this process (Walsh

1992). Debate has long existed over whether this is an oxygen transport limitation

(Hughson 1990) or a limitation in the ability of the muscle to use oxygen (Whipp and

Mahler 1980).

The argument for a central limitation to V02 kinetics has largely arisen from studies

showing a change in time constant (r) with a change in the inspired fraction of O, (F[02)

or following periods of training and detraining. A decreased F[02 has been shown to

result in a slowing of V02 kinetics as demonstrated by an increased r (Springer et al.

1991; Walsh and Banister 1995; Engelen et al. 1996). Conversely an increased F[02 has

resulted in a decreased t (Pederson 1983; Walsh and Banister 1995; McDonald et al.

1997). However this effect has only been demonstrated in whole body exercise above the

AT where differences in the overall response could be due to a change in the slow

component. Indeed some studies have shown no difference in the V02 response in either

hypoxic or hyperoxic conditions (Linnarson et al. 1974). Gutierrez et al. (1989), using

an isolated rabbit hind-limb preparation, showed that reduced oxygen transport resulted in

decreased V02 and an increase in anaerobic ATP resynthesis via the anaerobic glycolytic

and per systems. However, changes in the response as a result of changes in the inspired

02 fraction might also support the argument for a peripheral limitation, since arterial P02

will dictate the mitochondrial P02 required for adequate O2 flux (Walsh 1992).

Patient populations suffering from disorders that result in an impaired capacity for oxygen

delivery provide further evidence for a central limitation. Heart transplant (Mettauer et al.

2000) and peripheral arterial disease (Bauer et al. 1999) patients have a slow V02
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response. A peripheral compensation, resulting in an increased arterio-venous difference

in O2, has been shown in patients with chronic heart failure (Katz et al. 2000), however.

To examine whether oxygen transport might indeed be the limiting factor in V 02 kinetics,

other investigators have sought to compare the various components of oxygen delivery to

the overall v02 kinetics. A close relationship has been shown between V02 and cardiac

output (Cummin et al. 1986), and the oral ingestion of a beta-blocker to slow heart rate

during exercise is also associated with a slowed v02 response (Hughson and Smyth 1983;

Peterson et al. 1983). Ingestion of beta-blocker has also been shown to result in a

compensatory arterial vasoconstriction to preserve blood pressure thus potentially limiting

blood flow (Pawelczyk et al. 1992), but only in severe intensity exercise (Buckwalter et

al. 1997, 1998). When heart rate and total cardiac output have been examined in healthy

subjects, both have been shown to demonstrate a faster response than that of V02

(Cerretelli et al. 1966; Davies et al. 1972; Linnarson 1974; Eriksen et al. 1990; De Cort et

at. 1991). Furthermore, it has been shown that it is possible to reach V02max while

cardiac output is still increasing (Faulkner et al. 1971). Phase-2 V02 kinetics in children

were shown to be no different to those of adults adults despite the children's slower heart

rate kinetics (Cooper et al. 1985). Babcock et al. (1994) also demonstrated an increased t

as a function of age; but a similar relationship was not found with HR kinetics. Heart rate

and cardiac output are therefore unlikely to dictate the speed of the primary V02

response.

Further evidence to support a vascular limitation comes from the effect that a change in

body position during exercise has on V02 kinetics (Hughson et al. 1991). The onset of

exercise has been shown to result in an initial fall in peripheral resistance and arterial

pressure, although these parameters return to normal levels within 30 seconds (Sprangers

et al. 1991). These vasodilatory changes occur in unison with abrupt increases in cardiac

output (Loepky et al. 1981), and the combined effect is an increase in oxygen delivery at

the onset of exercise. When exercise in the upright position is compared to supine

exercise, both blood flow to the exercising legs and V02 display slower kinetics in the

supine position (McDonald et al. 1998), despite an increased cardiac output in this

position (Hughson et al. 1993). However there was a smaller femoral arterial diameter in
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the supine position, limiting the rate of blood flow at the onset of exercise; this diameter

was still reduced after six minutes of exercise (McDonald et al. 1998).

It should be recognised that oxygen delivery to the muscle is dependent on the arterial

concentration of 02 which is itself dependent on other factors such as haemoglobin

concentration (Kurdak et al. 1995), as well as cardiac output. Raynaud et al. (1973) have

shown not only that muscle 02 delivery has a faster '\;02 response than that measured at

the mouth but also that the O2 concentration in venous blood returning to the lungs is

highest during the first 40 seconds of exercise. Again this would suggest that 02 delivery

is not the controlling mechanism.

The muscle capillary bed where 02 will be unloaded from the blood is another potential

site for the regulation of '\;02 kinetics (Roca et al. 1989; Walsh 1992). Blood flow

measurements from electronically stimulated canine muscle suggest that blood flow to the

muscle can respond faster than heart rate at the onset of exercise, making this an unlikely

limitation (Honig et al. 1980). Muscle capillarity (Gollnick 1966), but not muscle blood

flow (Holloszy 1973), is enhanced following a period of endurance training and '\;02

kinetics are accelerated by such an intervention (Hickson et al. 1978; Powers et al. 1985).

However, the O2 extraction may be enhanced through the increased transit time the

increased capillary density would allow, although Richardson et al. (1993) showed no

transit time limitation in single leg exercise even with very high muscle blood flow (385

ml.min'l.l Oug").

2.4.2 Evidence/or an 02 uptake limitation to the primary V02 response

Alternative hypotheses exist however arguing that the contractile activity of the muscle

cell rather than 02 availability determines the rate of aerobic ATP re-synthesis (Walsh et

al. 1992; Richardson et al. 1999). Sahlin et al. (1988) found that the rate of change in a

stepwise increase in exercise intensity (15 minutes gradual increase to achieve the

exercise intensity or an immediate change) had no effect on the accumulated oxygen

deficit incurred (and therefore presumably no effect on '\;02 kinetics). They concluded

that the rate of aerobic metabolism was governed by the metabolic status of the working
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muscle, particularly increased ADP and Pi levels (as shown by biopsy), not by any delay

in O2 transportation since anaerobic energy production was unaffected by the rate of

change in work rate. The potential peripheral regulators of this inertia in oxidative

metabolism are of course numerous. There are many complex reactions underlying

cellular respiration (Hultman et al. 1990; Greenhaff and Timmons, 1998) and it is beyond

the scope of this review to identify them all. The ratios of ATP/ADP and NAD+/NADH

have both been suggested as potential regulators (Wilson 1994), and more recently the

pyruvate dehydrogenase (PDH) complex reaction has been suggested as a possible

limitation (Timmons et al. 1996). Connett and Honig (1989) failed to demonstrate a

major regulatory role for ADP, however.

The peripheral mechanism that has received the most widespread support in the literature

is the regulation of \102 via the PCr shuttle (Sweeney 1994). The PCr system itself has an

important role to play in anaerobic energy production at the onset of exercise (Maughan et

al. 1997). The per shuttle hypothesis suggests that it may also provide a vital link

between the site of ATP production (mitochondria) and the site of ATP usage (myofibrils)

(Sweeney 1994). Reciprocal changes in the levels of per and creatine at both sites

combine to regulate mitochondrial respiration. At the onset of exercise the decrease in

per and increase in creatine at the myofibrils causes an increased flux of creatine to the

mitochondria resulting in an increased ATP regeneration. This increased ATP generation

will cause an increased 02 uptake resulting in a decreased mitochondial P02, increasing

the pressure gradient between blood and mitchondria, and therefore increasing O2 flux

into the muscle cell.

A relationship between the reduction in cellular PCr and ATP concentrations and the

magnitude of the oxygen deficit has long been recognised (Knuttgen and Saltin, 1972).

Oxygen uptake kinetics have also been shown to be slowed when per stores are reduced

(Paganelli et al. 1989). If it is accepted that the per shuttle is the key regulator in phase-2

\102 kinetics it should be expected that per itself should exhibit a similar time course to

\102. Furthermore, a linear relationship should exist between the level of per

degradation and the rate of muscle oxygen consumption.
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Advances in nuclear magnetic resonance (NMR) spectroscopy have enabled the

investigator to examine the time course ofPCr degradation in tandem with the

measurement of V02 (Whipp et al. 1999). Such research has revealed not only that PCr

demonstrates first order exponential kinetics as does V02 but also that the time course of

the response is similar for PCr and V02 for moderate intensity exercise (Mole et al. 1985;

Meyer 1988; Marsh et al. 1993; McCreary et al 1996). That the relationship between the

level of PCr degradation and the rate of O2 consumption is a linear one has been

demonstrated for in vivo animal muscle (Mahler 1985), in situ animal muscle (Meyer

1988), and exercising muscle in man (Linnarson et at. 1974). These studies suggest that

O2 flux will not occur without PCr degradation and that the rate of O2 flux is proportional

to the rate of PCr degradation (Walsh 1992).

There is compelling evidence therefore for both a central (blood flow) and a peripheral

(PCr mediated) control of the primary kinetics of "02. However, it should be recognised

that the dominant factor in this control may depend on the intensity and the nature of the

exercise (particularly the amount of muscle being exercised) (Di Prampero 1985).

2.4.3 Potential mechanisms of the V 02 slow component

Of the possible mechanisms responsible for the slow component, lactate has received

probably the most attention, since the slow component itself has been shown to be closely

tied to the lactate response (Whipp and Wasserman 1986; Barstow et al. 1993).

Reductions in end exercise lactate concentrations following endurance training coincide

with a reduction in the magnitude of the slow component (Casaburi et al. 1987) and Ryan

et al. (1979) reported an increased exercising V02 after L-(+)-lactate infusion.

An increase in V 02, it has been suggested, might be due to a lactate induced increase in

glueo/glyconeogenesis, although the impact of this on metabolic rate is likely to be small

(Gaesser 1994). A perhaps more plausible hypothesis is that the slow component is

mediated by a lactic acidosis mediated Bohr effect, allowing a greater aerobic contribution

to metabolism (Wasserman et al. 1991; Stringer et al. 1994). This possibility is supported

by a high correlation between the magnitude of the slow component and the decrease in
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haemoglobin saturation during cycle exercise (Belardinelli et al. 1995). Whilst such an

hypothesis may explain the delayed onset of the slow component, it does not explain why

there appears to be an increased V02 required in heavy intensity exercise over and above

that predicted from a sub AT V02- WR relationship (Zoladz et al. 1995; Jones et al.1999;

Morton and Billat 2000).

Steed et al. (1994) demonstrated a slow component in treadmill running without a

significant rise in blood lactate concentration. Barstow (1994) demonstrated that femoral

vein lactate levels were elevated in advance of the manifestation of a slow component

suggesting no functional coupling of the two. Finally an increase in lactate concentration

due to either L-(+)-lactate or adrenaline infusion was found not to elevate V02 in canine

muscle (Gaesser 1994; Gaesser et al. 1994; Poole et al. 1994b). This suggests that the

relationship between the slow component and blood lactate is not one of cause and effect.

Adrenaline has also been suggested as a possible mediator of the slow component (Gaesser

and Poole 1996). Whilst the threshold behaviour of adrenaline is similar to that of lactate

(Turner et al. 1995; Dickhuth et al. 1999; McMorris et al. 2000) a causative link does not

seem to exist with the slow component. Resting V 02 is elevated by adrenaline infusion

(Staten et al. 1987). but exercise V02 is unaffected despite a large increase in adrenaline

leve Is (Gaesser et al. 1994).

It is apparent that there will be an oxygen cost for the work of the respiratory muscles

during exercise and that the increasing ventilation required at higher exercise intensities

will increase total V02 (Bartlett et al. 1958). Since ventilation will increase during the

period where a slow component is incurred there will be an increase in the oxygen cost of

this respiratory work (Hagberg et al. 1978). It follows that there must be some

contribution therefore to this excess V02 from respiratory muscle work, since V E

typically increases by as much as 60 L.min-1 between the third minute and the end of

severe intensity exercise (Poole et al. 1991). However, when the additional O2 cost of this

respiratory work is examined (Aaron et al. 1992), it is clear that this will only account for

approximately 18-23 % of the excess V02 of the slow component (Womack et al. 1995;

Gaesser and Poole 1996).
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There is evidence that the source of the majority of the V02 slow component is the

working (skeletal) muscle (Mole and Coulson 1985; Vollestad et a1. 1990; Poole 1994).

Poole et a1. (1991) made simultaneous measurements of both leg and pulmonary V02

during heavy intensity cycling, and showed that 86% of the additional rise in V02 beyond

the third minute of exercise could be attributed to a rise in leg V02. It is established that

the majority of this excess V02 originates in the working musculature and is peripheral in

nature (Poole 1994). The exact mechanism responsible has not been established but the

most widely accepted hypothesis involves the recruitment of less efficient type II muscle

fibres (Borrani et al. 2001; Lucia et al 2002a). Such a hypothesis might explain both the

excess V02 and the delay in onset of the slow component (Whipp 1994a; Poole et al

1994a; Barstow et a1. 1996; Billat 2000). The question of the mechanism responsible for

such a shift in fibre recruitment pattern remains unresolved. However, it has been

suggested that a decreasing pH, whilst having little effect on mitochondrial respiration,

might affect the contraction of working muscles and result in the recruitment of less

efficient units (Willis and Jackman, 1994).

2.5 Factors shown to influence the V02 response to a given exercise intensity

2.5.1 The effect of prior exercise on V02 kinetics

It has been demonstrated that V02 kinetics are faster for heavy intensity exercise if the

exercise is preceded by a bout of heavy intensity exercise (Gaushe et a1. 1989; Gerbino et

a1. 1996). The use ofa mono-exponential model (as used in these studies) has been

criticised (Morton 1987; Burley et a1.2000) since it does not discern between the primary

and Phase-3 responses. Prior moderate intensity exercise does not accelerate V02

kinetics above that seen from rest (Gerbino et al. 1996), however. Furthermore, the

intensity of prior exercise was found not to affect the response to moderate intensity

exercise (McDonald et al. 1997). There are potential performance benefits of prior heavy

intensity exercise, as it may reduce the overall 02 cost of the exercise (Gerbino et a1.

1996; McDonald et a1. 1997), and perhaps therefore spare the anaerobic capacity.
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However, it is unclear whether prior exercise improves running (Andzel 1978) or

swimming (Houmard et a1. 1991; Mitchell and Huston 1993) performance (as shown by

changes in performance time or time to exhaustion).

Gerbino et a1. (1996) and McDonald et a1. (1997) hypothesise two possible mechanisms

responsible for the effect of supra AT exercise on the V02 kinetics for a subsequent bout

of heavy intensity exercise. Since the speeding of V02 kinetics is seen only if the prior

exercise is performed above the AT, both proposed mechanisms involve the effects of

metabolic acidosis. First, 02 delivery may be decreased due to vasodilation and an

already elevated blood flow; second, an acidemia induced Bohr effect (rightward shift of

the oxy-haemoglobin dissociation curve) may result in an improved diffusion between

capillary blood and mitochondria. The preferred explanation of these authors is that the

effect was due to a blood flow limitation since the increased acidosis had no effect on a

bout of moderate intensity exercise (Gerbino et a1. 1996). However this does assume that

a different mechanism determines the V02 response in different intensity domains. That

is it assumes that 02 delivery is only limiting for supra AT exercise intensities.

Burnley et a1. (2000) and Bearden and Moffatt (2001 c) revisited the work of Gerbino et

a1. (1996) and McDonald et a1. (1997). Both Burnley et a1. and Bearden and Moffatt,

challenged the conclusion that the primary V02 response to heavy intensity exercise was

faster following prior heavy intensity exercise (Gerbino et a1. 1996). Burnley et a1. (2000)

replicated the study of Gerbino et a1. (1996), but modelled the data using a three-

component exponential model in order to separate the phase-2 from the phase-3 response.

McDonald et a1. (1997) had already modelled similar data in such away, but had been

criticised (by Burnley et a1.) for analysing the data as an overall mean response time

(MR T), which does not distinguish between the primary response and the phase-lor slow

component responses (Burnley et a1.2000). The MRT is the time taken to reach 63% of

the overall response (effectively the sum of the delay(s) and the constant(s) for an

exponential phase or the whole response). Modelling of each phase of the V 02 response

separately, suggested that the apparent speeding of V02 kinetics with prior heavy

intensity exercise, was not due to acceleration of the phase-2 response. The apparent

acceleration of the overall response was rather from a reduction in the magnitude of the

slow component (Burnley et a1. 2000; Bearden and Moffatt 200 Ic). This questioned the
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assumption that the acidosis from prior heavy exercise (improved muscle blood flow and

Bohr effect) alters the primary kinetics in the first few minutes of exercise (Burnley et al.

2000).

Simultaneous sampling of venous blood and measurement of blood flow using Doppler

ultrasound have been used to further investigate the mechanisms underlying the changes

in \102 kinetics in a second bout of heavy intensity exercise (McDonald et al. 2000).

Both muscle blood flow and \102 were elevated in the first 30 seconds of a second bout of

handgrip (not whole body) exercise. This study, in contrast to the findings of Burnley et

al. (2000), clearly demonstrated a link between an improved muscle blood flow and

accelerated \I02 kinetics. These contrasting results have lead to debate between these

two research groups (Jones et al. 2001; Hughson et al. 2001 b).

Oxygen uptake kinetics are faster during a step change in exercise intensity (i.e. from a

low to a higher work rate), compared to exercise from rest (Diamond et al. 1977; Hughson

and Morrissey 1982). These two studies drew contrasting conclusions about the

mechanism of this effect. Hughson and Morrissey (1982) suggested it was due to

improved 02 transport, whilst Diamond et al. (1977) suggested an improved 02 uptake.

Yoshida et al. (1995) sought to answer this question by performing exercise-to-exercise

transitions of single leg exercise, but performed the second bout of exercise with either

the same leg or the other leg. Oxygen uptake kinetics were speeded in the pre-exercised

leg but not in the other despite a similar increase in cardiac output. Itwas concluded that

the speeding of kinetics was due to an improved 02 uptake, due to local metabolic

conditions, and not an improved 02 transport (Yoshida et al. 1995).

Several authors have manipulated acid base status to investigate its effect on exercise.

However an increased alkalosis, through sodium bicarbonate ingestion, was shown not to

affect the V02 response for heavy intensity exercise (Heck et al. 1998). Furthermore.

time to exhaustion at 90 and 95% V02max has been shown to be decreased when acidosis

is increased, and increased when alkalosis is increased, through prior administration of

drugs (Jones et al. 1977; Sutton et al. 1979). Oren et al. (1982) examined the effect of

both acidosis and alkalosis on respiratory parameters, during moderate intensity cycling.

Whilst acid base status was found to affect the kinetics of both \I E and V C02, no effect
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was demonstrated for V 02 kinetics. This supports the findings of Gerbino et a1. (1996),

who reported a warm up effect in heavy but not in moderate intensity exercise.

2.5.2 Fibre type and V02 kinetics

Skeletal muscle is considered to comprise two major muscle fibre types, generally referred

to as fast and slow twitch, or type I and type II fibres (Brooke and Kaiser 1970). Type II

fibres are often subdivided into type IIa and type lIb, depending on the oxidative capacity

of the fibres (Gollnick and Matoba 1984). It is established that type II muscle fibres have a

smaller potential for aerobic energy production and consume more O2 for the same power

output when compared to type I fibres (Crow and Kushmerick 1982; Willis and Jackman

1994). Furthermore it has been shown that highly trained athletes with a high percentage

of type I fibres exhibit good cycling economy, i.e. a low V02 cost for a given power

output (Coyle et al. 1982; Horowitz et al. 1994). This effect does however seem less

apparent at very high work rates (Suzuki 1979). Endurance runners are known to have a

higher percentage of type I fibres than sprint runners (Gollnick et a1. 1973, Costill et a1.

1976), and also have better running economy (Kaneko et a1. 1983).

There are several reasons why type II fibres are likely to be less efficient than type I fibres.

Type II fibres produce more heat for a given tension, have a greater calcium pump activity,

greater actinomyosin turnover, and a lower mitochondrial PlO ratio (Crow and Kushmeric

1982; Barstow et a1. 1996). This reduction in mitochondrial PlO ratio may be due to type

II fibres having a greater reliance on the FAD linked a-glycerophosphate shuttle over the

NAD linked malate-aspartate electron-transfer shuttle (Sanchz and Henriksson 1987).

Indeed any greater input from this less efficient hydrogen transfer shuttle, for example due

to saturation of the other, would result in an increased V02 (Whipp 1994a).

It has been established that there is an increasingly greater recruitment of type II muscle

fibres as work rate increases (Vollestad and Blom 1985). Type II fibres have been shown

(in the mouse) to demonstrate slower V02 kinetics than Type I (Crow and Kushmeric

1982), potentially leading to a delay in the attainment of a steady state. However, Barstow

and Mole (1991) note that the different response times of fibre types cannot, per se,
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explain the delayed onset of the slow component. Whatever the mechanism responsible

for the slow component, it does not become manifest until later in the exercise. A study

simultaneously measuring V02 and integrated electromyogram (iEMG) (quadriceps)

during cycling has demonstrated an increase in muscular recruitment in association with

the slow component of V 02 (Shinohara and Moritani 1992). This suggests that the excess

v02 may be coupled to a change in recruitment pattern and perhaps an increase in the

recruitment of less efficient type II muscle fibres.

This review has so far examined the effect of fibre type on the slow component of V02.

Yet it should be realised that the reduced efficiency of type II fibres, coupled with their

slower oxygen uptake kinetics, will also affect the primary phase of the "02 response

(phase-2). As previously stated, endurance athletes have been shown to exhibit a relatively

high percentage of type I muscle fibres (Gollnick et al. 1972; Costill et al. 1976).

Endurance athletes also exhibit faster primary kinetics than sprint athletes (Edwards et al.

1999) as well as a smaller slow component (Billat 1998a). Barstow et al. (1996) found that

fibre type significantly affected both fast and slow phases of "02 kinetics for heavy

intensity exercise. However, such a comparison has yet to be conducted at severe

intensities where a two-phase response might be expected.

2.5.3 Effects a/training status and aerobicfitness on V02 kinetics

Similar to (and perhaps linked to) muscle fibre type, the training status of an individual has

been shown to affect both primary and slow component phases of V02 kinetics.

Endurance training has been demonstrated to accelerate primary "02 kinetics (Hagberg et

al. 1980; Taylor et al. 1999), and individuals with a higher V02max have been shown to

exhibit faster kinetics (Whipp and Wasserman 1972; Powers et al 1985). A period of

endurance training has been demonstrated to shorten the phase-2 1: in both sedentary

individuals (Berry and Moritani 1985) and previously trained subjects (Norris and Peterson

1997). This training effect has been shown to speed V02 kinetics both at the same

absolute (Cerretelli et al. 1979) and at the same relative exercise intensity (Hickson et al.

SB Dra er 2002 46



PhD Thesis Chapter 2

1978). Further evidence of this training effect comes from the fact that \102 kinetics are

slowed following a period of bed rest (Convertino et a1. 1984).

The physiological processes responsible for this training effect are difficult to identify,

since the limiting factors underlying the primary \102 kinetics have yet to be established.

The influence of endurance training on \102 kinetics can be interpreted as evidence for

both a central and a peripheral limitation (Walsh 1992), since there is evidence of

endurance training improving both O2 delivery and O2 consumption.

The heart, is known to be adaptable to increases and decreases in physical activity (Asrand

and Rohdahl, 1986), and indeed Peronnet et a1. (1981) reported an increased left

ventricular and end-diastolic volume following a period of endurance training. In addition

to improvements in cardiac output, O2 delivery may be increased by an enhanced 02

carrying capacity of the blood due to increased total haemoglobin (Ekblom et a1. 1968).

Endurance training may also result in improved Oi-haemoglobin dissociation from higher

levels of 2,3-diphosphoglycerate (Klein et a1. 1980) and an improved blood flow to the

muscle (Terjung et a1. 1990).

There are also many peripheral adaptations that might account for a speeding of V 02

kinetics following endurance training. It has long been established that in addition to the

improvements in \1o-max that may be seen following a period of endurance training a

large increase will be seen in the levels of oxidative enzymes in skeletal muscle (Gollnick

et a1. 1973; Taylor and Bachman 1999). This increase is often in fact so much larger than

the increase in \102max itself that it is unlikely to be the major reason for such an increase

(Gollnick and Saltin 1981). In addition, muscle in the trained state is likely have an

increase in mitochondrial size and number (Saltin et al. 1976), increasing peripheral

oxidative capacity and therefore reducing diffusion distance between blood and

mitochondria. It has been suggested that as mitochondrial respiration competes with

glycolysis for a common substrate (e.g. ADP), this increase in mitochondrial respiratory

power would result in faster \102 kinetics, reducing the flux through the glycolytic

pathway (Walsh 1992). The strong relationship that has been demonstrated between r and

AT during endurance training supports such a hypothesis (Yoshida and Udo, 1991).
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However, a more recent study showed that V02 kinetics were speeded after only a few

days of endurance training (Phillips et al. 1995), at a time when no changes in

mitochondrial enzyme activity could be detected.

Whilst the physiological mechanisms responsible are perhaps not fully understood,

endurance training has been demonstrated to affect phase-2 V02 kinetics (Hickson 1978;

Cerretelli et al. 1979; Hagberg 1980; Berry and Moritani 1985; Powers 1985). A

significant reduction in end exercise V02 and the magnitude of the '\;02 slow component

has also been shown after 6 weeks (Womack et al. 1995; Carter et aI2000b), 7 weeks

(Poole et al. 1990) and 8 weeks (Casaburi et al 1987; Belman and Gaesser 1991) of

endurance training. If the subject is exercised at the same absolute work rate during pre

and post training tests (Casaburi et al. 1987; Womack et al. 1995), increases in both

'\;02max and AT will greatly impact on the relative work rate (Yoshida et a1.l982; Poole

et al 1991). When subjects are exercised at the same relative intensity the results are

equivocal. Poole et al. (1990) found the reduction in slow component was considerably

less clear, whilst Carter et al. (2000b) showed a significant reduction through endurance

training. Studies that have examined highly trained endurance athletes do suggest that a

different response is seen in the highly trained however, and have reported either a small or

no slow component (Billat 1998a; Lucia et al. 2000; Lucia et al. 2002b).

The exact mechanism behind this training effect is difficult to pinpoint since the underling

physiology of the slow component is itself elusive. Womack et al. (1995) found that,

similar to changes in phase-2 kinetics, the effect on the slow component occurs early in the

training programme. These training studies again highlighted the close link between blood

lactate and the slow component (Casaburi et al. 1987), but no causative link was found

with either lactate or adrenaline (Gaesser 1994; Womack et a1.1995). Casaburi et al.

(1987) suggested that a small percentage of the reduction in excess '\;02, may be due to a

training induced reduction in pulmonary ventilation. However, the most accepted

explanation is that the slow component is caused by a change in fibre recruitment pattern

(Whipp I994b ). Gaesser and Poole (1996) postulate that this training effect reflects an

increase in the recruitment of more efficient type I fibres and a reduction in type-II fibre

recruitment.
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Identification of the exact physiological mechanisms responsible for endurance training

induced alterations in \;02 kinetics has yet to be achieved. It has been clearly established

though that the training status of an individual will have a profound effect on both phase-2

and slow component \;02 kinetics. It should also be recognised that relatively few

investigations have used specifically trained populations, and much of the current

understanding of \;02 kinetics has arisen from the study of sedentary or in some cases

patient populations. Caution should be exercised in applying current understanding to

trained athletes, since the highly trained have been shown to differ in their \;02 response

and may not conform to existing models (Billat et al. 1998a).

2.5.4 Mode of exercise

The majority of the research into \;02 kinetics has used cycling as the mode of exercise

(Astrand and Saltin 1961; Margaria et a11965; Katch 1973; Whipp and Wasserman 1972;

Hagberg et al 1980; Hansen et a1.l988; Patterson and Whipp 1991; Barstow et al. 1996;

Gerbino et al. 1996; McDonald et a1.l997; Zoladz et a1.l998). This has created difficulties

for anyone studying \;02 kinetics during running or other forms of exercise since current

ideas and models of \;02 kinetics have been developed using cycling. Such difficulties are

not new however. Indeed in 1925 A.V. Hill (p. 484) wrote in the Lancet of research using

the cycle ergometer: "nearly all the laboratory observations on man, in connection with

muscular exercise have been made with that implement."

Cycling exercise has many advantages over running for the investigator. When compared

with treadmill exercise, cycling offers a greater range of intensities within the moderate

intensity domain. When running there is a relatively narrow range of speeds that fall

below AT that would not result in the subject walking (particularly in sedentary

populations). The economy of walking differs from that of running (Menier and Pugh

1968) making it difficult to produce a sub AT V os-speed regression. Mechanical changes

are also likely to occur as treadmill speed increases (Cavanagh and Kram, 1985), whereas

the mechanics of cycling are relatively unchanged across intensities. Cycling may also

offer a safer mode of exercise for exhaustive testing, as the subject's mass is supported.
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Finally recent studies suggest that the slow component is larger for cycling than for

running (Jones and McConnell 1999; Billat et al. 1999b), so the former perhaps lends itself

better to investigations of the underlying physiology of the slow component.

Research into the \102 response to running in the heavy and severe intensity domains has

demonstrated differences in comparison with cycling. Controversy over the existence of a

slow component in running has arisen. Billat et al. (1998a), in a study using highly trained

endurance runners, exercised subjects at supra critical speed intensities and showed that

these athletes maintained a steady state \102 and did not demonstrate a slow component.

Whether this absence of the slow component was due to the training status of the subject

group or the mode of exercise is uncertain. Other studies have shown that a slow

component does exist in running (Steed et al. 1994), but it seems that the magnitude of this

response is less than is seen in cycling (Jones and McConnell 1999; Billat et al. 1999b;

Billat et al.2000; Carter et al. 2000a). However, a recent study investigating world class

cyclists reported a slow component of a very small magnitude (Lucia et al. 2000).

Comparisons have been made between the \102 responses of cycling and running in the

same subjects (Billat et al 1998b, Billat et al 1999a, Carter et al. 2000a) and all have

confirmed that the slow component is smaller in running. Billat et al. (1998b, I999a) used

a subject group that was highly trained in both modes of exercise (triathletes) to ensure that

any effect was not the result of training status in one of the exercise modes. Both Billat et

al. and Carter et al. explain the discrepancy in terms of difference in the type and pattern of

muscular contractions between the two modes of exercise, arguing for a higher intra-

muscular tension in cycling and a greater eccentric component in running. If the

hypothesis is accepted that the V02 slow component is largely due to the recruitment of

less efficient muscle fibres, such differences in muscular contraction and recruitment

patterns may in part explain the different \.;02 response.

It is clear then that applying current understanding of \.;02 kinetics to treadmill exercise

may be problematic. Differences exist between cycling and running in the \102 response

to heavy and severe intensity exercise. The data of Spencer et al. (1996), for trained

runners, suggests a very different response to short duration exhaustive exercise than

otherwise reported (Hill and Stevens 2001).
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In the laboratory setting it is necessary to use motorised treadmills to investigate the

aerobic parameters of running exercise. Improvements in portable gas analysis systems are

beginning to make \102 measurement on the track a possibility (King et al. 1999;

McLaughlin et al. 2001), and recent research has used such technology (Billat et al. 2000).

Future research is likely to make further use of this technology; however the need to

control exercise intensity and the greater accuracy of laboratory based equipment means

most running research has used and will use the motorised treadmill. It should be

recognised that mechanical differences have been demonstrated between treadmill and

track running (Elliot and Blanksby 1976). Researchers have also found it difficult to

replicate track performance in the laboratory environment (Falk et al. 1996; Spencer et

al.1996; Hill 1999). Moreover, it should be realised that constant intensity (or square

wave) exercise testing is itselflimited since this does not mirror genuine athletic

performance. The initial higher intensity spurt, or fast start, often seen in athletic

performance might have a performance benefit in speeding \(02 kinetics and reducing 02

deficit (sparing anaerobic capacity) (Secher et al. 1982).

2.6 Summary

There are several key points from this review of literature that are of particular relevance

to an investigation of \(02 kinetics in exhaustive running of a short duration. Firstly there

are running events that take place at intensities where the \;02 required exceeds V osmax

yet the aerobic contribution to the exercise is considerable. The 800 m is perhaps the best

example of such an event. The speed of adaptation of the aerobic system ( \(02 kinetics) is

an important determinant of performance since it will dictate the relative aerobic and

anaerobic energy contributions during the event. Little investigation of \(02 kinetics has

been carried out in running exercise and even less into the response to exhaustive running

of a short duration.
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Current thinking regarding the behaviour of \;02 during exercise in the severe intensity

domain is that V02 will tend, at the onset of exercise (in an exponential manner), towards

the V02 required. If the V02 required is greater than MLSS, an additional slow component

will take the response to V o-max. Where the V02 required exceeds V02max the phase-2

response will end (prematurely) at V o-rnax. The assumption exists then that all running

speeds above MLSS will result in the achievement of \;02max. There is research using

aerobically fit subjects that raises questions regarding this assumption, however. Whether

this different response is related to the mode of exercise or the subject's aerobic capability

remains to be established.

Mathematical models that seek to predict exercise performance all make the assumption

that short duration exhaustive exercise will always result in the achievement of \;02max.

Current models assume that V02 will rise as a single exponential response towards

V02max. In trained populations this may not be the case (Spencer and Gastin 2001). Any

shortfall in this V02 response will result in an over-estimation of the sustainable speed for

a given event. Running events of a short duration have proved particularly problematic for

these models, and the sustainable speed has been overestimated for the 800 m (Di

Prampero et al. 1993).

If there is a shortfall in the V02 response to short duration exhaustive exercise, the reason

for such a shortfall is unclear. This shortfall in V02 has only been seen in the aerobically

trained, but such a response has never been clearly identified or described by modelling.

Any model used would require close scrutiny however, since the nature of breath- by-

breath noise has never been investigated in severe intensity exercise.

Identification of the cause of such a shortfall in V02 is difficult, since the mechanisms

underlying the response even at the lower exercise intensities have not been firmly

established. The shortfall may be linked to the aerobic capability of the subject as this

response has only been identified in aerobically trained subjects. If the limitation is one of

O2delivery, there may be a performance benefit in increasing metabolic acidosis prior to

exercise (this strategy has been shown to speed \;02 kinetics during heavy intensity

exercise).
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CHAPTER3

GENERAL METHODS

3.1 Laboratory and procedures

All laboratory-based experiments were conducted in a BASES (British Association of

Sport and Exercise Sciences) accredited laboratory at University College Chichester. The

laboratory was air-conditioned (Toshiba, Japan) and temperature was controlled at 19 ± 1

°C. A window was left partially open during testing to ensure that the laboratory had

sufficient ventilation to maintain constant inspired gas fractions. Barometric pressure was

measured using a wall mounted mercury barometer (Griffin and George Ltd., London, UK)

and ambient temperature was measured using an electronic temperature probe (Hannah

Instruments, US).

3.2 Subjects

The subjects that participated in the present thesis were all volunteers. Each was required

to give written informed consent for each of the studies and also completed a medical

history questionnaire. The subjects were male and were recruited largely from the

Athletics Club at University College Chichester and from the local athletics club

(Chichester Runners and Athletics Club). Studies 1, 2, and 4, that required physically fit

rather than specifically trained individuals, also recruited subjects from other Sports Clubs

at University College Chichester. Studies 3, 5 and 6 required a more specifically trained

subject group however, and also recruited from an elite training group of distance and

middle distance runners from the Horsham area.
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3.3 The motorised treadmill

Treadmill tests were performed on a Quinton Q65 motorised treadmill (Quinton Instrument

Co., Seattle, US). The treadmill runway consisted of a continuous nylon belt running

around two metal rollers and over a metal platform. A DC motor drove the front rollers.

The flat metal bed surface of the runway was regularly lubricated with a silicon-based

lubricant to prevent the nylon belt sticking on foot-strike.

The manufacturer's speed controls and display were situated on a front panel that was

visible to the subject. A new controller was manufactured and fitted to the handrail, and a

second display was fitted perpendicular to the first and so visible only to the experimenter.

The original display was obscured from the subject during all tests.

Since the studies included in this thesis demanded flat running, there was no need to

calibrate gradients on the treadmill, merely to ensure that the treadmill was at a 0° at the

start of each test. The front of the treadmill was supported on lockable casters, and the rear

had adjustable feet, so that the platform could be set to be horizontal. The use of a spirit

level ensured, that the runway was completely horizontal when the treadmill was

displaying 0°. A zero gradient was used since this was considered to be most appropriate

for track runners. An increased gradient is often used to prevent a cadence limitation prior

to the achievement of V02max in incremental tests. However the increased gradient

increases the V 02peak achieved and is unnecessary in an incremental test as middle- and

long-distance runners are able to reach a plateau in V 02 at a zero gradient (Draper et al.

1998).

Prior to each study the belt speed of the treadmill was checked against the displayed speed

(on the second display unit used by the experimenter). Belt speed was determined by

marking the belt and bed of the runway and timing (using a hand held digital stopwatch

(ATP, Leics., UK» a given number of complete revolutions of the belt, having measured

the length of the belt. Speeds between 6 and 24 km.h" were assessed, and the results were

averaged over 10 trials at each speed. In all cases the displayed speed was within 0.04

krn.h" of the speed calculated from the timing of the belt. A data set from such a
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calibration is shown in Table 3.1. The accuracy of the display was independent of whether

a subject was running on the belt.

Table 3.1: Agreement between the belt speed (as calculated from timing the belt
revolutions) and the display speed

Display Speed Belt Revolutions Time Belt Speed
(km.h") (revs) (s) (krn.h")

6.0 27 59.90 6.02
8.0 36 60.10 8.00
10.0 45 60.04 10.01
12.0 54 60.05 12.01
14.0 63 60.02 14.02
16.0 72 60.06 16.01
18.0 81 60.00 18.03
20.0 90 59.98 20.04
22.0 99 60.05 22.02
24.0 108 60.08 24.01

3.4 Cycle ergometry

The focus of this thesis was running and so the majority of the data presented were

collected on a motorised treadmill. Study 1 (Chapter 4) however dealt with high intensity

exercise in both cycling and running, and so a cycle ergometer was necessary for data

collection. Cycle tests were carried out using a friction braked cycle ergometer (Monark

814E; Monark, Varberg, Sweden).

The ergometer had been adapted and fitted with an adjustable saddle (adjustable both

horizontally and vertically) and drop handlebars. The horizontal and vertical saddle

adjustments had numbered holes in the tubing for each possible position and care was

taken to ensure that for a given subject the same position was used for all tests. The

manufacturer's display was replaced with an electronic cycle computer (BC 1100; Sigma

Sport, Poole, UK), which monitored cadence via a sensor located on the pedal crank. The

ergometer is frictionally braked by a cord that encircles the flywheel and connects to the
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weighted cradle at the front of the ergometer. The tension in this cord and the height of the

weighted cradle affects the level of friction applied to the flywheel. The ergometer was

calibrated according to the manufacturer's instructions on each day of testing. The

individual weights were calibrated against a standard weight prior to testing.

The flywheel of a cycle ergometer exhibits a certain level of inertia at the onset of exercise

if the test begins from a static start. Whilst this would have a negligible effect on the

results of a ramp, in square wave exercise this would be problematic since a greater power

output would be necessary to overcome this inertia. The result would in effect not be a

constant intensity test, as a higher power output would be required to overcome the inertia

of the flywheel. To counter this problem, prior to all cycle tests the subject performing

unloaded cycling (for a few seconds) with the experimenter supporting the weighted

cradle. The test began as the experimenter dropped the weighted cradle and the subject

maintained the same cadence at the increased load.

3.5 Peak heart rate

Peak heart rate (HRpeak) was measured using short-range telemetry (Vantage NV; Polar

Electro Oy, Kempele, Finland). This consisted of a chest-mounted transmitter on an

elastic strap and a wrist mounted monitor. The wrist unit was always positioned on the

subject's back via the elastic strap so that the display was not visible to the subject. The

monitor recorded heart rate (HR) every 5 seconds and the highest value was taken to be

HRpeak.

3.6 Blood lactate

Anaerobic threshold was determined using respiratory data so blood lactate was not

measured either during or before any exercise test. A fingertip capillary blood sample was

however drawn I minute post all exercise tests and assayed for blood lactate concentration

(YSI 2300 StatPlus Analyser; Yellow Springs Industries, Ohio, US). The YSI 2300, which
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uses the enzymatic method of blood lactate determination, was checked daily (prior to

testing) against known standards ranging from 2.5 to 12.5 mmol.L". The fingertip site was

first wiped with a swab saturated with 70% isopropyl alcohol BP and punctured using an

automated lancet (H & MS, Northampton, UK). Approximately 40 ~l of blood was then

drawn into a plain micro capillary tube and dispensed into a 0.5 ml Eppendorftube. The

sample was immediately assayed for lactate.

3.7 Off-line gas analysis

Whilst the majority of the experiments in this thesis used on-line analysis of expired gases,

Study 1 (Chapter 4) was completed before an on-line gas analysis system was installed in

the laboratory. Furthermore Study 2 (Chapter 5) used off-line measurement as a criterion

measure against which the on-line analysis system was validated.

Subjects wore a nose clip and breathed through a low resistance one-way valve box

(Jakeman and Davies, 1979). The inspired side of this valve box opened directly to the

atmosphere and the expired side was connected via a 1.5 m length of Falconia tubing (3cm

internal diameter) (Baxter, Woodhouse and Taylor; Maclesfield, UK) to the Douglas bags.

The valve box was constructed from clear perspex so that the experimenter could observe

the movement of the diaphragm on the inspired side to determine when the subject was

inspiring and expiring.

Expired air was collected in 200 L polyethylene Douglas bags (Cranlea and Co.,

Birmingham, UK). The bags were arranged in racks of four, with each bag fitted with a

two way valve that could vent expired gas either into the Douglas bag or out into the

laboratory. The four bags were arranged in a square and connected by a length of plastic

tubing (2 em internal diameter) (Figure 3.1). Expired air had to pass all other two-way

valves on-route to bag 1; this meant that 4 consecutive collections could be made without

the loss of any expired gas because the opening of the next bag effectively closed the

previous one. When it was necessary to change from rack to rack expired gases were lost

into the laboratory for approximately 10 seconds. It took approximately 5 seconds to
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change the rack but a further 5 seconds were used (once the new rack was connected) to

ensure that the plastic tubing (that had a volume of approximately 0.5 L) was flushed with

expired gases rather than ambient air. The racks were constructed from lightweight box

tubing and each had four casters attached to the feet to enable them to be easily

manoeuvred around the laboratory.

--l .....to
atmosphere

Figure 3.1: Arrangement of Douglas bags on rack (black square). The clear plastic
tubing (not shaded) connects the bags together via four two-way valves
(shaded).

All collections of expired gases were made from inspiration to inspiration to prevent the

subject trying to breath through the system while a two-way valve was moving. This also

insured that only whole breaths were collected. When subjects finished an exhaustive test,

either by jumping from the treadmill or by stopping cycling, the experimenter always

closed the final bag on the next inspiration, which would be slightly after the termination

of the exercise. All collections were timed using a hand held digital stopwatch (ATP,

Leics., UK), which was capable of storing the split-time for each individual bag.
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The volume of expirate collected into the Douglas bag was determined using a Harvard

digital dry gas meter (Harvard, Edenbridge, UK). The probe of a thermister was inserted

into the inlet port of the dry gas meter and expirate temperature was measured individually

for each Douglas bag. Two further corrections were made to this bag volume in the

calculation of minute ventilation (V E), firstly to allow for the volume that was lost during

sampling of expired gas fractions (FE02 and FEC02) and secondly to correct any

measurement error of the dry gas meter.

When expired gases were sampled, the sample passed first through a flow meter (Platon

Instrumentation, Hants, UK), which was adjusted to maintain a sample flow of 400

ml.rnin". The gas-sampling period was 75 seconds, and therefore 0.5 L was added to each

bag volume prior to the calculation of V E.

The dry gas meter was calibrated before each study. It is difficult to make fine adjustments

to the dry gas meter and so a correction factor was used to calibrate the measured volumes.

A 7 L precision syringe (Hans Rudolf Inc., Kansas, US) was used to put known volumes of

air into the Douglas bags that were then measured using the dry gas meter. A mean value

from two complete racks of Douglas bags (8 bags) was used for each volume. A linear

regression was then used to derive the correction factor from these data. A typical data set

and regression equation is shown in Figure 3.2. The resulting regression equation is in the

form y = rnx, where y is the actual or syringe volume, x is the measured volume and m is

the correction factor (the regression was forced through the origin).

The volume of gas for each Douglas bag collection was calculated as:

Douglas bag vol. = (meter vol. x vol. calibration factor) + sample vol... (3.1)

This volume (ATPS) was then adjusted based on the duration of the collection to give

minute ventilation (V E(ATPS»)' Volumes were then adjusted to STPD values to be used in

the calculation of V 02 and V C02 in the usual manner (McArdle et al. 1991 p.797).
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Figure 3.2: Typical data set and regression line used to calculate the gas volume
correction factor.

The expired fractions of 02 and C02 were determined using a paramagnetic oxygen

analyser and an infrared carbon dioxide analyser (Servomex Series 1400; Servomex PLC.,

Crowborough, UK). Infrared analysers compare the oscillating signals of infrared

radiation that is sent through the sample gas and a reference cell. Paramagnetic analysers

make use of the paramagnetic properties of oxygen. The oxygen concentration is

determined by the amount of electrical current needed to cancel the rotation of a nitrogen

filled bell suspended in a magnetic field. Both infrared and paramagnetic analysers have

been shown to be accurate in the measurement of expired gases (MacFarlane 200 I).

These analysers, since they make their measurements based on the partial pressure of a gas

within a mixture, are sensitive to changes in barometric pressure and to the water vapour

content of the gas mixture. It was important therefore that the analyser was calibrated

regularly and that the water vapour content of both the sample and the calibration gases

was standardised. The gas analysers were calibrated using a two-point calibration process

for both 02 and C02. The calibration process was performed immediately before the

expirate from each test was analysed. Bottled nitrogen (Linde Gases, UK) was used to zero

both analysers. An upper limit was then set for O2 by passing outside air through the

analyser and setting the span to 20.93%. Finally the span was set for CO2 using a bottled

gas mixture containing approximately 15.5 - 16.5 % 02 and 5.0 - 6.5 % C02 in nitrogen

(Linde Gases, UK). This process effectively provided a check on the calibration for 02,
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since any error in the calibration would be seen at this point with a concentration close to

expirate.

As discussed above the sample was drawn through the gas analysers at a constant flow rate

(400 ml.min") and all measurements were timed for 75 seconds. All gases were passed

through a 30 cm section of Nafion tubing (Omnifit Ltd, Cambridge, UK) and a Buhler

PKE3 condensor (Patterson Insruments Ltd., Leighton Buzzard, UK) prior to the sample

being presented to the gas analyser. The Nafion tubing was suspended in water, and since

this tubing allows water to permeate its membrane but does not allow gas to permeate, all

gases were saturated prior to reaching the condenser. The condenser then cooled the gases

to 5° C to reduce the water vapour pressure (PH
2
0)' Whilst this meant that gases were not

presented as dry gases to the analyser, the system did ensure that the PH
2
0 was both low

(6.8 nunHg) and the same for all gases. Control of PH20 is an important consideration for

analysers that measure the partial pressure of a gas within a mixture such as those used for

off-line analysis in this thesis.

Prior to testing all Douglas bags were flushed with room air (minimum of 50 L), to ensure

that the residual contents of each was room air. The expired fractions of O2 and CO2 could

therefore be corrected for the effect of the dilution of the sample by the residual volume of

room air, once the residual volume of each Douglas bags had been determined. The

residual volume was calculated by first collecting at least 50 L of expirate in a Douglas

bag. The 02 and C02 concentrations of both this expirate and the room air were

determined before the Douglas bag was evacuated. Seven litres of room air was then

added to the bag from a precision syringe (Hans Rudolf Inc., Kansas, US). The O2 and CO2

concentrations of the contents of the Douglas bag were then determined for a second time.

The residual volume could thus be calculated using either of the following equations:

Residual vol (L) = 6.9 * (%02amb - %02poSt) / (%02poSt - %02pre) (3.2)

Residual vol (L) = 6.9 * (%C02amb - %C02poSt) / (%C02post - %C02pre) (3.3)
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where 6.9 is the approximate syringe volume in litres (ATPD) ( amb is the ambient room

concentration, pre is the expirate concentration before emptying the bag, and post is the

concentration following the addition of the 7 litres of room air. Table 3.2 shows the data

collected from eight Douglas bags and the calculated residual volumes. As a result of this

analysis a value of 500 ml was used as the typical residual volume. Expired gas fractions

(02 and CO2) were therefore corrected using the equation:

Corrected % = measured % + (500 I bag volume (ml) x (measured % - ambient %) .....(3.4)

Values of 20.90 and 0.10 %were found to be typical concentrations of 02 and C02 in the

laboratory and were the assumed values for ambient air in this equation and in the

calculation of V 02.

Table 3.2: Residual volumes of eight Douglas bags as calculated from either O2 or
CO2 concentrations

Douglas bag Residual volume (02)
(ml)

Residual volume (C02)
(ml)

1
2
3
4
5
6
7
8

402
393
539
547
423
586
488
461

442
453
597
591
476
646
559
507

Mean±SD 480 ± 72 534 ± 75
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3.8 On-line gas analysis

The thesis used primarily breath by breath measurements of V 02. The QP9000 (Morgan

Medical, Rainham UK) was used for on-line gas analysis. The QP9000 is a mass

spectrometer based system, combined with a turbine for the measurement of gas flow and

volume. The paramagnetic and infrared devices previously described for off-line analysis

calculate the concentration of a specific gas within a mixture by analysing the partial

pressure exerted by that gas. The mass spectrometer determines the concentration of a gas

within a gas mixture by categorising the molecules within the gas mixture according to

mass.

The QP9000 employs a quadrupole type mass spectrometer. Gas molecules are converted

to ions (molecules with either a positive or a negative electrical charge) so that they may

be manipulated electronically without greatly altering the mass of the molecule. This is

achieved in the QP9000 by a process of electron bombardment via heated filaments within

the ioniser. The ion detector within the analyser head is able to determine the gas species

emerging based 011 the electrical current from these ions. The term 'mass spectrometer' is

therefore a misleading one since gas specie are not separated according to mass but rather

according to the mass / charge ratio (Morgan Medical 1999).

In off-line analysis the effect of water vapour is controlled by measuring the temperature

of the expirate and subtracting the PH
2
0 that corresponds to that temperature from

barometric pressure in the calculation of volume (making the assumption that the gas

sample is 100% saturated). The QP9000 also assumes the expirate to be fully saturated

and must also assume an expirate temperature since this is not measured. An expirate

temperature of 32° C is therefore assumed in the calculation of V E. When the sample has a

variable water vapour content as in on-line analysis it is also problematic to calculate gas

concentrations by partial pressure. The mass spectrometer is reasonably insensitive to

changes in pressure, due to the different operating principles. Water vapour is a

problematic gas to measure, in terms of both the response time and the tendency for it to

condense within the sample capillary and analyser. The QP9000, whilst recognising gas

from the water vapour mass spectra, disregards water vapour from any analysis.

Effectively then, the measured fractions are those of the dry volume.
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Prior to each exercise test the mass spectrometer was calibrated using a bottled gas of

known concentrations (Linde Gases, UK). Unlike the gas cylinder used in the calibration

of the off-line equipment, this cylinder contained argon in addition to the other three gases

(oxygen, carbon dioxide and nitrogen). A two point calibration as was used off-line is not

possible using this system.

The calculation of gas volume was achieved on-line using a low resistance turbine device

(0.65 cmH20.L-Isec-1 at 8.5 Lsec"). This compares very favourably with the off-line low

resistance valve (3 crnH20.L-Isec-1 at 5 Lsec") (Jakeman and Davies 1979). The turbine

device had a spinning propeller at the centre of a clear perspex tube. Each revolution of

this propeller was detected by a photocell in order to determine the gas volume. It is

important to recognise that such a device, unlike a simple Douglas bag, is measuring gas

flow not gas volume, whilst it may be reasonable to suppose that a single revolution is

equal to a finite gas volume. Turbines have the advantage over other types of flow device

in that they are fairly insensitive to changes in temperature, humidity and gas composition

(MacFarlane 2001). Turbine devices have been shown to suffer from linearity problems

however due to the friction and inertia properties of the propeller. This is seen at low flow

rates when a 'lag-before-start' may occur and at high flow rates when a 'spin-after-stop'

may occur (Yeh et al. 1987). Such errors will impact on the calculation of V 02. The

turbine device (Interface Associates, Alifovieja US) used in conjunction with the QP9000

was designed to exhibit a minimum inertia to reduce this error. However the device cannot

be calibrated accurately across a range of flow rates (to compensate for such effects) since

it is not possible to accurately measure the flow rate applied.

The turbine itself was connected to the mouthpiece via a short plastic tube. The plastic

tube also had connections to the gas sampling capillary and to a saliva trap. The capillary

entered from the top of the tube and the length of the capillary was adjusted so that its

aperture was central to the plastic tube. At the bottom of the plastic connecting tube was a

slotted aperture where the saliva trap was connected. This plastic cylinder collected saliva

that entered the mouthpiece and prevented it being sucked into the capillary. Therefore,

whilst the turbine cartridge had a dead space of only 38 ml, the dead space of the complete

set-up during testing was 114 ml. This is greater than the low resistance breathing valve

used in the off-line experimentation that had a dead space of 80 ml. The length of the
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mouthpiece and turbine once connected was 168 mm and the flow transducer and

connecting cable were placed 122 mm from the mouthpiece aperture. It was therefore

necessary for the equipment to be supported by headgear. The headgear was adjustable for

each subject and had a supporting arm that connected to a metal ring that was positioned

around the turbine cartridge. The arrangement of the capillary and turbine cartridge in

relation to the mouthpiece is shown in Figure 3.3. A disadvantage of this set-up was that

there was a distance of70 mm between the flow measurement (turbine) and the gas

concentration measurement (capillary). It is assumed in the calculation of V02 and V C02

that the same gas was analysed for both flow and concentration. It is not possible to

sample the gas at the same point as flow with a turbine device. The distance between the

two measuring points should however be minimised.

The turbine flow device was calibrated immediately prior to each test (this was particularly

important as three turbines were used during the studies to allow for sterilisation and

drying to take place after each test). Prior to this calibration the ambient temperature and

relative humidity were entered so that they could be used in the calibration algorithm. A 3

L (Hans RudolfInc., Kansas, US) precision syringe was used to calibrate the equipment.

Ten strokes of the syringe are used and the QP9000 calculates the mean volume. This

process was repeated until the QP9000 returned a value that was within 0.01 of 3 L. This

process does allow the syringe volume to be applied at varying flow rates. However since

a mean value was taken from the ten syringe strokes this would not compensate for any

non-linearity of the turbine response, and the accuracy of the turbine and transducer was

potentially still a function of flow rate (Lamarra and Whipp 1995).
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b

Figure 3.3: Schematic of the layout of the mouthpiece, turbine and supporting
headgear, where a) is the headgear, b) the headgear adjustment, c) the
supporting arms, d) the rubber mouthpiece, e) the plastic pipe, 1) the
gas sampling capillary, g) the saliva trap, h) the turbine cartridge and i)
is the flow transducer.

The assumption that the expirate temperature is 32° C and remains constant throughout an

exercise test is a potential source of error. During off-line analysis it is a relatively simple

task to measure the temperature of the expirate; provided the equipment has been

appropriately calibrated and that the timing of the gas collection was accurate, the

measurement of V E can be made with precision. During on-line analysis the assumption is

made that the temperature of expirate remains constant throughout each breath and

irrespective of respiratory frequency (fR). Since both of these assumptions are to some

extent flawed they will contribute in some manner to the measurement error. There may

be a potential intensity effect on the measurement of V E since JR will increase with

increasing exercise intensity.

Highlighting the potential error in the measurement of V E is particularly pertinent, since

similar to the off-line analysis the QP9000 uses the 'Haldane Transformation' to determine

the inspired volume of O2. The transformation, whilst generally attributed to Haldane, was

actually outlined in 1888 by the German scientists Geppert and Zuntz (Poole and Whipp
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1988). The principle assumption underlying the transformation is that nitrogen is

metabolically inert and so inspired and expired volumes of nitrogen are equal. This

assumption has been shown to be incorrect (Dudka et al. 1971), but the effect is negligible

when values are averaged over a 60 second period (Wilmore and Costill 1974), as in the

Douglas bag analysis. Owing to the difficulties with measuring the inspired volume

(temperature and inequalities between the inspired and expired signals) the QP9000

calculates V 02 using the same principle. That this is an incorrect assumption within the

context of a single breath (Wessel et al. 1979) adds both to the measurement error and the

level of noise on the breath-by-breath data. Such analysis has however been shown to

result in strong agreement with the Douglas bag method of analysis, when averaged over a

reasonable number of breaths (Bassett et al. 2001). The QP9000 does have the ability to

measure the inspired gas fraction. Whilst inspired volume is not measured, the bi-

directional turbine device is important since the inspiration and expiration periods are

determined by the change in direction of the turbine signal.

Most computerised breath-by-breath systems do not use inspired measurements and

instead make their computations from expired measurements only (Bassett et al. 2001).

Since equilibrium of inspired and expired nitrogen is not a safe assumption within a single

breath (Wessel et al. 1979), some researchers have attempted to measure both inspired and

expired gas and flow signals in an attempt to negate the need to use the Haldane

transformation. Such an approach is however itself problematic and will result in a greater

ratio of noise to signal on the measured response (Beaver et al. 1981). This noise is

primarily the result of considerable fluctuations between breaths in the amount of O2 or

C02 that is stored in the lung. In order to reduce this high level of noise it is necessary to

estimate the 'true' alveolar gas exchange and a variety of algorithms have been produced

in order to make this estimation (Swanson 1980; Beaver et al. 1981; DiPrampero and

Lafortuna 1989). There is however no generally accepted method of making this

calculation (Allen et al. 1984).

The final calibration that was carried out prior to each test was the delay time. The

electronic signal produced from the turbine sensor has a smaller transit delay than the gas

signal at any given time point during exercise (Proctor and Beck 1996; Arieli and Van

Liew 1981). Again it was essential that this calibration was performed routinely since
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different capillaries were used during testing and each had a slightly different transit delay

time. The delay was calculated by blowing expirate from the 3 L syringe into the

mouthpiece. The delay was then calculated as the difference in time from the recognition

of the turbine signal to the recognition of an increased CO2 concentration. This process

was repeated at least three times, to confirm that the result was consistent, before this

figure was accepted as the transit delay. Typical delay times were 420 - 460 ms. Delay

times longer than 460 ms indicated that there was a potential blockage within the capillary

and it was then replaced and the system was re-calibrated prior to testing. In addition to

this transit delay there will also be the minimal response time of the mass spectrometer

itself (Noguchi et al. 1982). This is not corrected for by the QP9000. As the QP9000 has a

response time of <30 ms the effect will be small however. Such an effect would be

potentially much larger in systems that use a mixing chamber (Bassett et al.200 1).

3.9 Protocols

The Ethics Committee of University College Chichester approved all protocols used in the

studies contained within this thesis. Subjects were given details of the experimental

procedures prior to giving their written consent to participate. The informed consent form

is included as Appendix 2. Subjects were also required to complete a health history

questionnaire (Appendix 3) prior to any exercise testing taking place. It was made clear to

subjects that they could terminate exercise tests at any time should they experience any

adverse reactions. They were shown how to lift themselves safely clear of the treadmill in

order to terminate the test and were encouraged to practise this prior to the testing.

Subjects were also familiarised with where the 'Stop' (stops treadmill belt quickly but

gradually) and 'Emergency Stop' (stops belt immediately and belt cannot be restarted until

the treadmill has been re-set) controls were located. A large crash mat was positioned to

cover the wall to the rear of the treadmill during all tests.

All tests except for the cycle tests in Study I (Chapter 4) were treadmill based. Ramp tests

to exhaustion were used to determine both V ozpeak and the AT. The AT was determined

from respiratory data (averaged for every complete 15 second period during the ramp test),

primarily from V C02 vs. V 02 (Beaver et al. 1986), but secondary plots of ventilatory
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equivalents and end tidal gas concentrations were used to verify this calculation (Whipp et

al. 1986). The V o-peak was taken to be the highest value for any individual collection

during off-line testing and the highest value from a rolling 15 second average of the

second-to-second data collected on-line.

For all tests subjects were, having finished a moderate intensity warm-up 5 minutes before,

instructed to breath for 2 minutes through the gas analysis system (off- or on-line) prior to

the test commencing. This was to ensure that the equipment was flushed with expirate and

V 02 was at a genuine resting level prior to testing. (The latter was important to establish

baseline values for modelling the V02 response.) This period of2 minutes rest was

conducted with the subject either standing astride the treadmill belt (that was accelerated

during this period to the required starting speed) or sitting on the cycle ergometer. Tests

commenced with the subject jumping on the moving treadmill belt or with the

experimenter dropping the weighted cradle once the subject reached the required cadence.

The treadmill was fitted with two handrails, which enabled the subjects to lift themselves

on to or clear of the treadmill. During constant intensity tests the treadmill was running at

very high speeds so subjects remained in contact with these rails for a few seconds until

they had reached the required leg speed. Each test was terminated when the subject lifted

himself clear of the treadmill belt or became unable to maintain the required cadence on

the cycle ergometer. During cycle tests subjects were warned if pedal cadence dropped

more than 5 rpm below the required rate; if the subject was unable to respond, the

experimenter terminated the test.

Treadmill speeds and cycle power outputs for square wave exercise tests were estimated

from the ramp to exhaustion based on peak speed/power. Square wave tests were however

designed to be of a certain duration rather than at a particular work-rate. Previous work

from this laboratory (Draper, unpublished) had found a large variation in duration when

subjects worked at a percentage of peak work rate or V orpeak. Some of the subjects had

tested previously in this laboratory and so some of the necessary information was

available. There were occasions when within a study, a subject's first square wave test

duration, was unacceptably short or long. In this case the estimated speeds or powers were

recalculated and the subject repeated the test on a separate day, before completing any

further tests. In this way the counterbalanced design of the studies was not compromised.
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3.10 Data analysis

Analysis of the off-line data was conducted using Excel for Windows (Version 8.0). The

corrections outlined in this chapter (for the dry gas meter calibration factor, room air gas

concentrations and residual volume of the Douglas bags) were added to the basic Haldane

transformation and volume standardisation calculations. The on-line data were also

exported to Excel for further analysis. The QP9000 returns a time point for each breath

that is the end of expiration. However, since values for "02 etc. represent mean values

across the breath, these time points were first realigned to the middle of each breath.

Using these corrected times the breath-by-breath V02 data were then interpolated to

second-to-second data. As well as reducing the level of noise present on the data this

process (see Chapter 7) also enabled the data to be averaged across repeated transitions.

All data were checked for normality using the approach suggested by Vincent (1999). In

all cases, data were found to be acceptably normal. That is, the figures for skewness and

kurtosis were less than twice the respective standard errors.

Non-linear regression procedures were used to model the data. Data were modelled using

the interpolated second-to-second data (in some cases averaged over multiple transitions).

It was decided to model the response as a single exponential function that incorporated a

delay (0) rather than attempt to model phase-I. The first 15 seconds of data were removed

from the modelling of severe intensity data and the first 25 seconds were removed from

any modelling of moderate intensity data. This approach- of only modelling the phase-2

data points has been widely used (Whipp et al. 1980; Patterson and Whipp 1991; Gerbino

et al. 1996). That sufficient data had been removed was confirmed by applying the criteria

of Mettauer and colleagues (2000) to determine the end of phase-l (see Chapter 8 for

details). This was important, as such an approach had never been applied to a trained

subject group during exhaustive square wave exercise of a short duration.

The removal of the phase-l data has a clear rationale and is not done merely for

convenience. Firstly there are insufficient data points during the phase-l response (Grassi

et al. 1996), and secondly there exists no experimental evidence nor physiological rationale

to suggest that this initial phase is exponential in nature (Whipp and Ozyener 1998). As
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previously discussed most breath-by-breath systems (including the QP9000) use the

Haldane transformation to determine V02. However the assumptions underlying this

transformation are flawed in the context of a single breath due to the changes in lung gas

stores and their subsequent effect on alveolar gas exchange. This effect will be

particularly great during this initial non-steady state period. It is therefore unwise for

researchers using a Haldane based calculation of "02 to model this phase. Finally the

confidence limits of any parameter derived from the modelling process are dependent on

both the level of noise on the data and the magnitude of the response (Lamarra et a1. 1987).

Therefore, even if the noise level is no higher than during the primary (phase-2) response,

the confidence limits of the calculated phase-I parameters will be wide. The magnitude of

the phase-I response is typically only 50 % of the phase-2 response even at moderate

exercise intensities and is much lower than this (-30 %) at severe exercise intensities

(Carter et a1. 2002).

Non-linear regression, analysis of variance (ANOVA) tests, independent samples t-tests,

correlations and plots of frequency distribution were all conducted using SPSS for

Windows (Version 9.0). All other analyses used Excel. For each ANOVA, the degrees of

freedom were corrected for any violation of the sphericity assumption. This correction

was performed in line with the recommendation of Huynh and Feldt (1976). That is, the

Huhnh-Feldt correction was used when an estimate of the true value for E [the average of

the Huynh-Feldt and the Greenhouse-Geisser E values (Howell 1997)] was s 0.75 and the

Greenhouse-Geisser correction was used when this estimate was> 0.75.
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CHAPTER4

STUDY 1: THE INFLUENCE OF INTENSITY AND MODE OF EXERCISE ON

THE VOz RESPONSE TO EXHAUSTIVE SQUARE WAVE EXERCISE

4.1 Introduction

Research into the kinetics of V02 has been considerable (Whipp et al. 1982a; Barstow and

Mole 1991; Patterson and Whipp 1991; Poole et al. 1991; Barstow 1994; Barstow et al.

1994). The focus of this research has however tended to be within the moderate and heavy

intensity domains. The V02 response to exhaustive exercise of a short duration, where the

V02 required is close to or above V o-max, is not well understood.

Within competitive sport there are events which demand the competitor to compete at such

high intensities (middle distance running events and certain track cycling events). These

events demand high levels of both speed and endurance and therefore demand a large

energy contribution from both aerobic and anaerobic energy systems. The V 02 response

is an important determinant of the aerobic contribution and thus potentially of performance

but has received relatively little attention. Determining the V02 response to exhaustive

severe intensity exercise of an appropriate duration is therefore an important step in

understanding the physiology underpinning such events.

All severe intensities are expected to result in a slow component that (unlike that seen in

heavy exercise) will not attain a steady state but rather will continue to rise until Vo-rnax

is reached (Whipp and Ward 1990) or the exercise is terminated. The assumption is then

that, provided the duration is sufficient, severe intensity exercise will always result in the

achievement of V 02max. This assumption has received considerable support (Hill and

Ferguson 1999; Hill and Stevens 2001) and is central to current conceptions of the

physiological response to the various exercise intensities (Poole et al. 1988; Gaesser and

Poole 1996). Furthermore current mathematical models of athletic performance use a

simple mono-exponential function and an asymptote equal to V 02max to describe the V02

response for all events of a short duration «420 s) (Capelli 1999).
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There is however research that suggests V02 may plateau at a rate below V02max during

exhaustive exercise at intensities that elicit exhaustion in less than 5 minutes. Astrand and

Saltin (1961) showed such a response in three out of five subjects in exhaustive cycling

exercise of less than 3 minutes duration, although they did not comment on it. This same

phenomenon was however clearly demonstrated in treadmill exercise (Spencer et al. 1996;

Spencer and Gastin 2001). When trained middle distance runners ran at 800 and 1500 m

race pace on the treadmill, V02 reached a plateau below V02max approximately halfway

through each run.

There are two reasons why Spencer et al. (1996) and Spencer and Gastin (2001) may have

shown a very different V 02 response to that shown by other researchers. Whereas other

researchers have used cycling (Hughson et al. 2000; Hill and Stevens 2001) and

moderately trained subjects (Hill and Ferguson 1999; Hughson et al. 2000; Hill and

Stevens 2001), Spencer et al. (1996) and Spencer and Gastin (2001) used running exercise

and a highly trained population.

Both mode of exercise (Billat et al. 1998b) and the level of aerobic training (Hagberg et al.

1980) have been shown to influence the V02 response at lower exercise intensities. Since

exhaustive severe intensity exercise has never been examined using aerobically trained

subjects in cycle exercise, it is unclear whether the reported differences in the V02

response were due to the mode of exercise or the trained nature of the subject population.

Furthermore Spencer et al. (1996) and Spencer and Gastin (2001) were not directly

investigating the V 02 response and did not use genuine square wave exercise transitions.

It still remains therefore for a plateau in V02 below V02max during exhaustive square

wave exercise, to be clearly identified and described in any mode of exercise.

The purpose of the present study was to investigate the effect of both exercise intensity and

mode of exercise on the V02 response to exhaustive square wave exercise of 2, 5 and 8

minutes duration. Two minutes was chosen as the shortest duration as this was similar to

that which Spencer et al. (1996) had used for their 800 m trials. Eight minutes was chosen

as a suitable duration to assess the presence of a "02 slow component.
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4.2 Method

4.2.1 Subjects

Nine male subjects (mean ± SD: age 25.4 ± 4.4 years, height 1.82 ± 0.07 m, mass 79.5 ±

8.6 kg) participated in the study. Subjects were trained, though not specifically for running

or cycling.

4.2.2 Study Design

All tests were performed on separate days, and subjects were required to complete four

running and four cycling tests. An initial ramp test to exhaustion was performed on the

first visit to the laboratory, to determine Vo-peak, peak speed, and an individual

relationship between work rate and \;02. Exercise intensities that would give test durations

of approximately 2, 5 and 8 minutes were firstly estimated from peak power or speed from

the progressive ramp test.

Three bouts of exhaustive square wave exercise (at intensities selected to elicit exhaustion

in approximately 8, 5, and 2 minutes) then followed. For each subject all four tests

(including the ramp test) were completed in one mode of exercise before any were

completed in the other. Four subjects completed the cycling transitions and five the

running transitions first. The sequence for completion of the square wave tests was

randomised.

4.2.3 Cycling Tests

For the ramp test, subjects cycled at either 80 or 90 rpm (whichever was the preferred

cadence) and this preferred cadence was then used for the square wave tests that followed.

The test load was increased by 0.1 kg every 20 seconds. This resulted in ramp rate of 22.0

or 24.7 W.min-1, depending on cadence. The starting load was determined depending on

the fitness of the subject to elicit exhaustion in approximately 10 minutes.
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Prior to each test, subjects performed a 5 minute warm up at 50% of peak power (estimated

in the case of the ramp test) from the ramp test. A 5 minute rest period then followed,

during which subjects were encouraged to stretch.

4.2.4 Running Tests

For the ramp test speed was increased by 0.1 krn.h" every 5 seconds (a ramp rate of 1.2

km.h'lmin"). The starting speed was determined depending on the fitness of the subject to

elicit exhaustion in approximately 10 minutes.

Prior to each test, subjects performed a 5 minute warm up at 50% of peak speed power

(estimated in the case of the ramp test) from the ramp test. A 5 minute rest period then

followed, during which subjects were encouraged to stretch.

4.2.5 Collection oj expirate

Expired gases were collected, using the Douglas bag method, throughout each test. For the

progressive tests, 60 second collections were taken. In the square wave tests, 30 second

gas collections were taken throughout the first 4 minutes of the test and 60 second

collections thereafter. For the final collection, in any test, the collection period needed to

be at least 20 seconds to be included in the data analysis.

4.2.6 Data analysis

Similar to other research (Hughson et al. 2000) a slightly higher V02 was recorded in the

longer square wave tests than during the progressive ramp test in some subjects.

Consequently Vonnax was taken to be the highest V02 achieved in any of the four tests.

The V02 slow component was quantified as the difference between the V02 at the

sampling period between 2.5 and 3.0 minutes and the final V02 for the 5 and 8 minute
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tests. Whether a plateau had occurred in V 02 was determined by evaluating the difference

between the last two collection periods (~ V02).

The influence of exercise mode and intensity was investigated with a 2 x 3 (exercise mode

x test duration) repeated measures ANOVA. Since no significant interactions were found

(see section 4.3), main effects for test duration were investigated post hoc using

Bonferonni corrected t-tests performed on combined (mean) data from both cycling and

running tests. The P values given for this analysis are the corrected (Bonferonni) values.

In instances where this corrected P value was greater than I, this P value is not given.

Differences between the cycling and running conditions from the ramp test, the magnitude

of the slow component and the ~ V02 between the last two collection periods of the two

minute tests were evaluated using paired t-tests, An alpha level ofO.05 was used for all

tests. Group data are mean ± SO unless otherwise stated.

4.3 Results

The Vo-rnax (defined as the highest V 02 achieved in any of the tests in each exercise

mode) did not differ (P=0.15) between running and cycling (4.76 ± 0.51 and 4.64 ± 0.51

L.min-1 or 60.0 ± 2.9 and 58.5 ± 3.3 ml.kglmin"), The intensity (calculated from the

V02- WR relationship from the ramp test), expressed as a percentage of V02max, was 82.8

± 6.0, 91.7 ± 7.2 and 106.7 ± 5.4 % respectively for the 2,5 and 8 minute cycling tests. For

the running, the intensity, expressed as a percentage of V02max, was 90.3 ± 3.3, 97.7 ±
2.5 and 109.9 ± 4.3 % respectively for the 2,5 and 8 tests.

Peak values from the square wave tests, together with test duration and the percentage of

V o-max attained, are contained in Table 4.1 (cycling) and Table 4.2 (running). A degree

of variability in test duration of the square wave tests was inevitable due to the exhaustive

nature of the tests. However there was no interaction (mode x duration) found for test

duration (P = 0.754) and no main effect for mode of exercise difference in test duration
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(P=O.761). As expected a main effect was found for duration (P < 0.001) and all three test

duration were different from each other (P < 0.001 in all cases).

Table 4.1: Peak values from, and test duration of, the square wave cycling tests

Test Duration

8 minutes 5 minutes 2 minutes

V02 (Lrnin") 4.53 ± 0.48 4.51 ± 0.58 4.19 ± 0.64

% V02max 97.5 ± 2.0 96.9 ± 4.2 89.9 ± 5.5

HR(b.min-1) 183.1 ± 9.5 180.2 ± 8.3 174.7 ± 9.5

Lactate (mmol.L") 8.64 ± 1.62 7.96 ± 0.83 7.53 ± 1.03

RER 1.18±0.07 1.25 ± 0.09 1.36 ± 0.11

Test Duration (min) 8.55 ± 1.88 4.65 ± 0.75 2.25 ± 0.43

Table 4.2: Peak values from, and test duration of, the square wave running tests

Test Duration

8 minutes 5 minutes 2 minutes

V02 (Lmin") 4.73 ± 0.53 4.69 ± 0.50 4.37 ± 0.47

% V02max 99.1 ± 2.2 98.4 ± 1.8 91.7±2.5

Heart rate (b.min') 191.4 ± 13.7 186.3 ± 10.8 182.6 ± 9.5

Lactate (mmol.L -I) 7.27 ± 1.46 7.38 ± 1.12 7.12 ± 1.44

RER 1.13 ± 0.06 1.18 ± 0.05 1.30 ± 0.08

Test Duration (min) 8.43 ± 0.88 4.76 ± 0.72 2.01 ± 0.20
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For V02peak no interaction (mode x duration) was found (P = 0.978) and no main effect

for mode (P = 0.222). A main effect was found for duration (P < 0.001), where V ospeak

was found to be lower in the 2 minute test than either the 5 or 8 minute tests (P < 0.001 in

both instances). No difference was found between the 5 and 8 minute tests.

For HRpeak no interaction (mode x duration) was found (P = 0.625). A main effect was

found for mode of exercise (P = 0.006) with running producing the higher values. A main

effect was also found for test duration (P = 0.002), with the 2 minute test producing higher

values than both the 5 (P = 0.001) and 8 minute (P = 0.003) tests. There was no difference

in HRpeak between the 5 and 8 minute tests (P = 0.208).

For post exercise lactate concentration no interaction (mode x duration) was found (P =

0.058). Furthermore no main effects were found for either mode of exercise (P = 0.135) or

test duration (P = 0.254).

For peak RER no interaction (mode x duration) was found (P = 0.775). A main effect was

found for mode of exercise (P = 0.025) with cycling producing the higher values. A main

effect was also found for test duration (P < 0.001), with the 2 minute test producing higher

values than both the 5 and 8 minute tests (P < 0.001 in both instances). Furthermore the 5

minute test produced higher values than the 8 minute tests (P = 0.008).

The V02 responses of a typical subject, expressed as % V02max, are contained in figures

4.1 (cycling) 4.2 (running). The V02 response of this subject is consistent with the mean

response shown in figures 4.3 (cycling) and 4.4 (running). It is clear that V02peak is

lowest in the 2 minute test for both modes of exercise. It is also apparent that for the 2

minute test a plateau in V02 occurred in the running test, but not in the cycling test. To

investigate this apparent difference in the response between the two modes of exercise, the

6.V02 was calculated between the last two collection periods in the 2 minute test. A clear

difference was shown in the V02 response. In the 2 minute cycling test V 02 increased

across the final two collection periods (3.99 ± 0.63 vs. 4.17 ± 0.65 Lmin"; P = 0.007). In

the 2 minute running test no such increase was observed (4.33 ± 0.46 vs. 4.33 ± 0.45
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L.min-I; P = 0.983). This equated to a ~ \102 of0.18 ± 0.15 Lmin" in the cycling test and

0.00 ± 0.09 L.min-1 in the running test.

Investigation of the slow component in the 5 minute tests showed no difference between

the exercise modes (P=0.178). The magnitude being 0.26 ± 0.15 L.min:' for cycling and

0.17 ± 0.12 L.min:l for running. For the 8 minute tests however, the slow component was

higher in cycling than running (0.59 ± 0.16 vs. 0.42 ± 0.08 Lrnin."; P=0.013).

6.0

2.0

5.0

4.0-'c:
'E
d 3.0
No
>

1.0~----4------r-----+----~------~----4-----~---
o 60 120 180 240

Time (5)

300 360 420

Figure 4.1: Oxygen uptake response for exhaustive square wave cycling lasting
approximately 8 min C.), 5 min (.)and 2 min CO) for a representative
subject. Broken line indicates ~02max.
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Figure 4.2: Oxygen uptake response for exhaustive square wave running lasting
approximately 8 min (.), 5 min (e)and 2min (0) for the same
representative subject. Broken line indicates ~02max.

~ 70%
E
N

~ 60%
rfl.

90%

80%

50%

40%

30%

20%+-----~----~------~----~----~------~----~----~----__,
o 60 120 180 240 300

Time (5)
360 420 480 540

Figure 4.3: Mean V02 response (expressed as %V02max) for exhaustive square
wave cycling lasting approximately 8 min (.), 5 min (e)and 2min (0)
for all subjects
Note: Error represent the SEM. For clarity they are omitted from all but the final
data points.
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Figure 4.4: Mean ~02 response (expressed as % ~02max) for exhaustive square
wave running lasting approximately8 min (.), 5 min (e)and 2 min (0)
for all subjects
Note: Error represent the SEM. For clarity they are omitted from all but the final
data points.

4.4 Discussion

The present study demonstrated that the '102 response is affected by exercise intensity for

exhaustive square wave cycling and running in the severe intensity domain. The square

wave exercise tests lasting approximately 2 minutes produced a significantly lower

V02peak than either the 5 or the 8 minute tests. This was shown in both running and

cycling using aerobically fit subjects. There was no difference in V02peak between the 5

and 8 minute tests, suggesting that V02 is able to reach its maximum in exhaustive

exercise of such duration.

Exercise intensities were used that would result in exhaustion in a specific duration, as

opposed to workrates equating to a specific percentage of V o-max (Hebestreit et al. 1998;

Hughson et al. 2000), or a specific absolute workrate (Margaria et al 1965). The square
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wave test of approximately 2 minutes duration was the only test for which the theoretical

V 02 required was greater than V o-max. The variance in workrates when expressed as a

percentage of V02max (see Section 4.3) highlights the problem of setting exhaustive

workrates as a percentage of V02max in severe intensity exercise. This variability,

perhaps due to differences in anaerobic capabilities, may explain contrasting results in the

literature.

The results show that the assumption that V 02 will always attain V 02max in severe

intensity exhaustive exercise (Whipp 1994a) is incorrect. The response demonstrated in

the 2 minute trials was similar to that reported by Spencer et al. (1996) and Spencer and

Gastin (2001) in 800 m runners. Furthermore the V02 response (Figures 4.1 to 4.4)

appeared to be tending neither towards the V02 required nor to Vo-max, but rather to a

plateau which was below V02max. This plateau effect was especially pronounced in

running exercise.

The shortest duration exhaustive square wave exercise then showed a response that,

according to current understanding of V02 kinetics (Gaesser and Poole 1996), was

atypical. Examination of the data from the ramp test and the longer square wave tests

however showed responses that would be considered typical. In the 5 and 8 minute tests a

slow component was incurred and V02 continued to rise until V o-max was achieved.

Furthermore, consistent with previous research, the slow component was shown to be

greater in cycling than running (Jones and McConnell 1999; Billat et al. 1999b; Billat et

al.2000; Carter et al. 2000a). That the subjects demonstrated such typical V02 responses

to the other exercise tests suggests that the shortfall in the V 02 response observed in the 2

minute test is a genuine phenomenon and not the result of an atypical subject group.

The V02 response to severe intensity running shown by Spencer et al. (1996) differed

from that reported in other research (Hill and Ferguson 1999; Hughson 2000; Hill and

Stevens 200 I). The present study sought to answer two important questions regarding the

findings of Spencer et al. (1996). Firstly, could the apparent shortfall in the V02 response

be demonstrated in genuine square wave exercise? Secondly, if such a response was

shown in square wave exercise, was it due to the mode of exercise or the training status of
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the subjects? The response shown in the present study in the 2 minute tests supports the

findings of Spencer et al. (1996) and suggests that the plateau seen in \102, below

\102max, is a reproducible phenomenon in exhaustive running of this duration. The

shortfall in the \102 response was similar in cycling but a clear plateau was not shown.

It is well established that at all exercise intensities there are distinct phases of \102 kinetics

(Xu and Rhodes 1999). The first phase can be regarded as essentially a delay phase,

representing an increased venous return. This is followed by a second phase representing

the rate of oxygen consumption at the working muscle (Barstow et al 1990). The present

study used a Douglas bag system and expired gases were collected continuously over 30

second periods during the initial stages of the tests. A lack of data points made it

impossible to distinguish between phase-l and the primary (phase-2) response and

therefore to model the response in any meaningful way. However, the \102 varied very

little over the second minute of the 2 minute tests. If this apparent plateau in \102 was the

asymptote of an exponential response, the kinetics were very fast as represented by t (time

taken to reach 63% of the asymptote). A breath-by-breath analysis of the response would

be necessary to investigate the nature of this response, however.

An important issue regarding the nature of the \1 02 response to the 2 minute test is

whether the primary V02 response was tending towards the observed plateau throughout

the exercise. Alternatively \102 may have been tending towards a higher asymptote,

possibly the V02 required (Whipp 1994a; Hill and Stevens 2001), but this response may

have been limited by some other mechanism. Whether the V02 response to exercise of

this intensity should be referenced to its apparent asymptote has been the focus of

considerable debate (Margaria et al. 1965; Williams et al. 1988; Hughson et al. 2000; Hill

and Stevens 2001). This debate has however really only questioned whether such a

response would be tending to V02 required or to \102max. Where the response tends

towards will greatly influence the r, and therefore whether V02 kinetics are seen to be

faster or slower in short duration exhaustive exercise when compared to heavy and

moderate exercise intensities.
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Hughson et al. (2000) collected breath-by-breath data on subjects performing exhaustive

cycle exercise at 96 and 125 % of V o-peak and attempted to model the response. In

contrast to the present study \;02 achieved maximal or near maximal rates at both

intensities (101.3 ± 7.4 and 96.1 ± 9.0 % V02peak at 95 and 125 %% V02peak

respectively). However, these large standard deviations suggest a far from consistent

response. The average duration for the most severe exercise was little more than 1minute

and a shortfall might therefore be expected in these shortest tests because of insufficient

time for the response to fully develop. A phase-2 time constant of 12.5 seconds was

reported however, suggesting that if the response was tending to V02 required, there was

sufficient time for the achievement of V02peak. When modelling this response Hughson et

al. (2000) used both a three-component exponential model and a semi-logarithmic model.

The three component model showed an apparent speeding of the phase-2 V02 kinetics

with increasing exercise intensity. The semi-logarithmic method was constrained to have

the V02 required (i.e. 96 and 125% V o-peak) as its asymptote. This model showed phase-

2 V02 kinetics to be slowed in short duration exhaustive exercise relative to moderate

intensity exercise. Hughson et al. (2000) concluded that both the asymptotic value of

phase-2 (relative to V o-peak) and the apparent slowing of \;02 kinetics were due to

inadequate 02 delivery. They argued that \;02 kinetics tend initially to the V02 required

but are limited by 02 delivery giving an apparent rather than actual asymptote, and that the

response should therefore be constrained to the V02 required. The data from the present

study (figures 4.3 and 4.4) show no evidence of a third phase of V02 kinetics (as shown by

Hughson et al. 2000) during the 2 minute trials, although breath-by breath data would be

needed to confirm that it was in fact a two-phase response.

It has previously been demonstrated that prior exercise in the heavy intensity domain (i.e.

supra AT exercise) speeds the \;02 response (Gaushe et al. 1989; Gerbino et al. 1996;

McDonald et al. 1997). Vasodilation and elevated muscle blood flow, coupled with an

acidemia improved diffusion gradient, have been suggested as the probable mechanisms

for the adaptation. It was ensured in the present study that all subjects performed a warm

up of a moderate (not heavy) intensity exercise (50% peak speed) prior to testing.
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Peak HR was lower in both 2 minute tests, compared with the 5 and 8 minute tests, in both

exercise modes. Subjects were unable to reach a maximum HR, and potentially were

unable to reach maximum cardiac output therefore, during exhaustive exercise of

approximately 2 minutes duration. However, previous research suggests that HR and

cardiac output kinetics are unlikely to limit V02 at the onset of exercise (Cerretelli et al.

1966; Davies et al. 1972; Linnarson 1974; Eriksen et al. 1990; De Cort et al. 1991).

Whatever the underlying physiological mechanisms, the finding that V02 may plateau

below V02max in aerobically fit individuals in running events of approximately 2

minutes, has implications for our understanding of performance in middle distance

running, particularly the 800 m. The results of the present study challenge the validity of

the existing models of running performance that assume a V 02 response that tends to

V02max (Di Prampero 1986; Peronnet and Thibault 1989; Di Prampero et al. 1993; Olds

et al. 1993; Capelli 1999). That the nature of this response is poorly understood is perhaps

an important factor in the lack of consensus among both sports scientists and coaches

about the relative aerobic / anaerobic contributions to metabolism in middle distance

running events (Gamboa et al. 1996; Hill2000).

Considerable research has focused on the third slow phase of V02 kinetics and the possible

physiological mechanisms underlying it (Barstow et al. 1996; Patterson and Whipp 1991;

Poole et al. 1988; Whipp and Wasserman 1972). More recently debate has arisen over

whether the response is the same in cycling and running. Research has been equivocal,

showing a similar response in both exercise modes (Bernard 1998), no significant third

phase in running (Billat et al. 1998a), or a lesser but still significant third phase in running

(Jones et al. 1999). Comparisons between these studies are difficult however due to the

large variation in the aerobic capabilities ofthe subjects. The present study did

demonstrate that a third phase was manifest in both exercise modes. No difference was

found in the magnitude of the slow component in the 5 minute test, but in agreement with

Jones et al. (1999) this third phase was shown to be of a significantly greater magnitude in

cycling for the 8 minute test.

In summary, the present study showed that in exhaustive square wave exercise in the

severe intensity domain, the V02 response is affected by exercise intensity. It was
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demonstrated for the first time that in genuine square wave exercise at intensities severe

enough to result in fatigue in approximately 2 minues, \;02 reached a plateau below its

maximum rate. This phenomenon was particularly clear in running although the response

was similar for cycling. However, the cycling response was still rising during the last 30

seconds of exercise and could be interpreted as tending to \;02max (albeit slowly). The

present study showed that the plateau in \;02 was then, in part, dependent on the mode of

exercise and the following studies therefore used running, where the plateau had been

clearly demonstrated. That \;02 may plateau below V osmax challenges current

assumptions about \;02 kinetics and questions the validity of existing models of athletic

performance. The Douglas bag analysis of expired gases did not allow modelling of the

data however. A breath-by-breath analysis of the response was therefore warranted.
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CHAPTERS

STUDY 2: VALIDATION OF THE QP9000 FOR THE MEASUREMENT OF V02,

V C02 AND V E IN TREADMILL RUNNING

5.1 Introduction

The measurement of pulmonary gas exchange on a breath-by-breath basis has become

routine and necessary for a variety of investigations (Lamarra and Whipp 1995). Breath-

by-breath measurement saves time and offers sufficient data to evaluate non-steady state

exercise (Veersteeg and Kippersluis 1989). Consequently there are many commercially

available systems offering on line analysis (King et a1. 1999).

On-line analysis has progressed since early semi-automated systems where expired gases

went first to a mixing chamber and then to a gas meter, via three anaesthesia bags

(Wilmore and Costill 1974). Fully automated systems were later developed that used a

flow transducer and a mixing chamber (Wilmore et a1. 1976). Such systems were further

developed to align the ventilation signal to the measurement of mixed expired gases (Jones

1984). Mixing chamber based systems are ideal for the measurement of gas exchange

variables as mean values over 15 or 30 second periods, but if assessment of non-steady

state exercise is required they may be problematic as the response is likely to be slurred

(Whipp and Lamarra 1995). Most modem systems assess pulmonary gas exchange on a

breath-by-breath basis, where the sampling line from the gas analysers is connected

directly to the mouth and a mixing chamber is not necessary (Holly 1993).

The QP9000 is a mass spectrometer based breath-by-breath system that provides almost

continuous measurement (each gas channel is measured every 20 ms) of dry gas

concentrations. The gas concentration signals are time aligned and coupled with the gas

volume signal from a turbine flow meter.

Whilst the use of on-line analysis systems has increased, off-line systems, involving

expirate collection using meteorological balloons or Douglas bags and analysis using

electronic gas analysers, remain the gold standard against which other methods are

compared (Davis 1995). Several researchers have used such off-line systems as criterion
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measures against which to compare breath-by-breath equipment (Veersteeg and

Kippersluis 1989; King et al. 1999; McLaughlin et al. 2001). Whilst the QP9000 has been

used in several published clinical experiments (Corfield et al. 1999; Clar et al. 1999; Harty

et al. 1999), a comprehensive validation of the QP9000, against a criterion measure, has

not been reported.

Atkinson and Nevill (1997) emphasise the importance of assessing both validity and

reliability when evaluating equipment. Validity (or accuracy) refers to how truthful a

measure is, i.e. how well the measured value agrees with the true or criterion value.

Reliability (or precision) refers to the consistency or repeatability of a measure (Morrow et

al. 1995).

Methods used to compare two measures have been the subject of some controversy.

Traditionally correlation coefficients have been used (Davis et al. 1976), and more recently

the coefficient of variation (a measure of typical error) (Hopkins 2000) has also been

suggested. Both these approaches have been criticised (Bland and Altman 1986, 1995;

Atkinson and Neville 2000). Bland and Altman (1986) advised against the use of the

Pearson Correlation Coefficient since it would not take account of systematic bias and is

heavily dependent on sample heterogeneity. However, similar studies to the present one

have used the correlation approach (Jones 1984; Rietjens et al. 2001). The coefficient of

variation (calculated as SD / mean and expressed as a percentage) has also been criticised

(Atkinson and Neville 2000), due to the flawed assumption that heteroscedastic error is

always present (i.e. that the largest test-retest differences occur where the measured values

are highest). The limits of agreement (LOA) approach, appears to be the preferred method

in modern studies (King et al. 1999; Lamb et al. 1999; McLaughlin et al. 2001; Rietjens et

al. 2001). Whatever approach is undertaken it is important that the comparison is made

across an appropriate physiological range (Davis 1995) for the purpose that the instrument

is designed for.

Limits of agreement is a technique that allows systematic and random errors to be

considered separately. For example, in method comparison studies, the difference between

the two methods is determined for each subject. The mean of these differences is

representative of the systematic error (bias); the standard deviation (SD) of the differences
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is representative of the random error (uncertainty). Typically the 95% 'Limits of

agreement' would be obtained by adding and subtracting 1.96 x the SD to the mean

difference (Atkinson and Nevill, 2000). The appeal of the method is that the calculations

involved are straightforward and the limits can be presented visually using the so-called

'Bland and Altman plot' (Bland and Altman 1986).

The purpose of the present study was to evaluate the validity and reliability of the QP9000

in the assessment of V02. V C02 and V E. The comparisons were made against a Douglas

bag based system and across an appropriate range of exercise intensities.

5.2 Method

5.2.1 Subjects

Six males who were physically active, but not specifically running trained (mean ± SD:

age 28.2 ± 3.7 years, height 1.83 ± 0.07 m, mass 81.1 ± 10.6 kg) participated in the study.

5.2.2 Study design

The study involved four separate protocols. Each was performed four times by each

subject (twice each for on-line and off-line systems). This enabled comparisons within as

well as between each system to be made. The turbine used in the on-line measurement is

bi-directional and therefore, unlike the valve box used off-line, has only a single aperture

for both inspirate and expirate. This meant that simultaneous measurement using the two

systems was not possible.

The four protocols were rest (8 min), a ramp test (to exhaustion), a square wave test at a

moderate intensity (8 min) and a square wave test at a severe intensity (to exhaustion).

The resting conditions were performed 5 minutes prior to the ramp tests and the moderate

intensity tests were performed 5 minutes prior to the severe intensity test, since the V02

response for heavy intensity exercise has been shown to be unaffected by prior moderate

intensity exercise (Gerbino et al. 1996). The resting - ramp combinations were performed
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before the moderate - severe combination. This was done because the data from the ramp

test were needed to calculate the moderate and severe intensity speeds. Each session of

data collection was at least 24 hours apart. The order in which the systems were used was

counterbalanced.

5.2.3 Test Protocols

All tests were conducted on the motorised treadmill and the resting data were collected

with the subject standing on the treadmill belt. In the resting condition subjects stood on

the treadmill belt and breathed through the appropriate apparatus for 2 minutes prior to

data collection. The same 2 minute period of (standing) rest also preceded each of the other

protocols. Expired gases were collected over two consecutive 4 minute periods, with data

from the second of these 4 minute periods being retained for analysis. The resting

condition was performed on the treadmill since later studies would require the calculation

of a baseline \102 representing the \1 02 immediately prior to exercise.

The speed for the ramp test was increased by 0.1 km.h"1 every 5 seconds (a ramp rate of

1.2 km.h'lmin") throughout the ramp test. The starting speed was estimated depending on

the fitness of the subject to elicit exhaustion in approximately 10 minutes. Whilst subjects

were encouraged on each occasion to run for as long as possible, only complete 60 second

periods were used in the data analysis. Data from the first two minutes of the test were

excluded from the analysis.

The moderate intensity test was run at a speed equivalent to approximately 50% of the

peak speed achieved during the ramp tests. Subjects exercised for 8 minutes, and the data

from the final 60 second period were used in the analysis. The severe intensity test was

run to exhaustion at an intensity equivalent to approximately 95% of the peak speed

achieved during the ramp test. Data from the 4th minute of exercise were used for the data

analysis, since this was the last 60 second time period achieved by all subjects
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5.2.4 Expirate collection and analysis

The off-line analysis was conducted using the Douglas bag (DB) method. Continuous 60

second gas collections were taken for all conditions except the resting condition, where

two 4 minute collections were taken. Longer collections were used at rest to ensure a

sufficient volume of expirate was collected, to reduce the risk of error in the measurement

ofFE02 and FE02 due to the residual volume of the Douglas bag. The absolute error in V E

is constant (Wood 1999), therefore the relative error in the determination of v02 decreases

as V E increases (see section 3.7). The first two collections from the ramp test were

excluded from the analysis for the same reason.

On-line (B x B) analysis was performed using the QP9000. Variables determined on a

breath-by-breath basis were averaged to match the same 60 second or 4 minute collection

periods that were used for the off-line gas analysis.

5.2.5 Data Analysis

The QP9000 was assessed for both validity and reliability for V 02, V C02, and V E across

an appropriate range of exercise intensities. The focus was on these three variables as

other important respiratory variables such as RER and ventilatory equivalents are simply

ratios of these three primary variables.

To determine the statistical significance of any differences, relative to random error,

between systems, two approaches were adopted. First a 2 x 3 (system x intensity) repeated

measures analysis of variance (ANOYA) was used to evaluate data from the resting,

moderate intensity and severe intensity tests. Second a paired t-test was used to compare

the data from the final minute of the ramp test. Since each test was performed twice for

each system, averaged data from the two tests were used in the analysis. Repeated paired

t-tests (Bonferonni corrected) were used post hoc to highlight significant differences from

the ANOYA.

To evaluate the reliability of the QP9000, in comparison to that of the DB system, data

from the ramp tests were used. For each subject, and for each system, the difference
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between test 1 and test 2 was determined for each minute of the test (excluding the first 2

minutes of the test). Similarly, the difference between test I for the DB system and test I

for the B x B system was determined, for each subject and for each minute of the test. The

same approach was adopted for V 02, V C02 and V E.

The two-way ANOV A described above revealed significant interactions for both V C02

and V E. This suggested that the difference between systems is a function of exercise

intensity for these variables. Hence, for each subject the differences between test 1 for the

DB system and test 1 for the B x B system were regressed on the mean of the two values

for both V C02 and V E. The slope of the regression equation was always less than 0.22 for

V C02 and 0.11 for V E, and was not significantly different from zero for V C02 (p = 0.092)

or V E (p = 0.326) (l-sample t-test), However, since the slopes of these regressions were

not all in the same direction the SD of the residual differences were used as an index of

intra-individual variation, for each comparison and for each variable. For each variable,

intra-individual variation was evaluated by performing a one-way repeated measures

ANOV A on the intra-individual SDs across the three comparisons. The alpha level was set

at 0.05% for all tests. Data are mean ± SD.
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5.3 Results

Data collected at rest, from both square wave tests, and from the final minute of the ramp

test are contained in Table 5.1. As expected, the two-way ANOV A revealed a main effect

for exercise intensity in all three variables (P<O.OO 1).

Table 5.1: Data from resting (rest) and square wave (moderate and severe) tests,
together with data from the final minute of the ramp test (max) for on-
line (BxB) and off-line (DB) data collection systems as well as the
difference between systems (dift) (BxB - DB)

BxB DB Diff

V02 Rest 443±116 408 ± 65 35 ± 65

(ml.min") Moderate 2591 ± 392 2527 ± 359 64 ± 105

Severe 4180 ± 629 4204 ± 616 -24 ± 89

Max 4159 ± 725 4155 ± 713 4± 69

VC02 Rest 378 ± 110 344 ± 56 34± 58

(ml.min") Moderate 2258 ± 328 2294 ± 337 -9 ± 92

Severe 4642 ± 714 4794 ± 708 -152 ± 114

Max 4568 ± 775 4747 ± 830 -178±115

VE Rest 12.3 ± 3.3 12.0 ± 2.5 0.2 ± 2.2

(Lmin") Moderate 62.8 ± 8.0 65.6 ± 7.7 -2.9 ± 1.9

Severe 139.8 ± 23.3 147.5 ± 23.0 -7.7 ±4.6

Max 136.6 ± 23.6 142.6 ± 25.7 -6.0 ± 4.0
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Analysis of variance for V'02 revealed no interaction (P=0.21 0), and no main effect for

system (P = 0.358). For V'C02the ANOYA did reveal an interaction (P = 0.011), but there

was no main effect between systems (P = 0.119). For V'E there was an interaction (P =

0.003) and a main effect for system (P = 0.010), with off-line analysis recording the higher

values. Post hoc analysis demonstrated a significant difference for V E at both moderate

and severe exercise intensities (P=0.037 and P=0.029 respectively), whilst V C02 showed a

difference which was close to statistical significance only at the highest exercise intensity

(P=0.067).

The paired t-test on data from the final period of the ramp test confirmed this intensity

effect. No significant difference was found between the two systems for V02 (P=0.893).

Differences were shown however for both V C02 (P=O.O12) and V'E (P=O.O14). One-way

ANOYA revealed no differences between conditions for the intra-individual SO (P=0.146,

0.645 and 0.716, for V'02, VC02 and V'E respectively). Individual SOs and the group

mean ± SD of the individual SDs are contained in Table 5.2.
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Table 5.2: Intra-individual SDs for V02. V C02 and V E. in the comparisons
between on-line test 1 and off-line test 1 (BxBI v OBI), on-line test 1
and on-line test 2 (BxBI v BxB2), and off-line test 1 and off-line test 2
(DBI v DB 2).

Subject BxB 1 v DB 1 BxB 1 v BxB 2 DB 1 v DB 2

vo, 183 73 180
(ml.min") 2 52 40 99

3 143 133 49
4 46 39 71
5 102 47 82
6 55 43 108

MEAN 97 62 98
SD 56 37 45

VCOz 1 127 53 79
(ml.min") 2 52 39 92

3 108 130 73
4 51 213 81
5 67 64 44
6 64 48 56

MEAN 78 91 71
SD 32 68 18

YE 1 6.5 6.5 2.1
(Lmin") 2 2.1 1.2 3.4

3 4.0 4.5 2.6
4 2.8 5.2 3.1
5 2.7 2.2 2.6
6 4.3 1.6 4.3

MEAN 3.7 3.5 3.0
SD 1.6 2.1 0.8

Note: V CO2 and V E data are SD of residuals from regression (see Section 5.2.5)
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5.4 Discussion

The principal finding from the present study was the agreement between systems for the

measurement of V 02. The QP9000 was assessed for both systematic bias and random

error across a range of metabolic rates from rest to maximal exercise.

The present study focused only on the measurement of V 02, V C02 and V E. Other

variables such as RER and ventilatory equivalents were not examined in this analysis,

although they are important in the assessment of respiratory function. However, since they

represent ratios of the three primary variables (V 02, V C02 and V E), they should be both

reliable and valid provided the primary variables can be shown to be so. Previous

validation studies have also concentrated solely on \102, V C02 and V E (King et al.1999;

McLaughlin et al. 200 I).

There was no evidence of systematic bias for \102 at any exercise intensity. Results from

the two-way ANOV A suggested that systematic bias was present for both V C02 and V E,

however. The largest differences were at the highest exercise intensities for both variables.

Results also showed that V E was measured systematically lower using the QP9000 data

collection system across the range of exercise intensities. The analysis of the final period

of the ramp test provided further evidence of this intensity effect, with no difference in

\1 02 but differences in both V C02 and \1 E·

Examination of the mean and SD of the differences (Table 5.1), showed that despite the

interaction demonstrated for \1 C02 and \1 E, the level of bias and of random error for all

three variables examined was relatively small, across all exercise intensities. The

calculation of the SD of the differences also allowed for comparisons to be drawn between

this study and previous research which has used a LOA approach. Limits of agreement are

calculated as ± 1.96 x the SD of the differences (Bland and Altman 1986). Such

comparison shows that the QP9000 demonstrates a better level of validity than has been

reported for other published studies on breath-by-breath systems (King et al.1999;

McLaughlin et al. 2001). Caution should be exercised in applying such comparisons

however. Limits of Agreement themselves have confidence limits, which will be

dependent on the size of the sample (Bland and Altman 1999). As the present study used
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only six subjects these confidence limits would be expected to be wide. The conclusions

from this part of the analysis were that, whilst there existed some issues with the QP9000's

measurement of V C02and V E, the bias was small and the LOA were narrow (0.19, 0.15

and 7.25 Lmin" for V02, V C02and V E respectively) for all variables.

An examination of resting values was included in the analysis, due to the need to

accurately measure a baseline V02 in future studies. The measurement of a pre exercise

V02 is important if the V02 response to exercise is to be modelled. It was for this reason

that the resting data were collected with the subject standing on the treadmill belt as if pre-

test. Agreement was demonstrated for all variables between the systems at rest.

The data from the ramp tests were used to compare the intra-individual variability between

the systems. For V02, V C02and V E, the variability was no greater for the QP9000 than

for the criterion Douglas bag system. Analysis of the ramp data therefore showed the

QP9000 to be a reliable instrument in the assessment of pulmonary gas exchange.

In summary, the QP9000 proved to be both valid and reliable for measuring V02 across

the full range of exercise intensities. The interactions observed for V C02and V E raised

concerns about the validity of the system to measure these parameters at high exercise

intensities. The purpose of the present thesis was to examine the V02 response to severe

intensity running and the QP9000 was demonstrated to be a valid and reliable tool for this

purpose.
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CHAPTER6

STUDY 3: BREATH-BY-BREATH ANALYSIS OF THE V02 RESPONSE TO

800 M RUNNING IN TRAINED RUNNERS

6.1 Introduction

Chapter 4 showed a \;02 response to exhaustive square wave running over a duration of

approximately 2 minutes that resulted in a \;02 plateau below \;02max. This response is

contrary to current understanding of \;02 kinetics in severe intensity exercise, where it is

expected that \;02 will tend to \;02 required and will always attain \;02max (provided

there is sufficient time for the response to reach \;02max). There is however literature that

has demonstrated a similar response to severe intensity running in the highly trained

(Spencer et al. 1996; Spencer and Gastin 2001). The data included in Study I (Chapter 4)

were collected using the Douglas bag method, and whilst a clear trend was apparent, it was

based on a limited number of data points.

In athletics the events that are of a short duration and in the severe intensity domain are the

middle distance events. The 800 m is the event that best matches the 2 minute exercise

duration used in Chapter 4. Although the world record for men in the 800 m is 101.73

seconds, 2 minutes represents a reasonable time for a club level runner.

Replicating track performance in the laboratory is problematic. First there are issues with

how to account for air resistance. Second many athletes struggle to run at high speeds on a

motorised treadmill (Hill 1999). There have yet to be published any breath-by-breath data

of genuine square wave running in a trained population. Consequently the nature of this

response and how it may differ from that of other exercise intensities is not known.

Study into \;02 kinetics using breath-by-breath data is now commonplace and the fitting of

mathematical models to describe the response is widespread. Breath-by-breath data

encompass not only the underlying response but also fluctuations in breathing that will

result in noise. The level of this noise differs widely between individuals (Lamarra et al.

1987). However very few researchers have attempted to evaluate the confidence limits of
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the parameter estimates from a given model or assess the impact of this noise on the

reliability of such models. Lamarra et al. (1987) and Potter et al. (1999) have attempted to

assess the impact of the level of noise on the parameter estimates, namely the time constant

(1') and the delay (8). However both studies were limited to moderate intensity exercise

and Potter et al. investigated the responses of children. Lamarra et al. showed that the

noise encountered with breath-by-breath data is Gaussian in nature, and that the confidence

limits of l' and 8 are to a large extent dependent on the level of this random noise. Potter et

al. (1999) showed that in the majority of subjects noise was not Gaussian. However Potter

et al. used a different method to Lamarra et al. to evaluate the distribution of the noise and

a child population (this is method is investigated in Study 4 (Chapter 7)).

Lamarra et al. (1987) went on to describe this effect of noise on the calculation of l' and 8

with the equation:

Kt = L (SD / GAIN) (6.1)

where ± KJ are the 95% confidence limits of the parameter estimate, L is a constant, SD is

the standard deviation of the noise and GAIN is the magnitude of the response (the

difference between the asymptotic value of V02 and the baseline or resting V02). It is

apparent from the data presented by Lamarra et al. that the value of the constant L was

approximately 50 for the conditions they investigated. However L is a function of both the

time constant (1') of the response and the amount of data available for the model fitting.

The short duration exhaustive exercise (2 minutes) shown in Study 1 combined a small

amount data with a seemingly fast V02 response. It remains to be established what a

typical value would be for L in exhaustive square wave exercise of a short duration (2

minutes).

Provided the noise is Gaussian, the SD of the response can be reduced with the use of

multiple transitions where data are first interpolated to second-to-second values and then

averaged across transitions. Lamarra et al. give a second equation that may be used to

determine how many of these repeated transitions must be completed to give a desired

confidence limit for t and 8, once L has been established:
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n = [(L X SD)/ (K, X GAIN)]2 (6.2)

where n is the number of transitions required to produce the desired confidence interval (±

Kn).

The use of multiple transitions is normal in studies that attempt to model the V02 response

to exercise (Whipp et al. 1982; Barstow and Mole 1991; Patterson and Whipp, 1991; Jones

and McConnell 1999). However, such studies do not appear to base the number of

transitions completed on the desire to achieve any given level of confidence in the

parameter estimates. Since the number of transitions required to achieve a given

confidence interval will be dependent on the magnitude of the ratio of the SD to the GAIN,

fewer transitions should be required at high exercise intensities. The gain would be large

at these high intensities, and noise is thought to be independent of exercise intensity

(Lamarra et al. 1987), although only moderate intensities have been investigated. That

fewer repetitions are required at the highest intensity is often assumed. Hughson et al.

(2000) used data averaged over four transitions for moderate intensity exercise, whereas

only two transitions were averaged in the severe intensity domain. Whilst this assumption

is perhaps a logical step, it remains to be demonstrated that noise is independent of

exercise intensity in the severe intensity domain.

It is generally considered that exhaustive exercise performed in the severe intensity domain

will result in the attainment of V02max (Hill and Smith 1999). In exercise performed at

intensities severe enough that the \102 required is in excess of V02max modelling the

response is problematic. Whether the primary (phase-2) response should be referenced as

tending to V02max or to the \102required has proved controversial when modelling such

exercise (Hughson 1978). However a recent study modelled severe intensity data

separately using either breath-by-breath data from the whole test or data from just the

initial 45 seconds of exercise (Hill and Stevens 2001). The study showed no difference

between the projected asymptote from the first 45 seconds of data and the theoretical v02

required (Hill and Stevens 200 I). This was interpreted as evidence that V 02 should be

referenced as tending to V02 required at such high intensities. The work of Hill and

Stevens (2001) provides support for the view that V 02 initially tends to the V02 required

but the response is cut off when V 02 is reached.
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The present study set out to do four things. First, to confirm that \102 would plateau below

Vosmax during severe intensity running at 800 m race speed in trained middle- and long-

distance runners (i.e. that the results from the Douglas bag system were genuine and not an

artefact of that system). Second, to describe the \102 response using a simple

mathematical model and assess the confidence limits of the parameter estimates of this

model. Third, to apply the equations of Lamarra et al. (1987), in particular to calculate a

value for L, for data collected in the severe intensity domain. Finally, to investigate

whether \102 was tending to the (sub maximal) plateau value or to a higher asymptote

(V02 required or \102max) by applying the method used by Hill and Stevens (2001).

6.2 Method

6.2.1 Subjects

Eight male subjects (mean ± SD: age 22.4 ± 4.5 years, height 1.80 ± 0.06 m, mass 68.8 ±

5.8 kg) volunteered for the study. All were trained competitive middle- and long-distance

runners, with a (mean ± SD) V o-peak from an exhaustive progressive test of 68.8 ± 5.6

ml.kg'lrnin", They were all familiar with both treadmill running and laboratory testing and

were asked to arrive for each laboratory session in a rested state and to suspend their

normal training for at least 24 hours prior to testing.

6.2.2 Study design

The subjects completed three test protocols on three separate days. These were an

individual 800 m track time trial, a (treadmill) ramp test to exhaustion, and a square wave

treadmill run at 800 m pace. All subjects performed the three tests in this order. The ramp

test was used to determine \102peak, HRpeak and the speed at the AT.

Subjects followed their usual warm up and stretching routine prior to the track time trial.

During the laboratory testing they performed a 5 minute run at a moderate intensity 7

minutes prior to each test as a warm-up. The speed for this run was estimated for the warm
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up prior to the ramp test but was calculated as a speed equivalent to 90% of the AT,

determined from respiratory data from the ramp test (Beaver et al. 1986), for the warm up

prior to the exhaustive run at 800 m pace. During the 7 minute period between the warm-

up and test, subjects were encouraged to stretch for 5 minutes. A 2 minute period of

breathing through the gas collection apparatus followed. Data from this period were used

to determine a baseline \1 02.

6.2.3 Test Protocols

The track time trials took place on a standard 400 m outdoor athletics track. All time trials

were performed within an hour of each other and subjects all ran individually. The testing

was performed in winter and air temperature was 9.4°C (determined from a hand held

electronic thermometer (Hannah Instruments, US)). Wind speed was light (2.4 krn.h") as

measured by a hand anemometer (Munro Ltd., London UK)). Times were recorded using

a hand held digital stopwatch (ATP, Leicester UK).

The speed for the ramp test was increased by 0.1 krn.h" every 5 seconds (a ramp rate of

1.2 km.hlmin") throughout. The starting speed was estimated depending on the fitness of

the subject to elicit exhaustion in approximately 12 minutes. A longer duration than was

used in study I was desirable in the present study to secure sufficient data for the

determination of the AT.

The speed for the square wave test was equivalent to the subject's average speed from the

track time trial plus 1 km" (to make some allowance for air resistance encountered outside

on the track). Pilot square wave tests (n = 8) were carried out prior to the study at average

track speed (n = 4) and at average track speed plus a speed individually calculated to

compensate for the extra \102 cost of running at the average track speed (n = 4). This extra

speed was calculated from the individual subject's Vo-running speed relationship and

published equations to determine body surface area (Dubois and Dubois 1916) and air

resistance (Pugh 1970). No subjects were able to maintain the air resistance corrected

speed for a duration comparable to the track times (mean ± SD: 67 ± 12 s for the treadmill

run v 119 ± 0 s for the track run), and in the trials at track speed several subjects were able
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to continue for too long (mean ± SD: 158 ± 10 s for the treadmill run v 140 ± 4 s for the

track run). (Pilot test data are given in Appendix 6 (Table A6.2).) Therefore track speed

plus I km.h" was adopted as a simple compromise, to give a test duration of

approximately 2 minutes.

6.2.4 Expirate analysis

Expired gases were analysed on-line using the QP9000.

6.2.5 Data Analysis

Breath-by-breath data were first converted to second-to-second data using linear

interpolation between breaths. Data from the ramp tests were used to determine V 02peak

and AT. Rolling 15 second averages were calculated for V02 for every complete 15

second period during the test, in order to determine V o-peak (the highest of these values),

for both the ramp test and the square wave test. The speed at the AT was determined from

the ramp test data using the V-slope method as described by Beaver et al. (1986).

The HRpeak was compared between all three test conditions using one way ANOV A. The

Vo-peak was compared between the two laboratory based tests using a paired Hest.

In modelling the V 02 response for each individual, it was decided to remove the data from

the first phase of the response (see section 3.10) (Chapter 3). Previous researchers

adopting this approach have excluded the initial 25 seconds of data (Whipp et al. 1982a;

Lamarra et al. 1987; Gerbino et al. 1996). In the present study however, due to the short

duration of the exercise, and after visual inspection of the data revealed that the first phase

was completed much earlier than 25 seconds, only the first 15 seconds of data were

excluded from the modelling of the response. The data were modelled using SPSS for

Windows (version 9.0). Non-linear regression (least sum of squares by iteration) was used

to estimate the gain (asymptotic value of V02 above baseline), the time constant (r) of the
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response, and the time delay (0) of the phase-2 response beginning. The single exponential

equation:

V02 (t) = baseline + GAIN x (l_e-(t-Ii)/T) (6.3)

was used for this purpose. The baseline (V 02) was calculated as the average V02 for the

sixty second period immediately preceding the square wave test. No parameters were

constrained and the resulting parameter estimates were therefore simply those that

produced the best fit model.

The approach described by Hill and Stevens (2001) was used to investigate the asymptote

of the model. The data from the first 45 seconds of the exercise (30 seconds of data since

15 had already been removed) were re-modelled using equation 6.3. The calculated GAIN

and t were then compared to those calculated from the whole data set using paired t-tests.

The theoretical 02 demand was calculated from the test speed and the individual V02-

running speed regression derived from the ramp data.

The issue of whether V02 had truly plateaued was addressed by examining the data from

the final 30 seconds of the square wave tests. A gradient was calculated from these data

for each subject and a mean gradient when the data for each second were averaged across

the subjects. The gradients were compared to zero using a one sample t-test. Any outlying

data points were removed prior to this analysis. Outliers were defined as being more than

3 SDs from the mean (Lamarra et al. 1987). It is normal for a small number of outliers to

be present in breath-by-breath data (Lamarra et al. 1987; Potter et al. 1999).

The level of noise on the data was also evaluated, again using data from the final 30

seconds of the square wave tests. A one-sample Hest revealed that the gradient, when

these data were regressed on time, was not different from zero (P = 0.794). However,

since these small gradients were not all in the same direction, the SD of the residuals

(around this regression line), rather than the SD of the differences from the mean, was used

to quantify the random error. This was done for both second-to-second and breath-by-

breath data.
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Whilst SPSS returns 95% confidence limits along with the parameter estimates, such limits

should not be used (Mutulsky and Ransnas 1987). Exact confidence limits cannot be

calculated for non-linear functions; reported confidence limits are based on linearising

assumptions and will underestimate actual confidence limits. Simulations described by

Lamarra et a1. (1987) were used to calculate confidence limits for the GAIN, r and D. It

was decided to calculate confidence limits for GAIN in addition to those described by

Lamarra et a1. (r and D) since this was a primary focus of this study.

Simulations were calculated by first calculating the SD / GAIN ratio for each subject. The

subjects who returned the highest and lowest ratios were used as the worst and best case

scenarios respectively. Parameter estimates from these subjects were used to generate 500

data sets per subject based on the underlying response superimposed with random noise

with a SD equal to the individual SD. Each data set was then modelled by the same

iterative method as the test data, and confidence limits (1.96 x SD) for each parameter

estimate were calculated from the values returned from these 500 model fits. These

confidence limits were then used, in conjunction with the gain of the underlying response

and the SD of the noise, to calculate a value for the constant L described by Lamarra et a1.

(1987), by manipulating Equation 6.1 to give:

L = [Kl / (SD / GAIN)] (6.4).

This calculated value for L was then used to calculate the number of transitions required to

return given confidence limits parameter estimates of r and D in the severe exercise domain

(Equation 6.2).

Relationships between V02peak (as an index of aerobic capability) and the parameter

estimates were evaluated. This analysis used Pearson correlation coefficients. The alpha

level was set at 0.05% for all tests. Data are mean ± SD unless otherwise stated.
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6.3 Results

Results from the three tests, including peak values for V02 and HR, are contained in Table

6.1. Peak V02 from the treadmill run at SOOm pace was found to be significantly lower

than that recorded from the ramp test (P = 0.008) despite the exhaustive nature of both

tests. There was no difference in HRpeak between the three tests (P = 0.243). Speed and

V02 at the AT were calculated as 12.9 ± 1.6 krn.h" and 3.11 ± 0.47 Lrnin" respectively.

Table 6.1: Results from the track time trial (800 m track), laboratory based
square wave run at 800 m pace (square wave), and ramp test (ramp)

800mTRACK SQUARE WAVE RAMP

Duration (s) 118±21 132 ± 11 737 ± 42

Average Speed (km.h") 21.9 ± 1.9 22.9 ± 1.9 N/A

V02peak (Lmin") N/A 4.14 ± 0.32 4.74 ± 0.55

V02peak (ml.kglmin") N/A 60.2 ± 1.2 6S.9 ± 5.6

HRpeak (b.min") 190 ± 13 186 ± 12 192 ± 4

The v02 response to the exhaustive square wave test is shown, along with the residual

errors, for a representative subject in Figure 6.1. The modelled response is only shown for

phase -2 (Le. from 16 seconds onwards). The mean response for all subjects, expressed as

a percentage of Vo-peak from the ramp test, is shown in Figure 6.2.
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Figure 6.1: The V02 response to the exhaustive treadmill test at 800 m pace (upper
panel) and the residual errors of the regression model (lower panel) for
a representative subject
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Figure 6.2: The mean V02 response for all subjects to the exhaustive treadmill test
at 800 m pace
Note: Error bars represent SEM. For clarity the error bars are omitted from all but
the final data point.

The parameter estimates from the modelling of the V02 response to the square wave run at

800 m pace are contained in Table 6.2. The asymptote expressed as a percentage of

V02peak from the incremental test is also included in this table.
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Table 6.2: Individual parameter estimates, for the asymptotic value of V02 above
resting (GAIN), time constant (r) and time delay (8), for the V02
response to the treadmill run at 800 m pace. The asymptote is given as
a percentage of V02peak and resting V02 (baseline) are also given

Subject Baseline GAIN Asymptote t 8

(ml.min") (ml.min") (%Vospeak) (s) (s)

1 512 3081 87% 10.9 11.8

2 680 4044 91% 11.9 11.7

3 645 3144 90% 14.6 7.6

4 416 3758 90% 16.1 10.5

5 598 3314 91% 9.8 12.4

6 568 3229 82% 7.1 12.3

7 595 3460 79% 6.9 11.6

8 745 3381 73% 8.1 13.4

MEAN

SD

595

101

3426
326

85%

7%

10.7

3.4
11.4

1.8

Oxygen uptake appeared to be reaching the plateau within 60 seconds (Figure 6.2). That

V02 was level throughout the last 30 seconds of the square wave test at 800 m pace was

confirmed by the gradients contained in Table 6.3. These gradients were shown to be not

different from zero (P = 0.771). The SD of the residuals of the same data are also shown

for each individual. It was demonstrated that the process of converting data to second-to-

second data itself reduced the random error.
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Table 6.3: Gradients and SD of the residuals from the last 30 seconds of the
square wave test at 800 m pace for all subjects

Subject SD SD

Gradient Breath-by-breath Second-to-second

(ml.min") (rnl.min') (ml.min')

49 91 76
2 186 241 190
3 394 176 134
4 -42 150 123
5 -463 155 103

6 -93 126 94

7 -338 281 172
8 72 126 85

MEAN ·29 168 122

SD 275 63 41

Pearson correlation coefficients were calculated between V o-peak (ml.kglmin") from the

ramp test and each of three other variables. The three variables examined were the

asymptotic value for V02 (baseline + gain) expressed as ml.kg'lmin', the same asymptotic

value for V02 expressed as a percentage of V02peak from the ramp test, and r. No

relationship was found between V02peak and the asymptotic V02 expressed as ml.kg'

'min", a moderate relationship was found between V o-peak and r, but a strong

relationship existed between Vo-peak and the percentage of V02peak achieved during the

treadmill run at 800 m pace. These three relationships are shown graphically in figures 6.3

to 6.5.
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Figure 6.3: Relationship between V02peak from the ramp test and the asymptotic
value for V02 (baseline + gain) from the treadmill run at 800 m pace.
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Figure 6.4: Relationship between V02peak from the ramp test and the time
constant (e) for the V02 response to the treadmill run at 800 m pace.
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Figure 6.5: Relationship between V02peak from the ramp test and the asymptotic
value for V02 (baseline + gain) (expressed as a percentage of Vo-peak
from the ramp test) from the treadmill run at 800 m pace.

Figures 6.3 to 6.5 show a cluster of subjects with a V02peak from the ramp test of about

65 ml.kg'lmin" and that subject 8 represents an extreme value for this group (80 ml.kg'

'min"), Outliers in the data set are known to affect correlation coefficients (Atkinson and

Nevill 1998). Therefore the correlation coefficients were recalculated omitting subject 8,

to ensure that the reported relationship between V o-peak and asymptote % V 02peak

achieved in the square wave test was not due to this extreme value. The correlation

coefficients of Vo-peak (ramp) (ml.kglmin") with asymptote (ml.kglmin"), 't (s) and

asymptote (% Vo-peak achieved) were r = 0.058 (P = 0.901), r = -0.327 (P = 0.474) and r

= -0.889 (P = 0.007) respectively. This confirmed the strength of the relationship between

V 02peak and % V o2peak achieved in the square wave test.

The asymptotic (GAIN + Baseline) V 02 from the whole test data was 4021 ± 344 ml.min"

compared to 4146 ± 546 ml.min" when estimated from just the initial45 seconds of data.
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There was found to be no difference between these figures (P = 0.311). Both figures were

considerably less than both the Vo-peak from the ramp test (4740 ± 547 ml.min") and the

theoretical 02 demand (5448 ± 611 ml.min') and this was the case for all subjects. There

was no difference between 't for the two modelling strategies (10.7 ± 3.4 s using all data

points and 11.5 ± 6.0 s using just the initial45 s) (P = 0.681). Individual parameter

estimates from the initial 45 seconds are given in Appendix 6 (Table A6.1).

Ratios of SD / GAIN, using the SD calculated from second-to-second data, ranged from

0.025 (subject 1) to 0.050 (subject 7). The underlying responses from these two subjects

were used in the simulations. The parameter confidence limits from the simulations are

contained in Table 6.4. Equation 6.4 resulted in a value for L of 30.0 for simulations of

both ratios, using confidence limits for 'to Equation 6.2 showed that for confidence limits

of ± I second for r only one transition would be needed for the subject with the lowest

noise to signal ratio (n = 0.55), whereas two would be necessary for the subject with the

highest noise to signal ratio (n = 2.22).

Table 6.4: Confidence limits (1.96 * SD) of parameter estimates from simulations
of SD I GAIN ratios of 0.025 and 0.050

0.025 t

Assumed value 95% confidence limits

3081 ml.min" ± 11.8 ml.min"

10.9 seconds ± 0.7 seconds

11.8 seconds ± 0.7 seconds

3460 ml.min" ± 35.8 ml.min"

6.9 seconds ± 1.5 seconds

11.6 seconds ± 1.6 seconds

SD / GAIN Parameter

GAIN

GAIN

0.050 t
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6.4 Discussion

A principal finding from the present study was that in exhaustive square wave running of

approximately 2 minutes duration \102 does not attain \102max. The results from the

breath-by-breath analysis techniques used in the present study were consistent with the

Douglas bag data reported in Chapter 4 and with the 10 second averaged data presented by

Spencer et al. (1996) and Spencer and Gastin (2001).

The tendency for \102 to plateau below V o-rnax that was demonstrated in Study 1 for a

group of aerobically fit individuals, was shown to be more pronounced in a specifically run

trained population. Average \102peak was found to be 12% lower in the square wave test

when compared to that achieved during the ramp exercise test. Furthermore \102 did not

tend either to \102max or the \102 required as has been suggested by previous researchers

(Katch 1973; Hughson et al. 1978; Whipp 1994a; Hughson et al. 2000). Rather \102

tended towards a rate that was below its maximum by some margin.

The plot of the mean data (Figure 6.2) seemed to suggest that \102 had reached its

asymptote within 60 seconds of exercise. The modelling process that gave mean parameter

estimates of 10.7 seconds for t and 11.4 seconds for (5 (Table 6.2) confirmed this. In this

exponential model it takes five ts to reach 99.3 % of the asymptote. Five ts (plus 8) would

be 65 seconds using the mean values for this subject group. The zero gradient of the \102-

time relationship for the final 30 seconds of exercise confirmed that a plateau had been

achieved.

The modelling process showed an asymptote for \102 that was well below either the ",,02

required or V 02peak for the ramp test. Furthermore "C and (5 were much smaller than has

previously been reported for heavy intensity exercise (Barstow and Mole 1991; Gaesser

and Poole 1996). That \102 was tending towards a figure that was some way below

\102max was confirmed by the separate modelling of the response from the initial 45

seconds of the test. It appeared from the modelling of these data that \1 02 was tending

neither to Vo-max nor to ",,02required, as has been previously assumed (Margaria 1965;

Hughson 1978; Hughson et al. 2000; Hill and Stevens 2001). Some caution should be

4



PhD Thesis Chapter 6~

exercised at this point however since the r displayed by the subjects in the present study

was so much quicker than that reported by Hill and Stevens (2001) who used less trained

subjects. The time period of 45 seconds, which gave only 30 seconds of data in the present

study after the removal of the phase-I data points, represented little more than one t in the

Hill and Stevens study. In the present study however this same period represented

approximately 3 rs and therefore the response was already close to reaching its asymptote

(approximately 95%). This highlights how fast the \;02 response was in this subject group

and how difficult it is to determine where this response tends to when the response is so

fast.

The results of the present study challenge current mathematical models of 800 m running

performance. Such models all assume that \;02 will tend towards \;02max or the V02

required (Wilkie 1980; Di Prampero 1986; Capelli et al. 1999). Capelli et al. (1999)

assumed r to be 24 seconds; however the models of Wilkie (1980) and Di Prampero (1986)

assume r to equal 10 seconds, as in the present study. Di Prampero's model has been

shown to overestimate the speed that could be maintained for 800 m however (Di

Prampero et al. 1993). A model that uses an appropriate value for t but wrongly assumes

that the \;02 response tends to \; o-max would overestimate the aerobic contribution to the

energy demand and therefore overestimate the sustainable speed (assuming a fixed

anaerobic capacity).

Intra-individual SDs, calculated from the final 30 seconds of the square wave treadmill

test, gave an indication of the level of noise surrounding the data at this exercise intensity.

The SDs for \;02 were larger for breath-by-breath data than for data that had been

interpolated to second-to-second. It has been previously shown that the process of

interpolation itself acts as a filter to reduce noise (Lamarra et al. 1987). SUbjects varied in

the level of noise on the data, but the noise was always small in comparison to the

magnitude of the response. Therefore whilst further analysis of the exponential model

used (Equation 6.3) is necessary, it was considered worthwhile attempting to model and

evaluate the response as described above. Plots of the residual error (Figure 6.1) suggest

that this model fits the data well.
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A degree of caution should be exercised in the interpretation of the modelling data from

the present study because the parameters were calculated using a single transition.

Previous researchers have used multiple transitions and averaged the data across them to

reduce the level of noise prior to modelling the response (Whipp et al. 1982; Patterson and

Whipp 1991). The average level of breath- by-breath noise for severe intensity running was

greater than that reported by Lamarra et a1. (1987) for moderate intensity cycling (168 and

89 m1.min-1 respectively). The confidence intervals of the various parameters are

dependent on both the level of noise and the magnitude of the response (Lamarra et a1.

1987), as was demonstrated by the wider confidence limits for the simulation of the noise

to signal ratio (SD I GAIN) of 0.050. However even for this worst case scenario

confidence limits of less than ± 2 seconds were returned. This is considered to be a

reasonable level of accuracy for studies of moderate intensity exercise (Lamarra et

a1.1987).

The use of the equations given by Lamarra et a1. (1987) showed that differences exist

between exercise intensities. A value for the constant L was calculated as 30 for the

subjects in the present study, whilst a value of approximately 50 was apparent in the

calculations of Lamarra et al. (1987) for moderate intensity exercise. This is presumably

due to the smaller t in severe intensity exercise, and in particular in a trained population.

The value for L shows that narrower confidence limits will be returned for a given number

of exercise transitions in short duration exhaustive exercise compared to moderate intensity

exercise. It also suggests that averaging data over only 2 transitions would be adequate for

a 95% confidence limit for t of ± 1 second in most subjects. Lamarra et al. (1987)

calculated the number of transitions required for confidence limits of ± 2 seconds. Since

the present study suggests that severe intensity exercise will result in a much shorter r, a

higher degree of accuracy is desirable for exercise in this intensity domain. The effect of

the magnitude of t on the confidence limits of the model parameters is discussed in detail

in Chapter 7.

The relationship between V02peak from the ramp test (ml.kglmin") and t suggested a

link between the speed of V02 kinetics in severe intensity running and aerobic capability.

Such a relationship may be associated with a prevalence of type I muscle fibres. Type I

fibres have been shown to demonstrate faster V02 kinetics than Type Ha (Crow and
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Kushmeric 1982; Barstow et al. 1996). However the strength of this correlation was

reduced when subject 8 (80 ml. kglmin") was removed from the analysis, suggesting that

the strength of the initial relationship may have been due to this outlier.

That there was no relationship between V o-peak (rnl.kgimin") and the asymptote for

V02 (ml.kglmin") was unexpected. It appears that despite a higher aerobic potential the

subjects with the highest V o-peak were unable to realise this potential during the 800 m

paced run. This is clearly demonstrated by comparing the SD for V02peak from the ramp

test (5.6 ml.kglrnin') with that for the Vo-peak from the square wave test (1.2 ml.kg

'min"), It is interesting to note that subject 8 whom possessed an extremely high V02max

was not the fastest 800 m runner despite this advantage in aerobic potential.

The asymptotic value for V02 (ml.kglmin') from the square wave test represented only

85 ± 7 % of the V ospeak from the ramp test. Furthermore, when expressed relative to

body mass (ml.kglrnin"), the values for all subjects were very similar (58.4 ± 1.3 ml.kg

'min"), A strong negative correlation was shown to exist between Vo-peak from the

ramp test (ml.kg'lmin") and the percentage of this Vo-peak that was achieved in the

square wave test. Those subjects with the highest VOzpeak achieved the lowest

percentage of this value.

The results of the present study suggest that for running events of approximately 2 minutes

duration, participants may only achieve a V02 of approximately 60 ml.kg'lmin'. The

implication is that there may be little benefit in possessing a very high V02max, since

subjects seemed unable to use this extra aerobic reserve within the duration of the event.

Elite middle distance runners have been demonstrated to possess a lower V02max than

elite distance runners (Svedenhag and Sjodin 1984), despite the higher intensity of the

former's training regime. Whilst recent studies have stressed the aerobic contribution to

middle distance running (Hill 1998; Spencer and Gastin 200 I), the present study suggests

that whilst the aerobic energy contribution is indeed high, the anaerobic contribution (or

capacity) is a more important determinant of performance than V02max.
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In summary the present study supported the findings of Study 1 (Chapter 4), in that for

square wave running at a speed fast enough to elicit exhaustion in approximately 2

minutes, V02 would plateau below its maximum rate. Furthermore V02 kinetics seem to

be faster in this domain than has been reported for moderate or heavy intensity exercise.

The study also suggested that there is a limit to the V 02 that can be achieved at such an

intensity that seems to be independent of V02max. The physiological mechanisms that

underlie this inability to achieve Vo-max are not known. The results suggest that this

apparent plateau in V02 represents the asymptote of the response. However the speed of

the Phase-2 response made this analysis problematic.

Confidence limits calculated from computer simulation of noise, together with the

equations of Lamarra et al. (1987), suggested that if data were averaged across two

transitions confidence limits for t of approximately ± 1 second would be achieved. There

are however questions about the noise on the V02 data which have not been answered for

severe intensity exercise. First whether the noise is Gaussian, and whether therefore

repeated transitions will reduce the noise in the manner described by Lamarra et al. (1987).

Second, whether the level of noise is unchanged in the severe exercise intensity domain.

These issues have only been investigated for moderate intensity cycling (Lamarra et al.

1987; Potter et al. 1999). These issues are examined with respect to short duration

exhaustive square wave running in Chapter 7.
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CHAPTER 7

STUDY 4: BREATH-BY-BREATH 'NOISE' AND PARAMETER ESTIMATION

FOR V02 KINETICS IN SEVERE INTENSITY RUNNING

7.1 Introduction

Breath-by-breath \102 data are a composite of the underlying response to a given exercise

demand and the irregularities and fluctuations that may be considered as "noise" on this

signal. The level of this noise varies considerably between individuals (Lammara et al.

1987). Study 3 (Chapter 6) characterised the \102 response to severe intensity running of a

short duration using on-line breath-by-breath gas analysis. The equations presented by

Lamarra et al. were used to determine the number of superimposed transitions that would

be necessary to produce acceptable confidence limits. But the equations used were based

on assumptions about the nature of the noise that have to date only been examined in

moderate intensity cycling (Lamarra et al.1987; Potter et al. 1999). The nature of this

noise in severe intensity running is as yet unknown.

The noise on breath-by-breath \102 data has been shown to be both random and of a

normal (Gaussian) distribution for moderate intensity cycling (Lamarra et al. 1987), both

by visual examination of the data and using a process of auto-correlation. However, Potter

et al. (1999) also tested whether the noise was Gaussian using the Chi squared (x,2)

statistic, and found that in the majority of subjects the noise was not Gaussian. Potter et al.

used a child population, but this key difference between these studies may be due to the x,2

test providing a more stringent test of the data.

The major assumption of the equations presented by Lamarra et al. (1987), used to predict

the number of repeated transitions required for a given confidence limit of the parameter

estimates, is that the data are Gaussian in nature. The nature of breath-by-breath noise has

to date not been assessed in severe intensity cycling and never running. Since the models

used to describe the \102 responses are produced on a 'best-fit' basis, the models

themselves assume that the data will be randomly and normally distributed around the

underlying response. If the noise is not Gaussian this will distort the model description of
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the underlying response. Furthermore, the reduction in noise as a result of repetition and

averaging of exercise transitions, also depends on the noise being random and Gaussian. It

is important then that the nature of this noise is investigated.

Lamarra et al. (1987) presented the following equations

Kl = L (SO / GAIN) (7.1)

n= [(L * SO)/ (K, * GAIN)t (7.2)

where ± K, are the 95% confidence limits of the parameter estimate from a single

transition, L is a constant, SD is the standard deviation of the noise and GAIN is the

magnitude of the response (i.e. the difference between the asymptotic value of '102 and the

baseline or resting '102). In equation 7.2, n is the number of transitions required to

produce the desired confidence limits (± Kn).

In chapter 6, the value of L was derived after confidence limits had been established, using

computer simulations, with the following equation derived from equation 7.1:

L = [K. / (SD / GAIN)] (7.3).

A value of 30 was derived for L for the two subjects displaying the highest and lowest

level of noise compared to a value of approximately 50 for the data of Lamarra et al.

(1987) for moderate intensity cycling. The ratio of noise to signal (SD / GAIN) is likely to

be smaller, due to the greater magnitude of the response, at high exercise intensities.

Unless the level of noise is significantly increased at severe exercise intensities therefore,

the confidence limits will become narrower (for a given number of transitions), as the

GAIN is bound to be of a greater magnitude at this exercise intensity. It is important

therefore to understand both the nature and the magnitude of the noise in the severe

exercise intensity domain. Lamarra et al. demonstrated that there is no difference in the

level of this noise between cycling at OWand lOOW(moderate intensity exercise for those

subjects), but moderate exercise has never been compared to higher exercise intensities.
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In Study 3, the SD and GAIN of the two subjects with the highest and lowest SD / GAIN

ratio were used in Equation 7.2, together with a value of 30 for L. This suggested that

superimposition of just two transitions would be sufficient to give confidence limits of ± I

second (for 't and 8) in exhaustive square wave running of about 2 minutes duration. It

remains to be determined whether this is a robust equation that can be used across exercise

intensities. Equations 7.1 and 7.2 imply that the level of noise on a data set is function of (1

/ ..rr;), where n is the number of transitions. The equation can be readily validated then by

plotting the relationship between the SD of the noise and (1 /..rr;), as subsequent

transitions are added.

Lamarra et al. (1987) used a series of computer simulations to assess the impact of the

length of the time constant (r) on the resulting confidence limits of the parameter estimates

derived from non-linear regression. This analysis showed a widening of these confidence

limits with an increasing 'to Study 3 (Chapter 6) showed that the time constant for severe

intensity running was much shorter than that reported for moderate intensity exercise

(Lamarra et al. 1987). The short time constant seen in severe intensity running would be

expected to result in narrow confidence limits. However, no difference was found in L for

the two subjects examined in Study 3 despite a difference in t (10.9 v 6.9 seconds). Since

L is to a large extent dependent upon t this relationship warranted further investigation in

the severe intensity domain.

The purpose of the present study was fivefold. First to examine the nature of breath-by-

breath noise for "\;02 in exhaustive severe intensity running. Second to investigate the

relationship between t and L in the severe intensity domain. Third to establish whether the

equations presented by Lamarra et al. (1987) were valid for use in the severe intensity

domain. Fourth if the previous two aims were satisfied, to calculate the number of

transitions required for subsequent studies in the severe intensity domain. Finally, to

examine the applicability of the exponential model to determine if the estimated asymptote

reflected the observed plateau in "\;02.
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7.2 Method

7.2.1 Subjects

Four male subjects (mean ± SD: age 25.3 ± 3.9 years, height 1.82 ± 0.11 m, mass 83.4 ±

10.2 kg, and V02peak from a ramp test 55.9 ± 2.5 ml.kglmin") volunteered to take part in

the study. They were physically fit and involved in regular aerobic exercise, though not

specifically trained for running.

7.2.2 Study design

The subjects were required to attend the laboratory on six occasions, all on separate days.

On the first visit subjects performed an exhaustive ramp test to determine Vospeak and the

AT.

On each of the subsequent five visits subjects completed two constant intensity runs, one at

a moderate and the other at a severe intensity. The first was an 8 minute run at a speed

equivalent to 90% AT and the second was an exhaustive run at a speed that would elicit

exhaustion in approximately 2 minutes. The speed for the severe intensity run was

estimated from the peak speed achieved during the ramp test. If on the first occasion the

run proved to be too long or too short, the speed was adjusted and subjects attended a

further five sessions, completing a further five runs at the adjusted speed. The severe

intensity run always started 5 minutes after the moderate intensity run. No warm up was

performed prior to the moderate intensity test. However, subjects were encouraged to

stretch thoroughly for up to 3 minutes between tests. They breathed through the gas

collection apparatus for 2 minutes prior to each test so that a baseline v02 could be

determined.

7.2.3 Test Protocols

The speed for the ramp test was continually increased by 0.1 krn.h" every 5 seconds until

the subject was unable to keep pace with the belt and lifted himself clear, thus ending the
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test. The starting speed was estimated depending on the fitness of the subject to elicit

exhaustion in approximately 12 minutes.

The moderate intensity run lasted for 8 minutes and the treadmill was then stopped. In the

severe intensity run the subject ran to exhaustion on each occasion and was not given

feedback on the elapsed time.

7.2.4 Expirate analysis

Expired gases were analysed on-line using the QP9000.

7.2.5 Data Analysis

Data analysis was limited to examination of the V02 data since V C02 and V E were not

modelled in this thesis. To examine the distribution of the noise, the final 30 seconds of

breath-by-breath V 02 data from each transition, both moderate and severe, were used.

Any outliers were first removed from the data. Outliers were defined as data points that

were more than 3 SDs from the mean. This approach was also adopted by Lamarra et al.

(1987), who suggested that certain recorded breaths were clearly artifactual, possibly the

result of coughing or swallowing, and should be excluded from such an analysis. The data

contained relatively few of these artefacts at either intensity. Breath-by-breath data were

used in this part of the analysis since data points from interpolated second-to-second data

would, by definition, be related to the value of the previous data point, particularly at low

respiratory frequencies, and therefore would not represent truly random data. Thirty

seconds of data were used at both exercise intensities. This is fewer data than were used

by other researchers (Lamarra et al. 1987; Potter et al. 1999) examining moderate intensity

exercise. For the purposes of the present study the 30 seconds of data were used because

of the limited amount of steady state (plateau) data available for the severe intensity run.

The final 30 second period was used for both moderate and severe exercise intensities to

allow a valid comparison between the intensities.
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The 30 seconds of breath-by-breath data were first regressed on time, to remove any linear

trend that was sometimes present. The residuals from this analysis were considered to

represent the 'noise'. These residuals were then plotted to examine the distribution of the

noise. Further analysis of the normality of the data was performed using the Chi Squared

eX2) Test. For the X2 analysis data from each test were divided into ten groups based on the

Z-score of the data. These groups ranged from Z-scores of -3 to 3 (-3.0 to -2.0, -2.0 to-

1.5, -1.5 to -1.0, -1.0 to -0.5, -0.5 to 0.0,0.0 to 0.5, 0.5 to 1.0, 1.0 to 1.5, 1.5 to 2.0, and 2.0

to 3.0). Analysis of the random nature of this noise used a process of auto-correlation.

Auto correlation is a process that involves correlating a given data set with itself, but at a

given delay. For example, a l-breath delay would pair breath I with breath 2, breath 2

with breath 3 etc. Auto-correlation coefficients were calculated for the data at 1, 2 and 3

breath delays. If the coefficient is near to I then data points are related to those around

them; if the coefficient is near to zero then the noise may be considered to be random.

Breath-by-breath data from the QP9000 were then interpolated to second-to-second data

using linear interpolation between breaths. Data from the ramp test were used to determine

Vospeak and AT. Second-to-second data were averaged across transitions to give mean

values for each second across 2, 3, 4 and 5 transitions. In the severe intensity tests, the

data were only averaged and modelled up to the time at which the shortest transition was

terminated. Data from each individual transition were modelled along with averaged data

across 2, 3, 4 and 5 transitions to determine the effect of repeated transitions on the level of

noise.

The level of noise on the data was evaluated using data from the final 30 seconds of the

moderate and the severe intensity runs. The SD of the residuals of the regressed data was

used, as in Study 3, to quantify the variability in the data. This SD of the residuals was

calculated for second-to-second data on each individual transition as well as the averaged

data across 2, 3, 4 and 5 transitions. The final 30 second-to-second data points from all

five transitions were also combined to give 150 data points per subject at both exercise

intensities. Differences in the level of noise between the two intensities were then

compared using Levene's test for equality of variances.
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In modelling the V 02 response, the data from the first phase of the kinetics were removed.

For the moderate intensity exercise the initial25 seconds of data were excluded (Whipp et

al. 1982a; Lamarra et al. 1987; Gerbino et al. 1996). As in Chapter 6 only the first 15

seconds of data were excluded from the modelling of the response to the severe intensity

transitions. The remaining data were modelled using the same model as Study 3:

V02 (t) = baseline + GAIN x (1_e-(t-O)/t) (7.4)

The baseline (V 02) was calculated as the average V02 for the 60 second period

immediately preceding the constant speed test.

The assumption that the decrease in noise would be a function of (I 1.Jn), where n is the

number of transitions superimposed, was also tested. The mean SD (from the addition of

each transition across subjects) was plotted against (1/.Jn), and this assumption was

tested by linear regression. This was done for both moderate and severe intensity exercise.

As discussed in Chapter 6, confidence limits calculated during the fitting of non-linear
regression cannot be used for the individual parameter estimates (Mutulsky and Ransnas

1987). Computer simulations as described by Lamarra et al. (1987) therefore were used to

calculate confidence limits for GAIN, t and <5.

The SD I GAIN ratio was calculated for each subject for each of the five tests in both

moderate and severe intensity running. All ratios for severe intensity running fell between

the best and worst case scenarios from Study 3 (Chapter 6) (0.025 and 0.050). The effect

of this ratio on the confidence limits of the parameter estimates was investigated in Study

3. However, Lamarra et al. (1987) suggest that the constant L is also a function of the time

constant (r). A further three simulations were therefore carried by adding noise, to the

underlying response of the subject from Study 3 with SD I GAIN ratio ofO.025 (see Table

6.4 (Chapter 6). The GAIN and <5 were the same for each simulation but the value for r

was changed. Five hundred data sets were generated for each of three values oft, namely

5, 15 and 25 seconds. Each data set was then modelled by the same iterative method as the

test data, and confidence limits (1.96 x SD) were calculated from the values returned from
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these 500 model fits. This confidence limit was then used to calculate a value for the

constant L using equation 7.3.

Finally the average V02 from the final 30 seconds of the severe intensity exercise was

compared with the parameter estimate of the asymptote from non-linear regression. This

comparison was conducted for the data averaged across five transitions and used a paired t-

test. The alpha level was set at 0.05 for all tests and data are mean ± SD unless otherwise

stated.

7.3 Results

Breath-by-breath noise generally appeared to be normally distributed (Figure 7.1). The X2

test, which evaluates whether the observed distribution differs significantly from the

expected normal distribution, showed that the noise on the breath-by-breath data was

basically Gaussian. Of the 40 tests only one (moderate intensity test) was found to be

significantly different from Gaussian (Figure 7.2). The individual X2 probabilities are

contained in Table 7.1. Figure 7.1 shows the data set for which the X2 probability was

highest ('most normal', P = 0.95), whereas Figure 7.2 shows the data set for which the X2

probability was lowest ('least normal', P = 0.01).
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Figure 7.1: Distribution of the breath-by-breath noise from the s" severe intensity
transition for subject 2. The line represents the normal distribution
curve.
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Figure 7.2: Distribution of the breath-by-breath noise from the 4th moderate
intensity transition for subject 1. The line represents the normal
distribution curve.

SB Draper (2002) 127



PhD Thesis Chapter 7

Table 7.1: 'Goodness of fit' of \'02 breath-by-breath noise compared to Gaussian
distributions using the "l test, from all transitions for each of the 4
subjects

Moderate Intensity Severe Intensity

Subject Transition Probability Probability

0.78 0.48

2 0.97 0.92

3 0.35 0.47

4 0.01* 0.21

5 0.75 0.90

1 0.83 0.76

2 0.45 0.15

2 3 0.91 0.36

4 0.88 0.65

5 0.49 0.95

0.83 0.42

2 0.43 0.78

3 3 0.80 0.90

4 0.77 0.81

5 0.59 0.80

0.79 0.61

2 0.66 0.91

4 3 0.77 0.91

4 0.83 0.82

5 0.06 0.33

* denotes significant difference from Gaussian distribution

Results of the auto correlation for all subjects and transitions are contained in Table.7.2.

Auto -correlation coefficients are given for delays of I, 2 and 3 breaths for each data set.

This analysis demonstrated that the data were largely uncorrelated and therefore the noise

was random.
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Table 7.2: Autocorrelation coefficients for the breath-by-breath noise at breath
delays of 1, 2 and 3 breaths, from alltransitions for each of the 4
subjects

Moderate Intensity Severe Intensity

Breath Delay Breath Delay

Subject Transition 2 3 2 3

-0.13 -0.34 0.21 0.07 0.18 0.11

2 0.30 -0.17 -0.20 0.13 0.17 0.33

3 0.21 -0.28 -0.13 0.20 0.14 0.14

4 -0.34 0.09 -0.17 0.01 0.13 0.23

5 -0.10 0.08 -0.34 0.35 0.01 -0.20

0.08 0.06 -0.06 -0.12 0.10 0.27

2 -0.36 -0.09 0.32 -0.04 -0.09 -0.15

2 3 -0.23 -0.13 0.00 0.00 0.04 0.30

4 -0.25 -0.04 -0.02 -0.20 -0.21 -0.11

5 0.01 0.06 0.26 -0.36 -0.02 0.11

0.37 0.08 -0.41 -0.57 0.31 -0.26

2 -0.01 -0.01 -0.01 -0.48 0.07 0.09

3 3 -0.22 0.25 -0.10 -0.44 0.36 -0.35

4 -0.16 -0.35 0.28 -0.58 0.47 -0.22

5 -.016 -0.21 0.07 0.11 0.08 -0.18

-0.14 0.05 0.05 -0.14 -0.36 -0.04

2 0.25 0.35 -0.10 -0.15 -0.22 0.11

4 3 -0.29 0.15 -0.06 0.07 -0.07 -0.20

4 -0.07 -0.15 0.13 -0.14 0.23 -0.20

5 -0.15 0.11 0.06 -0.18 0.09 0.01
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The SDs of the residuals, from the regression of the interpolated second-to-second data,

from the final 30 seconds, on time are contained in Table 7.3. Again data are shown for all

four subjects. The mean gradient, across subjects, of this regression line was -133 ± 106

and -131 ± 269 ml.min", for moderate and severe intensity exercise respectively. The

data in Table 7.3 show that the SD decreased (i.e. the level of noise was reduced) as more

transitions were superimposed. Levene's test for equality of variances showed that the

level of noise was greater in moderate compared to severe intensity exercise in subjects I,

2 and 3 (P < 0.01) but not in Subject 4 (P = 0.240).

Table 7.3: SDs of residuals for interpolated second-to-second data from the final
30 seconds of all transitions. Data are presented as ± ml.min", Also
shown is the effect of superimposing (sup) transitions to reduce the
level of noise on the data.

Transition

Intensity Subject 2 3 4 5 1 - 2 1 - 3 1 - 4 1 - 5

(sup) (sup) (sup) (sup)

Moderate 1 377 271 242 163 217 242 187 138 128

2 662 167 154 124 141 355 264 194 164

3 336 171 767 133 215 170 276 209 180
4 119 53 159 85 96 74 74 66 64

Mean 373 165 331 126 167 211 200 152 134
SD 223 89 294 32 59 118 93 65 52

Severe 126 141 134 136 166 88 76 63 60
2 156 162 145 84 92 109 91 75 65
3 104 76 98 83 86 60 51 45 42
4 127 82 66 116 66 73 60 53 42

Mean 128 115 111 105 102 83 70 59 52
SD 22 43 36 26 44 21 18 13 12

SB Dra er 2002 130



PhD Thesis Chapter 7

Investigation into the relationship between the SD of the noise and (1 /.J;) confirmed that

the SD was directly proportional to (1 / ..[;), for both moderate and severe intensity

exercise (figures 7.3 and 7.4). The effect of reducing noise with increasing numbers of

transitions, is shown for a typical subject (subject 2) in Figure 7.5. The noise as shown by

the residuals for the exponential model, is shown for a single transition, for data averaged

across three transitions and for data averaged across five transitions. The underlying

response (calculated from non-linear regression) is also shown.
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Figure 7.3: Relationship between the SD of the noise (as calculated from the
superimposition of 1,2,3,4 and 5 transitions) and (1 /.JD) (where n is
the number of transitions superimposed) for the moderate intensity
transitions
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Figure 7.4: Relationship between the SD of the noise (as calculated from the
superimposition of 1,2,3,4 and 5 transitions) and (1 /..JD) (where n is
the number of transitions superimposed) for the severe intensity
transitions
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Figure 7.5: The \102 response (left panels) and underlying noise as shown by the
residuals (right panels) around the model (heavy line) for a typical
subject. The upper panels are those from a single transition, the middle
panels are those averaged across three transitions and the bottom
panels are those averaged across five transitions.
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Results from the modelling of the V os response are contained in Tables 7.4 and 7.5.

Parameter estimates are presented for each transition. In addition, means across the

transitions are included, along with parameter estimates calculated from the superimposed

data sets. Mean values across subjects are also given.

Table 7.4: Parameter estimates for GAIN (ml.min"), 'C (s) and a (s), as calculated
using non-linear regression, for moderate intensity exercise. Values are
given for individual transitions (single) as well as mean values (average)
across 2 , 3, 4, and 5 transitions and values calculated from the data
superimposed across 2 , 3, 4, and 5 transitions (super).

Transition
Subject 2 3 4 5

Single 2275 2304 2392 2736 2419
GAIN Average 2290 2324 2427 2425

Super 2290 2323 2425 2424
Single 9.7 7.2 14.7 11.6 12.1

t Average 8.5 10.5 10.8 11.1
Super 8.9 9.5 10.0 10.3
Single 21.1 25.0 12.1 17.7 16.7

I) Average 23.1 19.4 19.0 18.5
Super 23.3 21.3 20.5 19.9

Single 2500 2373 2257 2413 2443
GAIN Average 2437 2377 2386 2397

Super 2456 2376 2385 2395
Single 20.8 16.8 15.2 10.8 19.4

2 t Average 18.8 17.6 15.9 16.6
Super 18.2 16.9 14.9 15.7
Single 9.3 14.1 21.0 22.5 16.5

I) Average 11.7 14.8 16.7 16.7
Super 12.4 15.9 18.1 17.9

Single 2407 2333 2337 2248 2395
GAIN Average 2370 2359 2331 2344

Super 2370 2357 2327 2342
Single 7.1 6.9 12.1 20.7 10.4

3 t Average 7.0 8.7 11.7 11.4
Super 7.0 7.6 10.5 10.5
Single 22.5 19.7 13.9 13.8 12.6

I) Average 21.1 18.7 17.5 16.5
Super 21.3 20.4 18.3 17.4

Single 2242 1676 1987 1693 1697
GAIN Average 1959 1968 1899 1859

Super 2058 2035 1950 2361
Single 13.2 9.8 14.3 10.6 11.2

4 r Average 11.5 12.4 12.0 11.8
Super 11.4 12.2 11.8 13.3
Single 16.0 22.1 14.1 21.6 21.2

I) Average 19.1 17.5 18.5 19.0
Super 19.2 17.8 18.7 17.0

Single 2412 2189 2210 2192 2245
GAIN Average 2301 2270 2251 2249

Super 2335 2286 2262 2373
Single 15.5 12.6 14.2 13.2 15.1

MEAN t Average 14.0 14.1 13.9 14.1
Super 13.7 13.4 13.0 13.8
Single 14.3 17.5 17.5 20.1 16.7

I) Average 15.9 16.5 17.4 17.2
Super 16.3 17.5 18.3 17.6
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Table 7.5: Parameter estimates for GAIN (ml.min"), 't (s) and ~ (s), as calculated
using non-linear regression, for severe intensity exercise. Values are
given for individual transitions (single) as well as mean values (average)
across 2 , 3, 4, and 5 transitions and values calculated from the data
su~erim~osed across 2 , 3, 4, and 5 transitions {su~erl.

Transition
Subject 2 3 4 5

Single 3824 3908 5051 3997 4586
GAIN Average 3866 4261 4195 4273

Super 3867 4260 4170 4552
Single 9.2 12.4 12.3 12.1 12.4

r Average 10.8 11.3 11.5 11.7
Super 11.0 11.4 11.6 11.8
Single 11.6 10.8 8.9 9.7 10.2

s Average 11.2 10.4 10.3 10.2
Super 11.0 10.2 10.2 10.2

Single 4211 4119 4124 3974 4222
GAIN Average 4165 4151 4107 4130

Super 4165 4145 4100 4125
Single 11.0 9.9 14.1 14.0 10.8

2 r Average 10.5 11.7 12.3 12.0
Super 10.6 11.5 11.9 11.7
Single 13.8 11.9 10.2 7.9 12.2

cS Average 12.9 12.0 11.0 11.2
Super 12.8 12.2 11.4 11.5

Single 4024 3381 1997 3723 3631
GAIN Average 3703 3134 3281 3351

Super 3694 3795 3777 3748
Single 12.1 17.5 12.9 13.8 12.4

3 r Average 14.8 14.2 14.1 13.7
Super 14.3 13.8 13.8 13.5
Single 10.0 7.8 10.4 8.9 11.5

s Average 8.9 9.4 9.3 9.7
Super 9.1 9.6 9.4 9.9

Single 3510 3327 3752 3749 3302
GAIN Average 3419 3530 3585 3528

Super 3418 3523 3581 3525
Single 14.1 13.6 18.9 17 15.5

4 r Average 13.9 15.5 15.9 15.8
Super 13.8 15.4 15.9 15.8
Single 7.2 9.6 4.9 8.6 9.8

cS Average 8.4 7.2 7.6 8.0
Super 8.5 7.4 7.6 8.1

Single 3989 3737 3499 3855 3844
GAIN Average 3863 3742 3770 3785

Super 3861 3902 3890 3881
Single 12.1 12.7 15.0 14.7 12.4

MEAN "I: Average 12.4 13.3 13.7 13.4
Super 12.3 13.1 13.4 13.2
Single 11.2 10.3 8.9 8.3 11.4

s Average 10.8 10.2 9.7 10.0
Super 10.8 10.4 10.0 10.3
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Results of the computer simulations are contained in Table 7.6. Also contained within this

table is the resulting value for L as calculated from Equation 7.3. The increasing r had a

minor effect on the confidence limits of the parameter estimates, particularly between the

simulations using a t of 5 and those using a r of 15 seconds. Whilst L was shown to be

dependent on t, again this difference was minor between the simulations using a t of 5 and

those using a r of 15 seconds.

Table 7.6: Ninety five percent confidence limits (1.96 x SD) for GAIN (ml.mln"), t
(s) and a (s), derived from computer simulations based on a noise to
signal (SD / GAIN) ratio of 0.025, but a differing t of 5, 15 and 25
seconds. Also given is the derived value for the constant L from
Equation 7.3.

Parameter t

5 15 25

GAIN 8 15 25

t 0.7 0.9 1.2

a 0.9 0.6 0.7

L 28.7 34.1 49.8

The paired t-test, using superimposed data across all five transitions from the last 30

seconds of severe intensity running, revealed no difference (P = 0.519) between the

average \102 for that time period (4718 ± 453 ml.rnin") and the calculated asymptote

(4778 ± 590 ml.min") from non-linear regression.
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7.4 Discussion

The primary objective of the present study was to examine the noise that is observed on the

underlying \102 response in breath-by-breath data collected during severe intensity

running. This noise was demonstrated to be both random and Gaussain (normally

distributed).

The random nature of this noise was investigated using the auto-correlation technique

(Lamarra et al. 1987; Potter et al. 1999). This process returned similar results to previous

research conducted at lower exercise intensities; there appeared to be little difference

between the data for moderate and severe exercise intensities and the values were generally

low for both exercise intensities.

In most cases the data followed closely the Gaussian curve (see Figure 7.1). There was

only one test for which the data were found to be different from a Gaussian distribution

(see Figure 7.2) using the 'X: test. The normality of a1l40 breath-by-breath data sets was

tested (four subjects, five transitions and two exercise intensities). Only one was found to

be significantly different from a Gaussian distribution and this was in moderate intensity

running. The x,2 test itself was conducted at an alpha level ofO.05. Therefore it is not

unreasonable to expect the return of one positive result from 40 as the result of chance.

Potter et al. (1999) also used this Chi-squared approach, but found 19 from 24 data sets

were significantly different from a Gaussian distribution. However, since Potter et al.

investigated moderate intensity exercise only and used very long exercise transitions they

had far more data points in the steady state to use in the analysis (22 minutes of data for

each of the 24 subjects). This was not possible in the present study due to the short

duration of the severe intensity running. Therefore, it is likely that this difference between

the findings of the present study and those of Potter et al. was due to an abundance of

statistical power in the latter study. Itwould be desirable to have a more powerful test in

the severe intensity domain, but the short duration means that there will be a limited

number of data points available.

Whilst Lamarra et al. (1987) did not statistically test the distribution of the noise in their

subjects, they stated that is was well described by a Gaussian distribution, and supported
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this claim with typical plots. Two major assumptions that underlie the equations described

in Lamarra et al. 's study are that the data are Gaussian and that they are uncorrelated

(random). The results of the present study, unlike those of Potter et al. (1999), showed the

data to be both Gaussian and random. It should be realised that the study of Potter et al.

(1999) was specific to a child population. That may explain this, and other, differences

between that study, the present study, and that of Lamarra et al. (1987).

The two equations presented by Lamarra et al. (1987), that is Equations 7.1 and 7.2, both

incorporate the ratio of the level of the noise (SD) to the magnitude of the response

(GAIN). It is of course the case that as exercise is performed at increasing exercise

intensities, the magnitude (GAIN) of the V02 response must increase (Whipp and

Wasserman 1972). The results of the modelling of the present data (Tables 7.4 and 7.5),

showed a marked increase in the magnitude of the GAIN at the severe compared to the

moderate intensity. Therefore the ratio (SD / GAIN) would be lower for severe intensity

exercise, unless the level of noise on the data increased as a function of exercise intensity.

The trend was in fact in the opposite direction: there was a tendency for the level of noise

to be lower for severe intensity exercise (as shown by Levene's test for equality of

variances).

In Chapter 6, it was speculated that 30 was an appropriate value for the constant L,

compared to a value of approximately 50 that was apparent from the data of Lamarra et al.

(1987) for moderate intensity cycling. Lamarra et al. describe how this constant is

dependent, in a complex manner, on 'to They reported a mean t of28 seconds, whilst a

mean r of 10.7 seconds was found for severe intensity running in Study 3, explaining this

difference in the value for L. Lamarra et al. used computer simulations to assess the

impact of the magnitude of t on the resulting confidence limits of r and 0 estimated from

non-linear regression for values of r of 30, 60 and 90 seconds. The present study adopted

a similar approach, using the same underlying response in each case but with values of r of

5, 15 and 25 seconds. Confidence limits were also calculated for GAIN.

These computer simulations confirmed the relationship between Land r. When a similar r

to that reported by Lamarra et al. (25 seconds) was used in the simulations, the calculated

value for L matched that which was apparent from their data. The simulations also showed
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that the suggested value of 30 was a suitable value for L for severe intensity running. The

value changed little when 't was increased from 5 to 15 seconds, which represents the range

of r found for severe intensity running in this thesis. This suggests that researchers must

investigate the parameter estimates for t in addition to the SD / GAIN ratio, for a given

population or exercise intensity, in order to determine the required number of transitions to

return given confidence limits. The range of values for 't reported in Chapter 6 for severe

intensity running was 6.9 to 14.6 seconds. The simulations reported in the present Chapter

demonstrate that this difference would have little effect on the resulting confidence limits,

or the value of 30 proposed for L.

In contrast to previous research (Lamarra et al. 1987; Potter et al.I999), confidence limits

were also calculated for the GAIN parameter, as well as for t and o. A primary focus of

this thesis was the apparent plateau of \[02 below its maximum; therefore the confidence

limits of the GAIN parameter were pertinent. Confidence limits for the GAIN, as were

those for t and 0, were found to be narrow. All parameters demonstrated widening

confidence limits as the SD / GAIN ratio was increased. The present study also supported

the assertion of Lamarra et al. (1987) that confidence limits for t and 0 would be virtually

identical. That confidence limits for these two parameters were wider than ± 1 second

when the SD / GAIN ratio was 0.05 shows the need for two transitions for subjects with

this level of noise. The confidence limits for GAIN, even when SD / GAIN was 0.05,

represent only ± 0.5 ml.kgimin" for a typical 70 kg subject.

Equation 7.2, incorporating this value of 30 for L, was used to calculate the required

number of transitions (n) to give confidence limits of ± I second for r and o. Using the

values for SD and GAIN that had been used in the computer simulations to produce ratios

ofO.025 and 0.05, the desired number of transitions could then be calculated. It is

important though that the effect of t is again considered to quantify the possible error in

the calculation of (n) since the value of t will determine how far L deviates from the

assumed value of30. In the 'best case' scenario, namely a low level of noise and a short r

(a SD / ratio ofO.025 and an L of28.1 seconds) (n) would equal 0.50 (from equation 7.2),

indicating that one transition would be sufficient for a confidence limit for r of ± 1 second.

In the 'worst case' scenario, namely a high level of noise and a long t (a SD / ratio ofO.05

and L of 34.1 seconds) n would however equal 2.86. However, such a worst scenario is
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likely to be encountered only rarely, and would only occur with both a high level of noise

and a slow V02 response. This represents a scenario that is 'worse' than any encountered

in either Study 3 or the present study. Furthermore, it has been clearly demonstrated that

the confidence limits will narrow as a function of 1/.[; (Figure 7.4), and therefore even in

this 'worst case' scenario, two repeated transitions would give confidence limits of ± 1.2

seconds. The analysis of the present study shows that two transitions will be sufficient for

further analysis of the V02 response to severe intensity running.

It is normal for researchers modelling V02 kinetics to interpolate breath-by-breath data to

produce a value for every second. This procedure serves two purposes. Firstly the process

of interpolation itself serves to reduce the level of noise (Lamarra et al. 1987), and

secondly interpolating to one value per second allows data to be averaged across multiple

transitions. As the confidence limits are dependent on the SD / GAIN ratio multiple

transitions would reduce them by reducing the SD of the noise. This is similar to the

narrowing of the confidence limits that occurs in the severe intensity due to the increased

magnitude of the GAIN. Many transitions are often used for moderate intensity exercise.

Indeed Lamarra et al. (1987) note that eight transitions may be needed and this number has

in fact been used (Whipp et al. 1982). However, for the heavy and severe intensity

domains, researchers have tended to use fewer transitions. Hughson et al. (2000) for

example used two transitions. The assumption that higher exercise intensities will require

fewer transitions is consistent throughout the literature, although it has never been

established whether this is the case or what confidence limits might be assumed.

Furthermore, the assumption, inherent in Equation 7.2, that the noise would be reduced as

a function of the number of transitions, (i.e. the SD would decrease as a function of (I

1J; )),was also shown to be valid. Linear regression produced an R2 of close to 1 for both

moderate and severe intensity exercise. This is further support for the 'effective' Gaussian

nature of the noise even in second-to-second data.

Curiously, whilst Lamarra et al. (1987) used second-to-second data to model the response,

and therefore to calculate the magnitude of the GAIN, the SD of the noise was calculated

from breath-by-breath data. As has already been discussed, the process of interpolation

will itself reduce the noise and therefore the ratio of noise to signal would more logically
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be based on the SD from the second-to-second data. The present study used this latter

approach and found the equations to be valid despite this change.

Another significant finding of the present study was that the single exponential model was

shown to adequately describe the plateau in the \102 response to severe intensity running.

The present study showed that the calculated asymptote was no different from the average

V02 over the last 30 seconds of exercise (from the same 5 transitions).

It has been established that the SD / GAIN ratio has a major effect on the resulting

confidence limits of the parameter estimates. However, whilst researchers routinely report

individual parameter estimates including GAIN, the SD (i.e. level of noise) is not routinely

included. Such an inclusion would perhaps give greater insight into the quality of these

parameter estimates. This may be particularly relevant for three-component models where

the magnitude of the GAIN of phases-l and -3 may be small.

In summary, the noise on the \102 data from severe intensity running was shown to be

both random and Gaussain. This and the other assumptions surrounding the equations

proposed by Lamarra et al. (1987) were tested and shown to be valid for severe intensity

running. These equations were used to calculate that data should be averaged over two

transitions to ensure confidence limits for the time parameters r and 0 of ± 1.2 seconds.

Therefore it was shown that it would be necessary to perform two transitions of severe

intensity running in the following studies. That there was no difference between the actual

plateau in \102 and the calculated parameter estimate for the asymptote of the exponential

response suggests that the mono-exponential model used was an appropriate model to

describe the \1 02 response to exercise in this intensity domain.

Studies 5 and 6 (Chapter 8 and 9) investigated the cause of the shortfall in the \102

response to severe intensity running. It was vital before commencing these studies that the

modelling technique used was tested and found to be robust. Furthermore, it was now

known that two repeated transitions at this intensity would be sufficient to return suitably

narrow confidence limits for each of the parameter estimates. Studies 5 and 6 offered an

opportunity to model and further investigate the \102 response using these two averaged

transitions.
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CHAPTER8

STUDY 5: THE EFFECT OF PRIOR MODERATE OR HEAVY INTENSITY

RUNNING ON THE V02 RESPONSE TO SEVERE INTENSITY RUNNING

8.1 Introduction

In previous chapters, it has been consistently shown that for exhaustive severe intensity

running lasting approximately 2 minutes, \102 does not tend towards \1o-max or the ",,02

required. Rather \102 reaches a plateau some way below \102max, as has been shown by

Spencer et al. (1996) and Spencer and Gastin (2001), who investigated the aerobic and

anaerobic energy contributions to 800 m running.

It has been shown in cycling that prior exercise at an intensity above the AT, that is heavy

intensity exercise, accelerates the \102 kinetics of a subsequent bout of exercise performed

in the heavy intensity domain (Gausche et al. 1989; Gerbino et al. 1996; MacDonald et al.

1997). The suggested mechanisms for the faster \102 response are a metabolite driven

vasodilation that improves local muscle perfusion and an acidosis mediated Bohr effect

that releases more 02 at a constant P02. That prior moderate intensity exercise does not

affect the V 02 kinetics of a subsequent exercise bout has been taken as evidence that the

effect seen for prior heavy intensity exercise is due to the metabolic acidosis resulting from

exercise above the AT (Gerbino et al. 1996). Using Doppler ultrasound to monitor blood

flow, MacDonald et al. (2001) demonstrated an increased muscle blood flow, in

conjunction with a decreased venous pH, in a second bout of heavy intensity forearm

exercise.

Two recent studies (Burnley et al. 2000; Bearden and Moffatt 2001c) have revisited the

findings of Gerbino et al. (1996). Both suggested that as that study used a simple mono-

exponential model to evaluate the \102 kinetics, the results did not necessarily represent an

acceleration of the primary (Phase-2) kinetics. When the response was modelled using a

three-component model to evaluate the different phases separately no acceleration in the

phase-2 \102 kinetics was observed. Rather, it was shown that the apparent acceleration of

V 02 kinetics is due to a reduction in the magnitude of the slow component (Burnley et al.
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2000). Burnley et al. concluded that the acidosis mediated improvements in 02 delivery

and uptake had no effect on V02 kinetics during the first 2 minutes of exercise, whereas

Bearden and Moffatt found that the phase-2 response was altered.

There exists then some controversy over the effect of prior supra AT exercise on the V02

kinetics of a following bout of exercise, with the conclusions drawn being dependent of the

modelling strategy employed (Jones et al. 2001; Hughson et al. 2001). The effect of prior

exercise has never been investigated in the domain of severe intensity exercise. This is

surprising given that when the exercise duration is short, the phase-2 response may

represent the complete V02 response, as the slow component has been shown not to

become manifest until approximately 3 minutes after the onset of exercise (Gaesser and

Poole 1996). Furthermore, it appears likely that for exhaustive severe intensity exercise of

a short duration V02 kinetics may be O2 delivery limited (Hughson et al. 2000). If

Hughson's assumption is correct and the Phase-2 plateau does represent an 02 delivery

limitation, metabolic acidosis (caused for example by prior heavy intensity exercise) would

be expected to increase the asymptotic V02 for this phase. Severe intensity exercise might

offer an opportunity to evaluate these acidosis-mediated effects in a domain where O2

delivery is likely to be limiting and a single exponential may be used to adequately

describe the response.

This study evaluated the effects of prior sub and supra AT exercise on the V02 kinetics of

a severe intensity run at a speed that would elicit exhaustion in approximately 2 minutes.

The primary aim was to test the hypothesis that an increased metabolic acidosis might

improve 02 delivery and thus increase the asymptotic V02. The study also provided the

opportunity to confirm the response established in Chapter 6 using data averaged over two

transitions. The appropriateness of removing of the initial 15 seconds of data prior to

modelling the phase-2 response was also analysed by using objective criteria to determine

the end of the phase-I response.
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8.2 Method

8.2.1 Subjects

Ten male volunteers (mean ± SD: age 23.6 ± 4.3 years, height 1.78 ± 0.04 m, mass 70.9 ±
5.7 kg, VOzpeak 62.4 ± 5.4 ml.kglrnin") participated in the study. Subjects were all

trained distance- and middle-distance runners.

8.2.2 Study design

The study required the subjects to attend the laboratory on six separate days. On the first

visit subjects performed an exhaustive ramp test to determine V o-peak and speed at the

AT. On the next four visits subjects performed a 6 minute warm up, followed by 6 minutes

rest, and finally an exhaustive run at an intensity severe enough to result in exhaustion in

approximately 2 minutes. The speed for the severe intensity run was estimated from the

peak speed achieved during the ramp test. If on the first occasion this run proved to be too

long or short, the speed was adjusted and subjects attended a further four sessions in which

the adjusted speed was used. The exhaustive severe intensity run was always performed at

the same speed but the warm up was performed at a speed that was equivalent to either

90% AT or 50% of the difference between AT and \!02max (50%,1). Each protocol was

performed twice, to ensure confidence limits of ± 1.2 seconds for t and () (for the severe

intensity run), and the order in which the subjects performed the protocols was

counterbalanced.

On the sixth and final visit to the laboratory subjects repeated the exhaustive ramp test.

The V ospeak was then averaged across these two tests, for comparison against that

achieved during the square wave tests, to control for order effects.

8.2.3 Test Protocols

For the ramp test the speed was continually increased by 0.1 km.h" every 5 seconds (1.2

km.hl.min") until the subject was unable to maintain the required speed. The starting
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speed was estimated depending on the fitness of the subject to elicit exhaustion in

approximately 12 minutes.

The square wave tests began after the subject had been standing on the treadmill and

breathing through the appropriate apparatus for 2 minutes to determine a baseline V02.

The warm-up (at either 90% AT or 50%L\) lasted 6 minutes and was followed by 6 minutes

rest before the severe intensity run began. Subjects remained on the treadmill and

connected to the gas analysis equipment throughout the 6 minute rest period. They were

however permitted to perform stretches during this period. During the final minute of the

rest period subjects were instructed to stand astride the treadmill belt while it was

accelerated to the required speed. Gas analysis continued throughout the rest period so that

a second baseline V02 could be established.

8.2.4 Expirate analysis

Expired gases were analysed on-line using the QP9000.

8.2.5 Data Analysis

Breath-by-breath V02 data were first interpolated to second-to-second data. Data from

the ramp tests were used to determine V o-peak. The AT was also determined from the

ramp test data, as was the V 02- running speed relationship for each subject, which was

used to calculate speeds corresponding to 90% AT and 50% L\.

Second-to-second V02 data were averaged, for each second, across the two transitions for

the square wave tests. Since the repeated exhaustive runs varied slightly in duration only

time points present in both transitions were averaged, and as in previous chapters the first

15 seconds of data were removed. Non-linear regression was used to model the V02 from

the severe intensity transitions, assuming a single exponential response:

V02 (t) = baseline + GAIN x (l_e-(t-O)/t) (8.1)
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Parameter estimates were produced, through this iterative process, for GAIN, t and 8. The

overall speed of the '-102 response was evaluated using the mean response time (MRT),

which was calculated as t + 8 (Lamarra et al. 1987). Baseline '-102 was calculated as the

average '-102 for the 60 second period immediately preceding the transition.

The initial phase of '-102 kinetics (phase-l ) was evaluated by determining the duration of

this phase. The end of this phase was determined according to criteria outlined by

Mettauer et al. (2000). Phase-I was considered to have ended when there was a

simultaneous:

a) decrease in the end-tidal 02 concentration (FET02)

b) increase in the end tidal C02 concentration (FETC02)

c) sudden decrease in RER

d) end of the small initial plateau in \102'

These criteria are shown for a typical subject in Figure 8.1. The process was performed

using data averaged across two transitions.
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Figure 8.1: Criteria used to identify the end of phase-I V02 kinetics for a typical
subject performing severe intensity running. The responses of FET02,
FETC02, RER and V02 are shown and the vertical line shows where
phase-I was considered to have ended (in this case at 12 s),
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Comparisons (for Vo-peak HRpeak and post exercise blood lactate concentration) were

made between the ramp and the two severe intensity conditions using a one-way repeated

measures ANOV A (protocol). Significant differences were investigated post hoc using

Bonferonni corrected t-tests. The P values given for this analysis are the corrected

(Bonferonni) values. In instances where this corrected P value was greater than 1, this P

value is not given. Differences in baseline Y02, phase-l duration, GAIN, asymptote, r ,0

and MRT between the two severe intensity conditions were investigated using paired t-

tests. The alpha level was set at 0.05 for all tests and data are mean ± SO unless otherwise

stated.

8.3 Results

As in previous chapters, Y02 was shown to plateau during the severe intensity runs below

the maximum achieved during the ramp test. Peak values from the ramp test, along with

values from the two severe intensity conditions, are contained in Table 8.1. A main effect

for protocol was found for Y 02peak (P < 0.001). Itwas found that Y 02peak was lower in

both of the severe intensity conditions than the ramp test (P<O.OOI in both instances).

There was no difference in Y02peak between the two severe intensity conditions.

A main effect was also found for HRpeak (P < 0.001). It was shown that HRpeak was

higher in the ramp test than the severe intensity run preceded by moderate intensity

running (P < 0.001) and higher than the severe intensity run preceded by heavy intensity

running (P = 0.041). The severe intensity run preceded by heavy intensity running

produced a higher HRpeak than that preceded by moderate intensity running (P = 0.03).

There was no main effect for post exercise blood lactate concentration (P = 0.253).
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Table 8.1: Peak values (averages of the two transitions) for V 02, HR and lactate
from the ramp test, and the very severe intensity runs (preceded by
both moderate (90% AT) and heavy (50% A) exercise).

V02 V02 HR lactate
(ml.min") (% ramp) (b.rnin') (Mm)

Ramp 4421 ± 450 100 189 ± 9 6.6 ± 1.5

Severe 4025 ± 459 91.0 ± 3.2 181 ± 9 7.1±1.4
(following moderate)

Severe 4066 ± 428 92.0 ± 3.9 186 ± 7 7.1±1.5
(following heavy)

The V02 responses (averaged over 2 transitions) for a typical subject to both the warm-up

and the exhaustive severe intensity run under the two warm up conditions are shown in

Figure 8.2. The response to the severe intensity run together with the best fit model is

shown in Figure 8.3. A clear but submaximal plateau was shown in both severe intensity

runs. Results of the modelling confirmed this response with V 02 achieving an asymptote

at 89 ± 4 % V o-peak when preceded by moderate intensity running and 90% ± 4 %

V o-peak when preceded by heavy intensity running (P = 0.19). Figure 8.4 shows the

mean response across all subjects.
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Figure 8.2: V02 response of a typical subject to exhaustive severe intensity running
when preceded by either 6 minutes of moderate intensity running and 6
minutes rest (closed symbols) or 6 minutes of heavy intensity running
and 6 minutes rest (open symbols). Each data set shows the response to
the entire exercise protocol and is an average of two transitions. Also
shown is VOzpeak (broken line), averaged over the two ramp tests.
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Figure 8.3: VOzresponse of the same representative subject to exhaustive severe
intensity running when preceded by either 6 minutes of moderate
intensity running and 6 minutes rest (closed symbols), or 6 minutes of
heavy intensity running and 6 minutes rest (open symbols). Each data
set shows the response just the severe intensity run and is an average of
two transitions. Also shown is VOzpeak (broken line), averaged over
the two ramp tests and the best fit model for each data set (heavy lines).
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Figure 8.4: Mean V02 response across all subjects to exhaustive severe intensity
running when preceded by either 6 minutes of moderate intensity
running and 6 minutes rest (closed symbols) or 6 minutes of heavy
intensity running and 6 minutes rest (open symbols). Each data set
shows the response just the severe intensity run. Also shown is mean
V02peak (broken line)
Note: Error bars represent SEM. For clarity error bars are omitted from all but the
final data points.

The differing warm-up affected neither the V02 attained in the severe intensity run (see

Table 8.1) nor the duration of the exhaustive test itself. The test duration with prior

moderate intensity exercise was 110.2 ± 9.7 seconds, whilst the duration with prior heavy

intensity exercise was 111.0 ± 15.2 seconds (P = 0.81).

The results of the modelling by non-linear regression are contained in Table 8.2. Firstly the

duration of the first phase of V 02 kinetics is given. This was shorter when the severe

exercise intensity exercise was preceded by heavy exercise than when it was proceeded by

moderate exercise.
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In addition to the GAIN parameter estimate and the baseline V02, also given is the value

for the asymptote (GAIN + baseline). This was included as it is represents the asymptote

of V02 irrespective of any fluctuations in the baseline value. A significant difference was

found between the two severe conditions for GAIN and baseline. However, the asymptote

was not different between the two conditions.

Table 8.2 also contains values for the other two important parameter estimates, r and 8, as

well as MRT, which is the sum of the two. No difference was found between the two

severe intensity conditions for r. However, a difference was found for 8. When the speed

of the V02 kinetics were assessed as a whole by MRT, they were found to be faster

following prior heavy intensity exercise.

Table 8.2: Calculated parameter estimates and test results from modelling the
severe intensity runs under both warm-up conditions. In addition to
the calculated parameter estimates (GAIN, 't and 8), baseline V02,
asymptote (GAIN + baseline V02), MRT (t + 6), and Phase-l duration
are also included. The final column contains P values from the
respective difference test.

Severe Severe P value

(following (following Difference (paired

moderate) heavy) t-test)

Phase-I (s) 14.1 ± 2.0 11.1 ± 1.9 3.0 ± 2.5 0.004

Baseline V02 (ml.min") 734 ± 131 652 ± 119 82 ± 56 0.001

GAIN (rnl.rnin") 3188 ± 408 3341 ± 390 -154 ± 164 0.016

Asymptote (ml.min") 3922 ± 439 3993 ± 424 72 ± 174 0.226

r (s) 8.8 ± 2.5 9.6 ± 3.5 -0.8 ± 1.9 0.222

8 (s) 12.1±1.1 9.3 ± 3.9 2.8 ± 3.4 0.026

MRT (s) 20.9 ± 1.9 18.9 ± 1.0 2.1 ±2.4 0.026

SB Draper (2002) 151



PhD Thesis Chapter 8

8.4 Discussion

The principal finding from the present study was that prior supra AT running did not

increase the level at which \;02 reached a plateau in a subsequent severe intensity run,

designed to result in exhaustion in approximately 2 minutes. There were no differences in

either Vo-peak or the asymptotic \;02 estimated from non-linear regression between

severe intensity exercise preceded by moderate intensity exercise and severe intensity

exercise preceded by heavy intensity exercise. Whilst the effects of prior exercise have not

been investigated in this intensity domain, previous attempts to model the "02 response to

severe intensity exercise have pointed to a potential 02 delivery limitation (Hughson et al.

2000). However, the present study found that potential acidosis mediated benefits to O2

delivery did not improve the percentage of aerobic power the subjects were able to use

during exhaustive severe intensity running.

The analysis did produce significant differences in both GAIN and baseline "02.

Differences in GAIN can be explained readily by the difference in baseline, since the final

asymptote was not different between conditions. The difference in baseline "02 is

perhaps less easily explained, particularly as the baseline following moderate exercise was

shown to be higher, in contrast to previous work using heavy intensity exercise preceded

by both moderate and heavy intensity exercise (Burnley et al. 2000). The nature of the

present study, being at such severe intensities and using treadmill running, necessitated

subjects being given the freedom to stretch as required between the warm up and the

severe intensity run (although they did remain on the treadmill bed and connected to the

respiratory equipment). Such a requirement may lead to greater fluctuations in the

respiratory data than merely standing stationary as would be possible at lower exercise

intensities. The less severe warm-up intensity may have resulted in the subjects feeling the

need to perform more and perhaps more vigorous stretches; this could explain the slightly

elevated baseline \;02, The magnitude of the response was therefore examined using the

asymptote (baseline \;02 + GAIN). Other investigators have also recommended the use of

this parameter rather than the baseline dependent GAIN (Hughson et al. 2001).

Research into the effect of prior supra AT exercise on the \;02 response to heavy intensity

cycling has proved equivocal. For example, there are reports that the amplitude of the
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phase-2 response is both increased (Bearden and Moffatt 2001c) and unchanged (Burnley

et al. 2000). Although this latter study has been criticised for separating the amplitude of

the phase-2 response from the baseline \;'02 despite an elevation of this baseline in the

repeated heavy exercise condition (Hughson et al. 2001). Similarly the magnitude of the

overall response (i.e. the sum of all the GAINS) has been shown to be both unchanged

(Bearden and Moffatt 2001c) and decreased (Burnley et al. 2000).

A similar pattern was shown for severe intensity running (above MLSS) to that which had

been previously shown for heavy intensity cycling, in that no difference was found in the

time constant (t) for the primary kinetics (phase-2) between the two conditions (Burnley et

al. 2000; Beardon and Moffatt 200Ic). It should be recognised though, that in these studies

a slow component was modelled and so phase-2 represented only part of the overall

response, whereas in exhaustive exercise of a short duration (as in this thesis) a slow

component should not be manifest.

Whilst change was not established in the point at which \;'02 reached its plateau, nor in t

for phase-2, differences were found in the \;'02 response to severe intensity exercise

following a supra AT warm-up. Both the delay (8) in the onset of the single exponential

used to model the response and the calculated duration of the initial phase of V 02 kinetics

(phase-I), were found to be significantly shorter when the severe intensity run was

preceded by heavy intensity exercise. It is logical to expect this difference to be present in

both parameters since 8 is representative of (though not necessarily equal to) the duration

of this phase, where increases in \;'02 are thought to be primarily due to increases in

venous return (Wasserman et al. 1974). It is also possible that acidosis mediated

vasodilation might enhance this initial response and therefore decrease the delay in the

onset of the primary (phase-2 )V02 response. Such a change in delay, or in the duration of

phase-I, has not been reported for heavy exercise preceded by heavy exercise (Gerbino et

al. 1996; Burnley et al. 2000; Bearden and Moffatt 200 Ic). However, Burnley et al. (2000)

attempted to model the phase-I kinetics and this was done by a "goodness of fit" method

rather than use any objective criteria to determine the end of this phase. There are few data

points from which to model this phase (Grassi et al. 1996) and the phase-I response has

never been demonstrated to be exponential in nature (Whipp and Ozyener 1998). Since
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Burnley et al. treated phase-l as an exponential rather than a (pure) delay as in the present

study, this may explain why Burnley et al. (2000) would not have detected such a change.

The end of the first phase of the V02 response was determined according to the criteria

outlined by Mettauer et al. (2000). The responses of 02 and CO2 concentrations at the

onset of exercise represent the influence of C02 storage within the muscle (Whipp and

Ozyener 1998), and an abrupt change in these concentrations at the mouth can be used to

signal the end of the muscle to lung transit delay. The first phase of the V 02 response was

not modelled in this thesis because of the technical and conceptual difficulties inherent in

such a process. However, the present study gave considerable support to the approach that

was used, namely to exclude the first 15 seconds of data from the modelling process and

incorporate a delay (8) into the model. The difficulty with the exclusion of any data from

such a process is that ideally the data set used to model phase-2 would contain no data

points from phase-l and all of the data points from phase-2. In reality breath-by-breath

noise makes it impossible to achieve such a result. The duration calculated for phase-l in

the present study was 12.6 ± 2.4 seconds (average across both conditions). This would

suggest that 15 seconds is an appropriate time period to remove from the data set. The

modelling strategy adopted appears to be robust as when the phase-l data were removed on

an individual basis (using the criteria outlined by Mettauer et al. 2000) and the data re-

modelled no differences were found for any parameter estimate between this and the

original modelling procedure (P > 0.05 in all cases).

Whilst there was no difference in the underlying 1:, the effect of a significant shortening of

8 was sufficient to produce a significant acceleration of the V 02 response. This was

assessed in the present study as MRT and is shown in figure 8.4. The rising phase-2

response for the severe intensity exercise preceded by heavy intensity exercise is to the left

of (i.e. quicker than) the phase-2 response for severe intensity exercise preceded by

moderate intensity exercise. The MRT represents the time taken to achieve 63% of the

overall (modelled) response. The mean value of -20 seconds highlights the speed of the

V 02 response in this severe intensity running. This is a much faster response than has

been reported for other exercise intensities. It should be emphasised at this point that V 02

reaches its asymptote well below either ",,02 required or V o-max. What has been shown
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then is a response that is much faster but also much reduced in comparison with that which

is predicted in the literature (Whipp 1994a).

The \/02 data were modelled as a single exponential with a delay phase (D). This is in

contrast to the only previous attempt to model data in exercise of this intensity (Hughson et

al. 2000). Hughson applied the same three-component model to severe exercise intensities

of 96% and 125% \/02max. Outlined above (and elsewhere; see Section 3.10 (Chapter 3»)

are reasons why it is inadvisable to model the phase-l response in this way. The third and

slow phase of \/02 kinetics has been shown to become manifest after approximately 3

minutes of exercise (after a delay of approximately 120 s) (Gaesser and Poole 1996). It is

illogical therefore to apply models used in heavy exercise to exercise of such a high

intensity and short duration. Hughson et al. (2000) also produced (and favoured) a semi-

logarithmic model to analyse the V02 response, based on the assumption that the response

must tend to the V02 required. This approach was not adopted in the present study because

no evidence has been found in this thesis to suggest that V02 tend to a higher rate than the

asymptote of the model used. Attempts to model the early part of the data and residual

plots supported this view.

In the present study, subjects were connected to the gas analysis equipment throughout the

entire protocol (lasting approximately 16 minutes). There was therefore a large amount of

data not included in the present analysis. The recovery (off-kinetics) response was not

analysed and neither was the response to moderate or heavy exercise. The warm-up data

were not modelled for two reasons. Firstly, the possible need for a two-component model

in the domain of heavy intensity exercise, and secondly that the severe intensity exercise

(unlike the moderate and heavy intensity exercise) had been preceded by a warm-up.

Therefore comparisons between the exercise intensities would be problematic. Itwas

considered unethical to conduct severe intensity transitions, as examined in the present

thesis, without the opportunity to warm-up and stretch. It was not a principle aim of the

present thesis to make comparisons between all of the exercise intensities and the \/02

response to both moderate and heavy intensity exercise is well documented. The

modelling of recovery kinetics was also beyond the scope of this thesis, and was likely to

be affected by stretching.
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In summary, prior supra -AT exercise did not increase the level at which '102 plateaued in

a subsequent severe intensity run. The assumed 02 delivery benefits derived from this

prior exercise did have the effect of speeding '102 kinetics but did not improve either

V o-peak or test duration. The speeding of kinetics was manifest in the initial phase

(phase-I) rather than the primary (phase-Z) kinetics themselves; that is the response was

unchanged but began earlier. The mechanisms involved in this alteration of the response

do not seem to be the underlying mechanisms causing the sub maximal V 02 plateau in

severe intensity exercise. However, it is clear from Study 3 (Chapter 6) that the magnitude

of the shortfall in the '102 response is linked to the aerobic capability of the individual.

The final study (Chapter 9) investigated the differences between sprint and endurance

trained athletes in order to further investigate this relationship. Itwas hoped that this might

give a greater insight into the underlying physiology of the response.

SB Draper (2002) 156



PhD Thesis Chapter 9

CHAPTER9

STUDY 6: THE V02 RESPONSE OF SPRINT AND ENDURANCE TRAINED

RUNNERS TO SEVERE INTENSITY RUNNING

9.1 Introduction

Endurance training alters the V02 response to both moderate and heavy intensity exercise

(Hagberg 1980; Billat 2000b). Such an effect has been shown in both sedentary and

moderately trained individuals (Berry and Moritani 1985; Norris and Peterson 1997). A

shortened phase-2 t for moderate intensity exercise (Norris and Peterson 1997) and a

decreased slow component for heavy intensity exercise (Casaburi et al. 1987; Poole et al.

1990) have been reported following endurance training. Highly trained endurance athletes

have been shown to exhibit a V02 response that differs from less trained individuals,

categorised by a decreased 't for phase-2 and a reduced slow component (Billat 2000b).

Furthermore, individuals with a high V02max have been shown to exhibit faster kinetics

than individuals with lesser aerobic capabilities (Whipp and Wasserman 1972; Powers et al

1985).

Study 3 (Chapter 6) showed a link between the aerobic capability of the individual and the

shortfall in the V 02 response to severe intensity running. The effect of endurance training

status has never been investigated in the severe intensity domain, however. It is important

therefore, in attempting to understand the nature of the V02 response to severe intensity

running, to rectify this omission.

Edwards et al. (1998) investigated whether a method of assessing V 02 kinetics could

distinguish between the responses of elite endurance and sprint trained runners. The

endurance runners were competing at distances of 3000-10 000 m and the sprint runners

over 100 - 400 m. Edwards et al. found that V 02 kinetics were faster in endurance

runners compared to sprint runners. However, this study used a pseudo random binary

sequencing (PRBS) technique to evaluate the speed of the V02 response to sinusoidal

exercise in a single test. This technique does not allow the response to fully develop, and

assumes first order linear kinetics in the modelling of the response.
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There are a number of physiological characteristics that differentiate between endurance

and sprint trained athletes. Endurance runners have been shown to possess a higher

¥02max (relative to body mass) and a higher percentage of slow oxidative (type-I) muscle

fibres than sprint runners (Costill et al. 1976). The speed of the phase-2 response is

increased as ¥02max increases for moderate (Whipp and Wasserman 1972; Powers et al.

1985) and heavy (Barstow et al. 1996) intensity exercise. Muscle fibre type will also have

an effect on V02 kinetics, since fast oxidative (type-Ha) fibres are less efficient (greater

¥02 the for same power output) than type-I fibres (Crow and Kushmerick 1982). Indeed,

the recruitment of fast twitch fibres is the most widely accepted explanation for the slow

component (Barstow et al. 1996; Borrani et al. 2001).

It is likely that sprint runners, will have a lesser aerobic potential but a greater capacity for

anaerobic work than distance runners. Therefore, in an exhaustive severe intensity run of

short duration sprinters will exercise at a greater relative exercise intensity (% V o-rnax)

than endurance runners. If ¥02 kinetics are intensity dependent and rise faster with

increasing exercise intensity (Whipp 1994a), it might be expected that sprinters would be

able to get closer to their (comparatively lower) V o-max during exhaustive square wave

running lasting approximately 2 minutes.

The present study compared the ¥02 responses to an exhaustive square wave run lasting

approximately 2 minutes in a group of endurance trained and a group of sprint trained

runners. The relationship found between aerobic capabilities tv 02max) and the shortfall

in the V02 response (% Vo-max ) in Study 3 (Chapter 6) was further investigated. In

Study 3 this was relationship was demonstrated in a group that was reasonably

homogenous for ¥02max, but the present study offered a group (sprinters and endurance

runners combined) that was heterogeneous for V o-max, yet capable of running at high

speeds.
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9.2 Method

9.2.1 Subjects

Twelve male club level runners volunteered to take part. Subjects were recruited to one of

two groups (n = 6 in each). The first group (sprint) comprised trained sprint runners who

were currently competing over 100 or 200 m. The second group (endurance) comprised

trained distance and middle distance runners who were currently competing over distances

ranging from 1500 to 10 000 m. The sprint group had a best time for 100 m of 11.1 ± 0.4

seconds and the endurance group had a best time for 10 000 m of 32.6 ± 1.0 minutes (mean

± SD). Whilst these do not represent an elite group of either sprinters or endurance runners

(world best times at the time of writing were 9.79 seconds and 26.4 minutes for 100 and 10

000 m respectively), both groups were representative of trained club standard athletes.

Subject characteristics are contained in Table 9.1. An independent samples t-test showed

the endurance group to have a significantly higher Vospeak than the sprint group.

Table 9.1: Subject characteristics for and differences between (P value) the sprint
and endurance groups

Sprint Group Endurance Group

Age (yrs) 21.3 ± 5.1 21.6±2.7

Height (m) 1.77 ± 0.03 1.77 ± 0.04

Mass (kg) 73.7 ± 6.4 69.7 ± 2.9

V02peak (ml.kglmin") 54.5 ± 8.5 67.5 ± 3.3

P value

0.890

1.000

0.192

0.006

9.2.2 Study design

Subjects were required to attend the laboratory on four separate days. On the first visit

subjects performed an exhaustive ramp test to determine V o-peak and speed at the AT.

On each of the next two visits subjects performed a 6 minute warm up, followed by 6

minutes rest, and finally an exhaustive run at a speed fast enough to result in exhaustion in
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approximately 2 minutes. The speed for the severe intensity run was estimated from the

peak speed achieved during the ramp test. If on the first occasion this speed resulted in a

test duration that was too short or too long, the speed was adjusted and the subject attended

for an additional two sessions in which the adjusted speed was used. The warm up was

performed at a speed equivalent to 90% AT. The constant speed protocol was performed

twice, to ensure confidence limits oft 1.2 seconds for t (see Section 7.4 (Chapter 7». On

the fourth and final visit to the laboratory subjects repeated the ramp test. The V o-peak

was then averaged between these two tests, for comparison against that achieved during the

square wave tests, to control for order effect. The ramp test was performed first and last

rather than alternated with the constant speed tests because the ramp test data were needed

to determine the speeds for the warm-up and the severe intensity run.

9.2.3 Expirate analysis

Expired gases were analysed on-line using the QP9000.

9.2.4 Data analysis

Breath-by-breath \1 02 data were first interpolated to second-to-second data. Data from

the ramp tests were used to determine V o-peak and AT.

Second-to-second \102 data were averaged, for each second, across the two transitions for

the square wave tests. Since the repeated exhaustive runs varied slightly in duration only

time points present in both transitions were averaged, and as in previous chapters the first

15 seconds of data were removed. Non-linear regression was used to model the \102 from

the severe intensity transitions, assuming a single exponential response:

V02 (t) = baseline + GAIN x (l_e·(t-O)/t) (9.1)

Parameter estimates were produced, through this iterative process, for GAIN, t and 8. The

overall speed of the \102 response was evaluated as mean response time (MRT), calculated

as t + 8 (Lamarra et al. 1987). Baseline V 02 was calculated as the average V02 for the 60
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second period immediately preceding the transition. The data were modelled for both the

severe intensity run and the moderate intensity warm up using the same mono-exponential

model expression.

As in the previous chapter, the duration of the Phase-1 vOz kinetics was determined

according to criteria outlined by Mettauer et al. (2000). Phase-1 was considered to have

ended when there was a simultaneous:

a) decrease in the end-tidal Oz concentration (FET02)

b) increase in the end tidal CO2 concentration (FETC02)

c) sudden decrease in RER

d) end of the small initial plateau in V 02.

Within group and between group comparisons between the ramp and the severe intensity

exercise were made using a 2 x 2 (test x group) ANOVA. Within group and between group

comparisons between the moderate and the severe intensity exercise also were also made

using a 2 x 2 (intensity x group) ANOVA. In the event of a significant interaction

Bonferonni corrected paired t-tests were used post hoc to identify the differences.

Comparisons made solely between the two groups (subject characteristics) were made

using independent samples t-tests. Relationships were investigated using the Pearson

product moment correlation coefficient. The alpha level was set at 0.05% for all tests.

Data are mean ± SD unless otherwise stated.

9.3 Results

Peak values from both the ramp test and the severe intensity runs are contained in Table

9.2. In the comparison between the ramp test and the severe intensity run, no interaction

was found with the subject group (P = 0.071) for V02peak (observed power = 0.447).

Although there was a trend for the sprint group to achieve a higher percentage of the

V02peak from the ramp test in the severe intensity run (99.3 ± 10.5 v 92.0 ± 3.6 %). A

main effect was found however for both test (P = 0.023) with the ramp test producing the

higher values, and for group (P = 0.017) where the endurance group produced the higher

values.

SB Draper (2002) 161



PhD Thesis Chapter 9

No interaction was found for HRpeak (P = 0.752) and there was no main effect for group

(P = 0.168). A main effect was found for test however (P < 0.001) and a higher HRpeak

was attained in the ramp test. There was no interaction (P = 0.105) or main effect for

either group (P = 0.756) or test (P = 0.276) for post exercise blood lactate concentration.

Table 9.2: Peak values from the ramp test and the severe intensity run. Values
are means from the two transitions of each test.

Ramp Severe

Endurance group

Ramp Severe

Sprint group

HR (b.min") 196 ± 8

Lactate (mmol.l") 6.4 ± 1.3

\;02 (rnl.min") 3900 ± 481

188 ± 11

7.6 ± 1.2

3846 ± 393

190 ± 7

6.9 ± 1.5

4614 ± 279

180 ± 6.1

6.6 ± 1.6

4243 ± 265

The parameter estimates from the non-linear regression used for modelling the warm-up

(90% AT) and the severe intensity data are contained in Table 9.3. In addition, the

variables baseline V02 and duration of Phase-I duration are given. The mean response for

each group is shown in Figure 9.1.
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Table 9.3: Calculated parameter estimates from the modelling of the moderate (90
% AT) and the severe intensity data. Also given are baseline V 02 and
Phase-l duration. Asymptote (Baseline + GAIN) is also expressed a %
of V02peak from the ramp test.

Sprint Group Endurance Group

Moderate Severe Moderate Severe

Baseline V02 (ml.min") 522 ± 27 683 ± III 523 ± 130 797 ± 134

Phase-I duration (s) 16.0 ± 3.2 13.3±2.1 17.3 ± 2.9 14.0 ± 1.7

GAIN (ml.min") 1844 ± 367 3049 ± 342 2312 ± 323 3356 ± 243

Asymptote (ml.min") 2366 ± 427 3733 ± 403 2835 ± 299 4153±230

% V02peak (%) 60.7 ± 7.9 96.2 ± 9.0 61.5 ± 6.1 90.1 ± 3.2

t (s) 16.6 ± 6.4 11.2 ± 1.1 12.3 ± 2.3 9.3 ± 1.9

o (s) 14.7 ± 7.3 10.8 ± 2.7 12.7 ± 2.7 12.0 ± 0.8

MRT (s) 31.3 ± 2.3 21.9±2.4 25.0± 1.1 21.3 ± 1.6
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Figure 9.1: Mean V02 response for both the sprint group (closed symbols) and
endurance group (open symbols) to exhaustive severe intensity running.
Data are presented as a percentage of V02peak from the ramp test.
Note: Error bars represent SEM. For clarity error bars are omitted from all but the
final data points
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Figure 9.2: Relationship between Vo2peak and the percentage of this peak that
subjects were able to attain during the severe intensity run. Sprint
subjects are shown as closed symbols and endurance subjects are
shown as open symbols.
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There was no interaction (intensity x group) for baseline V02 (P = 0.236) and no main

effect for group (P = 0.341). However, there was a main effect for intensity (P = 0.001)

which was higher in the severe intensity. There was no interaction (intensity x group) for

Phase-l duration (P = 0.791) or main effect for group (P = 0.239). However, there was a

main effect for intensity (P = 0.035) and this was longest in the sprint group.

No interaction (intensity x group) was found for the parameter estimate for GAIN (P =
0.459). A main effect was found for both group (P = 0.030) where the endurance group

produced higher values, and intensity (P < 0.001) where the severe intensity GAIN was

largest. No interaction was found for the asymptote (P = 0.806), but main effects for both

group (P = 0.030) where the endurance group were highest, and intensity (P < 0.001)

where the severe intensity was highest.

No interaction (P = 0.400) or main effect for group (P = 0.076) was found for r. However,

a main effect was found for intensity (P = 0.011) and t was longer in the moderate

intensity exercise. No interaction (P = 0.228) or main effect for either group (P = 0.860) or

intensity (P = 0.108) was found for o.

The only significant interaction was found for MRT (the sum of t and 0) (P = 0.003).

Main effects were also found for both group (P = 0.002) where the endurance group

demonstrated the faster response, and intensity (0.001) where the severe intensity produced

a faster response than the moderate intensity. Post hoc tests showed that the groups

differed for MRT only in the moderate intensity condition and that there was greater

increase in MRT between exercise intensities for the sprint group.

There was no difference in test duration (P = 0.43) for the severe intensity run between the

groups. Test duration was 115.6 ± 15.1 and 109.9 ± 7.8 seconds for the sprint and

endurance groups respectively.

The relationship between V o-peak from the ramp test and the percentage of this peak

achieved in the severe intensity test is shown, for all 12 subjects, in Figure 9.2. A strong

and significant correlation was found between the two variables.
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9.4 Discussion

The subjects recruited for the present study were all club athletes. The groups were shown

to be different from each other both in tenus of aerobic capability (\;02peak) and in their

\;02 response to moderate intensity exercise. The present study supported the findings of

Costill et al. (1976) in showing the endurance group to have a higher V o-peak than the

sprinters. The data also showed that the endurance group demonstrated a faster V02

response (MRT) to moderate intensity exercise than the sprinters, as has been reported

previously (Edwards et al. 1999). The calculated r for moderate intensity running was

similar to previously reported values (Carter et al. 2000b). No difference was found in the

component parameters of the MRT, that is t and 0, largely because of the increased

variance at the lower exercise intensity. The SD was higher for both t and 0 for moderate

than for severe intensity exercise. More exercise transitions would have been necessary to

confidently establish this response in moderate intensity exercise (see Chapter 7). The use

of only two transitions for moderate intensity exercise would have resulted in wide

confidence limits for both r and o. However, the variance in MRT was small even at

moderate intensities since any decrease in either variable due to the effect of noise on the

non-linear regression fit would result in an increase in the other. The MRT then, whilst

being a crude measure of the overall (phase-l and phase-2) response does represent a

useful and more robust measure when confidence limits are wide. Data from Study 4

suggest that six transitions would be necessary to give confidence limits of ± 1.2 seconds

for 1: and 0 for the moderate intensity exercise.

An important finding from the present study was that whilst the endurance group again

exhibited the same response to the severe intensity exercise as described in previous

chapters there was a different response from some ofthe sprint trained group (Figure 9.1).

However, owing to the heterogeneity and small size of the subject groups the interaction

between test and group for V02peak was only close to significance. The trend was

however for the endurance group to plateau some way below V02peak, whilst the sprint

group (with two exceptions) plateaued very close to their V02peak from the ramp test (see

figure 9.1). The endurance group's \;02 response supported that which has been

consistently shown in this thesis that \;02 would reach a plateau below \; o-max. The
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sprint group supported the widely held belief that severe intensity exercise will result in the

achievement of V02max (Whipp 1994a).

That those subjects with the lesser aerobic capabilities failed to demonstrate the sub

V02max plateau may explain why this has not been reported in previous research

(Williams et a1. 1998; Hill and Ferguson 1999; Hughson et a1. 2000; Hill and Stevens

2001). The only work that has clearly demonstrated such a plateau used highly aerobically

trained subjects (Spencer et a1. 1996; Spencer and Gastin 2001).

The V02 response in the sprint group was not a consistent one (as reflected in large SDs).

Indeed it was for this reason that, unlike the previous studies, data from a typical subject

was not included in this analysis. In Chapter 6, the extent of the shortfall in the V02

response was linked to the aerobic capabilities of the athlete. The sprint group was

extremely heterogeneous for V02peak. Some of these subjects competed over distances of

up to 400m, and possessed a relatively high V ospeak (Figure 9.2). Subject 5 in the sprint

group, who had the highest V02peak of that group (62 ml.kg'lmin"), achieved only 86%

of this rate in the severe intensity run. Subject 2 on the other hand was the fastest 100 m

runner and had limited aerobic capabilities (V02peak from the ramp test of just 40 ml.kg

1min-I). This subject achieved a V02 during the severe intensity run, that was even higher

than that achieved during the ramp test. The individual data are contained in Appendix 9.

The data from this latter subject (subject 2 from the sprint group) warrant closer scrutiny.

They represent something of an anomaly since this subject achieved 118% of his V02peak

from the ramp test in the severe intensity test. There appear to be few problems with this

subject's data, however. He achieved very similar values for the two ramp tests (difference

of 47 ml.min") and demonstrated a V02 plateau in both of those tests. There was little

difference in the duration of the two severe intensity runs (4 seconds), and although there

was some difference in the V02peak from the two severe intensity runs (275 ml.min") both

tests exceeded the values from the ramp tests. The full extent of the relationship between

both aerobic and anaerobic capabilities and the V02 response for severe intensity exercise

warrants further research.
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The strong relationship between the percentage of V02peak achieved in a 2 minute

exhaustive severe intensity run and V02peak (shown first in a group of trained middle

distance runners in Chapter 6) was again demonstrated in this study. For the present study

the 12 subjects (representing a more heterogeneous sample) were compared as a single

group and again a strong relationship was evident. This relationship (shown in Figure 9.2)

highlights again why previous research may have failed to demonstrate the V 02 response

seen in this thesis. The relationship suggests that subjects with modest aerobic capabilities

(Vo-rnax < 55ml.kg-1min-l) may be expected to reach their V02max in exhaustive severe

intensity running. Previous published work has often used subjects of limited aerobic

potential as shown by modest figures for V o-peak (Hill and Ferguson 1999; Hill and

Stevens 2001). Furthermore, this relationship has important performance implications for

the highly trained. If those with the highest Vo-max are unable to make use of this

advantage, anaerobic training may be far more important than has been suggested for the

800 m (Gamboa et al. 1996).

The modelling of the severe intensity data revealed no differences between the two groups

for any of the parameter estimates. This is in contrast to results reported for heavy exercise

where a training effect on the speed of the V02 kinetics has been reported (Cerretelli et al.

1979). The speed of the response was consistent (as indicated by small SDs within the

group for all the time parameter estimates) across the subject group (n=12) with a t of

approximately 10 seconds and a MRT of approximately 21 seconds. These values are far

quicker than have been reported at lower exercise intensities (Gaesser and Poole 1996).

Baseline V02 for the severe intensity run was elevated above that recorded for the

moderate intensity warm-up. However, this may have been due to subjects stretching on

the treadmill between the warm-up and the severe intensity run.

Oxygen uptake kinetics were shown to be accelerated in the very severe intensity run

compared to the moderate intensity warm up. Parameter estimates for both r and MRT

were smaller in the severe intensity compared to the moderate intensity run, despite a

larger GAIN for the severe intensity run.

In summary, the present study showed that sprint trained individuals were more likely to

achieve V02max in an exhaustive test at a speed that results in exhaustion in 2 minutes
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than endurance trained individuals. The plateau of V02 below its maximum rate appeared

to be more closely linked to the aerobic capabilities of the individual than to the type of

training they were involved in however. The implications of these findings for athletic

performance are further discussed in Chapter 10.
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CHAPTER 10

GENERAL DISCUSSION

10.1 The V02 response to severe intensity running

The principal finding of this thesis was that in severe intensity running at a speed that

resulted in fatigue in approximately 2 minutes aerobically trained individuals exhibited a

V02 response that differed from that which had been suggested (Whipp 1994a) or reported

(Hill and Ferguson 1999) previously. The literature indicates that all exercise intensities

performed in the severe intensity domain result in the achievement of V 02max. The first

study contained in this thesis challenged these findings as subjects clearly reached a

plateau in V 02 at a rate that was below that achieved during a ramp test and other square

wave tests performed at lower work rates. This phenomenon was demonstrated clearly

only in treadmill running (which was the primary focus of this thesis). The V02 response

to cycling was similar in that subjects were unable to attain Vo-max but a clear plateau

was not shown. Itwas possible therefore that the cycling response was tending towards

V02max, however such a response would have been very slow.

The domain of severe intensity exercise is defined as all exercise intensities that are greater

than the MLSS or critical power/speed (Poole et al. 1988). It is also apparent that there is a

consensus of opinion within the literature that all square wave exercise performed in this

intensity domain results in V o-max being attained prior to fatigue (Ward 1999). This

consensus is echoed in review papers on V02 kinetics (Gaesser and Pooole 1996, Xu and

Rhodes 1999). The results of the Study 1 question the validity of this consensus. It should

be highlighted however that the results of the severe intensity transitions lasting

approximately 5 and 8 minutes showed exactly the expected response. The V ospeek from

these transitions was no different from that achieved in a ramp test and a third phase in

V02 appeared to be manifest. It was only at exercise intensities where exhaustion was

reached in a short duration (-2 minutes) that the sub maximal plateau in V02 was

demonstrated.
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The V 02 response to exercise at intensities where the theoretical V 02 requirement is

greater than maximum aerobic power has been reviewed (Whipp 1994a). Whipp suggests

that at such intensities the primary (phase-2) response will tend towards energy the V02

required but that the response will be cut-off at V02max. Moreover there is research

evidence to support this view (Hill and Ferguson 1999 and Hill and Smith 2001). The

'conventional' view of kinetics for this high intensity exercise, as expressed by Whipp

(1994a), is contrasted with the response found in this thesis in Figure 10.1. This example

uses a theoretical subject who has a V02max of 5 L.min-1 and performs 2 minutes of

exhaustive exercise at 120% of V02max ('\'02 required = 6 Lrnin"). Both traces have an

identical 8 (10 seconds) but a 't of30 seconds was used for the 'conventional response' as

this is representative of the majority of the data from the literature. A't of 10 seconds was

used for the typical response as demonstrated in this thesis.
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Figure 10.1: 'Conventlonal' Phase-2 V02 response to exercise in the severe intensity
domain (adapted from Whipp 1994a) compared with the response
demonstrated in this thesis. The 'conventional' response (closed
symbols) tends towards the V02 required but is cut off at V02max.
The response shown in this thesis (open symbols) displays a short 't (-10
seconds) and tends to an asymptote at 90% V02max. V02max (solid
line) and the -V02required (broken line) are also shown.
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This illustration of the conventional view of V02 kinetics in the severe intensity domain

highlights how both the asymptote and the speed of the response may have an influence on

running performance, It is clear that the closed symbols trace overestimates the final V02

and thus potentially the aerobic energy contribution to this exercise. However since the

thesis response is faster (reduced 1), the O2 deficit is in fact only slightly higher (by -4 %)

for this response.

Whilst there are published data that support the response outlined by Whipp (1994a), there

are also data that support the response shown in this thesis. Spencer et al. (1996) and

Spencer and Gastin (2001) showed a similar response to that in this thesis in trained middle

distance runners running at 800 m race pace. The aim of their research however was not to

model the V02 response; rather it was to quantify (via 02 deficit) the relative aerobic and

anaerobic contributions to this exercise. Consequently the trials were not genuine square

wave exercise and the speed was decreased if necessary to enable the subject to match the

duration of the treadmill run to that the subject's 800 m track time. Study 1 (Chapter 4)

was therefore necessary to establish whether a shortfall in the expected V 02 response

would occur in genuine square wave exercise transitions. This phenomenon has been

shown most clearly in treadmill exercise and so it was also important to determine whether

the shortfall in V02 was particular to the mode of exercise or the exercise intensity. Study

1 showed that the V02 response to exhaustive square wave exercise lasting approximately

2 minutes differed between cycling and running. A similar shortfall in the V02 response

occurred in both cycling and running exercise but the clear plateau at this sub maximal V02

was only demonstrated in running. The following five studies therefore concentrated on

severe intensity running.

An important question arising from Study 1was why the data supported some published

data (Spencer and Gastin 2001) and yet conflicted with others (Hill and Ferguson 1999).

These two studies both examined exhaustive severe intensity running. Spencer and Gastin

(2001) found that V02 reached a clear plateau below V02max during a run at 800 m race

pace (as demonstrated in this thesis). However Hill and Ferguson (1999) concluded that

V ospeak is independent of test duration. There are two major differences between these

studies that may explain the conflicting results. The first is the subject groups that

participated. Spencer and Gastin (2001) used Australian 800 m runners who were
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competing at state level; this was reflected in high yet homogenous values for Vo-rnax (67

± 2 ml.kglmin"). Hill and Ferguson (1999) however, despite all subjects being "involved

in regular fitness programs and were running 40 km.wk!" (p. 291), used subjects who

recorded relatively low and heterogeneous values for Vo-max (52.7 ± 14.5 ml.kglmin"),

Secondly Spencer and Gastin (2001) used exercise intensities that would result in

exhaustion in a given time period (approximately 2 minutes), whereas Hill and Ferguson

(1999) used exercise intensities that represented given percentages of speed at V02max

(termed Vmax). Hill and Ferguson (1999) report a large standard deviation for time to

exhaustion at the highest intensity (129 ± 37 seconds).

It is possible then to explain how Hill and Ferguson (1999) concluded that V 02max was

achieved at all exercise intensities above critical speed. The present thesis (Chapters 6 and

9) showed a strong relationship between the aerobic ability of the subject and the

magnitude of the shortfall in V02 in a severe intensity run. Furthermore such a shortfall in

the V02 response has only been reported in trained subjects (Spencer et al. 1996, Spencer

and Gastin 2001). It is apparent that Hill and Ferguson's subject group was of limited

aerobic ability and that there was a large variation in time to exhaustion. Study 1 showed

that with increased test duration (5 and 8 minutes) the subjects achieved Vo-max. Finally

it should be emphasised that the mean V02peak achieved in Hill and Ferguson's 110%

Vmax test was only 95% of that achieved during a test at 100% Vmax (for which the

duration was 4.8 ± 2.4 minutes). Hill and Ferguson failed to demonstrate a statistically

significant difference between these values using a repeated measures ANOV A however.

Five repeated measures were included in this analysis, which coupled with the large

variance in both the aerobic capabilities of the subjects and the time to exhaustion, would

make identification ofa difference in V02peak unlikely.

The view that v02 will achieve its maximum rate at all intensities in the severe domain is

widely held (Whipp I994a; Gaesser and Poole 1994; Ward 1999; Xu and Rhodes 1999).

That this incorrect assumption has been widely supported may be due to the training status

of the subjects that have been tested and the protocols used to test them being fixed

percentages of V o-max (rather than fixed duration). Seeking to apply findings from

untrained subjects to the highly trained is a common yet dangerous practice within the field
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of exercise physiology. Using percentages of Vozmax as the exercise intensities in

research in the severe exercise domain is curious. Hill and Ferguson (1999) state that all

exercise intensities performed above critical speed will result in Vo-rnax, yet they

reference all severe exercise intensities to the speed at which V o-rnax occurred in a ramp

test. The implication of the first statement is that there is a range of speeds that will all

result in VOzmax. From this it follows that the speed at which V o-max occurs is entirely

protocol dependent.

The close link between the concepts of a maximum steady state and critical speed / power

is widely accepted and both are considered to represent the lower boundary of the domain

of severe intensity exercise (Gaesser and Poole 1996). Poole et a1. (1998) further

demonstrated that critical power coincided with the maximum work rate that would not

result in V02max. Hill and Ferguson (1999), despite concluding that Vo2peak is

independent of exercise intensity (across the range of exercise intensities they studied),

highlight that the upper limit of the severe exercise intensity domain has never been

established. Those subjects in Study 1 achieved V02max in the 5 and 8 minute trials (i.e.

they demonstrated the expected response in the severe intensity domain). Itmay be

therefore that a higher exercise intensity domain exists, in particular for the aerobically

trained, where it is no longer possible to reach 'Vo2max. The intensity or exhaustive test

duration that would equal the upper limit of the severe intensity domain remains to be

established however. It should be emphasised that Hill and Ferguson believe that this

upper limit to severe intensity exercise is where there is insufficient time (because

exhaustive exercise duration is short) to achieve V o-max. This thesis has shown that there

are severe intensities where there is time for the V02 response to fully develop but it tends

to a sub maximal asymptote.

10.2 Breath-by-breath analysis of the response

The findings from Study 1 strongly suggested that current understanding of the V02

response to exhaustive square wave exercise of a short duration was flawed. Whilst this

suggestion was not without some support from previous literature (Spencer et al. 1996;
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Spencer and Gastin 2001), further analysis and description of the response was not possible

with Douglas bag data. Douglas bag analysis of respiratory gases constitutes a simple and

reliable method for gaining mean values for \;02, \; C02 and v E over a reasonably long

time period (> 30 seconds unless small bags are used). Such analysis, owing to the small

number of data points, does not allow modelling of the overall response and assessment of

non-steady state exercise (Lamarra and Whipp 1995). The remainder of the analysis of the

V 02 response contained in this thesis was conducted using breath-by-breath equipment.

Study 2 therefore dealt with the validation procedures used to ensure that the QP9000 was

a suitable instrument to assess the V02 response to treadmill running. It was important

that this validation work was carried out across an appropriate range of exercise intensities

as whilst the focus of this thesis was severe intensity exercise it was important that the

measurement of V02was accurate for the other domains. The resting (baseline) V 02 was

vital to the modelling of the response, as was the V02 in the early part of the exercise

transition before high rates of \;02 were attained. Later chapters that made comparisons

with moderate intensity exercise were also dependent on the reliability of the system at all

these intensities. The QP9000 was found to be valid and reliable for the measurement of

V 02 at rest, at moderate and severe exercise intensities, and for the assessment of V02max.

The primary aims of Study 3 were to confirm the sub maximal \;02 plateau that had been

seen with off-line Douglas bag data using breath-by-breath equipment and to begin to

describe this response with a simple model. The subjects participating in the initial

Douglas bag study were aerobically trained but not specialist runners. In contrast the

subjects recruited in Study 3 were trained distance and middle distance runners. The 800

m was chosen as an event since this most closely matched the duration of the running

transitions from Study 1. The plateau in V02 below V02max was demonstrated even

more clearly in this highly trained group, confirming the results of Study 1. The training

status of the subject appeared to be an important factor in determining this response. Not

only was the shortfall in V 02 seen in this group greater than had been seen in Study 1, but

also a negative correlation was identified between V02max (ml.kg'lrnin") and the

percentage of \; 02max achieved. This showed that the aerobic capabilities of the

individual were important in determining the \;02 response to 800 m running. Moreover
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the data suggest that training should be geared towards increasing the anaerobic

contribution to the exercise since the athletes with the higher Vo-mex figures were unable

to make use of this reserve in aerobic power.

As has been reviewed elsewhere in this thesis (Chapter 2), many different approaches have

been taken to modelling the '\;02 response to square wave exercise. The exercise

transitions described in this thesis were too short to include a third (slow) component

(which is generally manifest after approximately 3 minutes of supra AT exercise) (Gaesser

and Poole 1996). That no slow component was present was confirmed by the finding that

the slope of the '\;02 - time relationship was not different from zero for the last 30 seconds

of the exercise transition. This was an important finding since previous research has

attempted to use a three-component exponential model to describe exhaustive exercise of a

similar duration (Hughson et al. 2000). Two important decisions remain for the researcher

in producing a model of the '\;02 response in this exercise intensity domain. Firstly, how

should phase-I be dealt with; and secondly should the model be constrained to tend to a

given asymptote (Vo-max or the V02 required).

The Phase-I response was not modelled in the present thesis. There are many arguments

against including this initial phase in a model of the VOz response and very few to justify

its inclusion. Modelling the first phase is appealing in that all data points may be included

in the analysis. However there are two major objections to the inclusion of phase-I.

Firstly, whilst phase-I is routinely modelled as an exponential function (identical to the

phase-2 response except beginning at time 0), there is no evidence to suggest that the

response is in fact exponential (Whipp and Ozyener 1998). Second, whilst V02 certainly

increases during phase-I, it is not yet understood exactly what causes this increase. The

major contribution seems to be an increase in cardiac output (Wasserman et al. 1974);

however other factors also contribute (Casaburi et al. 1989a). Phase-2 kinetics have

consistently been shown to be exponential and closely mirror the rate of phosphocreatine

degradation (Whipp 1994a). Research evidence supporting an exponential phase-I

response and identifying the underlying physiological mechanisms has been provided. The

current convention in modelling phase-I kinetics as an exponential (Burnley et al. 2000,

Carter et al. 2002) therefore appears to lack any real justification.
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It is however important that the correct amount of data is removed from the data set, since

when modelling phase-2, removal of some of the phase-2 data or inclusion of part of the

phase-l data would affect the calculated t and cS parameters. There seems to be

considerable variation in these parameters between subjects: a t of approximately 10

seconds was seen in the present thesis using trained subjects whereas a 't of around 40

seconds has previously been reported for a similar exercise intensity (Hill and Stevens

2001). That this was a function of the trained status of the subjects rather than the exercise

intensity was shown, by a similar r being returned in moderate intensity running (Chapter

7) to that found for severe intensity running. A t of around 30 seconds has been reported

previously for moderate intensity cycling exercise using less trained subjects. The removal

of 15 seconds of data in this thesis was shown to be a reasonable method of separating the

phase-l data, once the duration of the initial phase was assessed. However this was

specific to trained subjects and the high intensity exercise that was the focus of this thesis.

Researchers should therefore assess this phase-l duration since it will be dependent on the

subject group and exercise intensity investigated.

The plateau below V02max was confirmed in all studies and thus was shown to be a

robust phenomenon. The question remained however of whether this plateau represented a

genuine asymptote or whether the response was cut off at this sub maximal rate of V02

while tending towards some higher figure. An attempt was made in Chapter 6 to answer

this question by modelling the initial 45 seconds of data separately to the full data set as

previously described by Hill and Stevens (2001). This analysis, contrary to that of Hill

and Stevens (2001), showed a V02 response that was never tending towards a higher V02

than the eventual (sub maximal) plateau. The analysis was problematic however as V02

kinetics were very fast in the trained runners studied. In the study of Hill and Stevens

(2001),45 seconds represented little more than one r, whereas for the subjects used in this

thesis the same period represented approximately three rs. Three rs represents the time to

reach approximately 95 % of the modelled response. Therefore the detection ofa

difference in the GAIN parameter was unlikely. Hill and Stevens (2001) failed to see any

difference in GAIN when more data were included in their analysis. In the present work,

attempts to model the data from 15 - 30 seconds either resulted in a failure to fit a model to

the data (i.e. the model could not be solved with positive parameter estimates by iteration)

or yielded an asymptote that was much lower than the final measured V 02. Since in many
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cases this analysis was unsuccessful in even fitting the regression to these data (i.e. the

parameter estimates could not be determined by iteration), it was not reported in this thesis.

Until more is known about the mechanisms underlying and the nature of the Phase-l

response it is unlikely that this issue can be resolved in severe intensity exercise using

trained subjects.

10.3 Implications for modelling the V02 response to severe intensity running

In Study 3, a model was established that described the \(02 response to severe intensity

exercise. Further analysis of this model was then carried out in Study 4 (Chapter 7). This

was necessary to determine the confidence limits for the parameter estimates, and also to

determine how many repeated transitions needed to be performed to produce acceptable

confidence limits. The use of repeated transitions and the averaging of the interpolated

second-to-second data is an established practice and is necessary to reduce the effect of the

breath-by-breath noise on the underlying \(02 response (Lamarra et al. 1987). The

number of transitions required for any experiment will depend on three factors: the desired

confidence limits, the level of noise present on the data, and the magnitude of the response

(Lamarra et al.1987).

The analysis conducted in Study 4 was necessary because the nature of the noise had never

been assessed in severe intensity exercise or in running. It has been shown that the level of

breath-by-breath noise is unchanged with increasing exercise intensity (Lamarra et al.

1987), although this was only been shown within the moderate intensity domain (0 and 100

W cycling). It should be stressed however that the level of this noise varies considerably

between subjects (Potter et al. 1999). Any assessment of the effect of this noise must

therefore include subjects who display high levels of this noise on their breath-by-breath

data. It is clear from the literature that researchers use a smaller number of transitions

when working at higher exercise intensities (Carter et al. 2000b; Hughson et al. 2000).

Such a convention makes the reasonable assumption that the magnitude of the response

will be increased at higher exercise intensities, but also assumes that the level of noise is
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no greater for heavy and severe exercise intensities in comparison to moderate intensity

exercise. This second assumption has not been investigated previously.

Increasing exercise intensity will result in an overall \102 response of increasing

magnitude. However, researchers who choose to fit a three-component model (Barstow et

a1. 1996; Burnley et a1. 2000; Carter et a1. 2002) should be aware that the magnitude of

each separate response may not be great enough to achieve reasonable confidence in the

calculated parameters. This is a strong argument for the omission of the Phase-l data from

any modelling since the magnitude of this phase is small yet the level of noise is as great as

during moderate intensity exercise (Lamarra et al. 1987). In the study of Lamarra et al.

(1987) it was established that for the highest level of noise eight repeated transitions would

be required to achieve 95 % confidence limits of ± 2 seconds for the phase-z e. If the

Phase-l (or Phase 3) response during heavy and severe exercise were of a smaller

magnitude than this primary response to moderate exercise, a very large number of

transitions would need to be performed to achieve reasonable confidence limits for the

parameter estimates.

A curious anomaly of the study of Lamarra et a1. (1987) is that the SD of the noise was

calculated from the breath-by-breath data, whilst the data were actually modelled using the

interpolated second-to-second data. The interpolation of the data to second-to-second

values itself acts as a filter to reduce the magnitude of the noise (Lamarra et al 1987). If

the SD from the breath-by-breath data were incorporated into the calculation of the number

of transitions necessary for a given confidence limit, this might return a value that was too

stringent. Researchers should therefore use the SD (or the SEE) from the interpolated data

in such a calculation, since it is those data that must be used in order to model using

repeated transitions. Analysis of the SD / GAIN ratio should be performed since this ratio,

and therefore the number of transitions required, will vary greatly between subjects and

exercise intensities. Subjects themselves vary considerably in the level of noise they

exhibit (SD) and the magnitude of the GAIN will be greater at high exercise intensities.

The current convention of using two exercise transitions for all exercise intensities above

AT lacks any real justification and needs to be addressed.
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10.4 Potential mechanisms that might explain this response

Studies 1 and 3 had demonstrated a V02 response that was very different from that

presented in the majority of the literature (Whipp 1994a). The model used to describe this

response had been tested and it was established that narrow confidence limits could be

achieved if two identical exercise transitions were interpolated and averaged on a second-

to-second basis. The final two studies (5 and 6) provided an opportunity to use two

transitions for the modelling of this response. The fundamental question remained that of

why V 02 did not tend to V 02max in exercise where the \.-02required was greater than

V02max.

Research on the V02 response to severe intensity exercise is scarce, and most of the debate

has centred on how to model such a response (Hughson et al. 2000; Hill and Stevens

2001). This research has been limited and has made no reference to research that has

suggested a different response (Spencer et al. 1996). Consequently there has been no

explanation offered for why a plateau in V02 could occur below V02max.

Two factors that have been shown to alter V02 kinetics for heavy intensity exercise are a

prior bout of heavy intensity exercise and aerobic training. Hughson et a1. (2000) suggest

that a shortfall in the Phase-2 response to severe intensity exercise is due to an O2delivery

limitation. The suggested mechanisms whereby prior heavy intensity exercise might

accelerate the V02 response to a second bout of heavy exercise are a metabolic acidosis

mediated Bohr effect and vasodilation (Gerbino et a1. 1996). If02 delivery were the

underlying reason why V02 was unable to attain its maximum, prior heavy intensity

exercise might also alter V02 kinetics in severe intensity exercise.

The other factor that has been shown to affect V02 kinetics in the heavy intensity exercise

domain is aerobic training (Hagberg 1980; Powers 1985). Oxygen uptake kinetics have

been shown to alter following a period of endurance training (Casaburi et a1. 1987). It

seems that the majority of this effect is due to a reduction in the slow component (Womack

et al 1995). A considerable amount of this effect however may also be due to the

researchers using the same absolute work-rates despite an increase in the intensity at which

the AT occurred (Poole et a1. 1990). What is clear from the results contained in this thesis,
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and from other studies (Billat et al. 1998a; Lucia et al. 2000), is that the V 02 response of

trained endurance athletes is different to that of other subject groups. Apart from the

shortfall in V02 in severe intensity exercise, the subjects participating in the present thesis

showed a V 02 response that was much faster than that reported in previous research

(Gaesser and Poole 1996).

Fast oxidative (Type Ha) muscle fibres are known to exhibit slower V02 kinetics than slow

oxidative (Type I) fibres (Crow and Kushmerick 1982). Indeed the recruitment of these

less efficient fibres is considered to be responsible for the majority of the elevated and

delayed third phase of V02 kinetics (Slow component) (Whipp 1994a). In addition to the

slow component, an experiment in which pedal cadence was manipulated during cycle

exercise, in order to affect the fibre recruitment patterns, suggested that fibre type would

also alter the Phase-2 response (Barstow et al. 1996). Since endurance athletes are likely

to possess a higher percentage of Type I fibres than untrained or sprint trained subjects it is

very difficult to determine whether changes in V02 kinetics are due to the genetic

endowment of fibre type or an adaptation to endurance training.

Study 5 therefore investigated the influence of prior heavy intensity exercise on a

subsequent bout of severe intensity exercise, in order to see if the metabolic status of the

individual would affect the V02 response. Study 6 investigated the differences in the \;02

response to severe intensity exercise between a group of competitive middle distance and

distance runners and a group of competitive sprint runners. This final study was to

determine whether the response seen in the preceding chapters was only seen in the

aerobically trained. The confidence limits for the parameter estimates were narrowed in

these chapters as two transitions were averaged for each model. This reduced the variance

in the parameter estimates of the model and therefore improved the statistical power of any

tests.

The V 02 response to severe intensity running was found to be dependent on the intensity

of the warm-up, but this did not affect the sub maximal plateau. It was hypothesised that

the elevated metabolic acidosis, following supra AT exercise, might improve O2 delivery

and reduce the apparent shortfall in the V02 response. This was not demonstrated and the

plateau in V 02 below its maximum rate was again manifest in both conditions;
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furthermore no difference was found in this final V02 between conditions. No difference

was shown in 't for the phase-2 response; however a difference in the MRT (r + 0) showed

that overall the response was faster following heavy exercise. This difference was due to a

reduced duration of the Phase-l response and not a speeding of the primary (phase-2)

kinetics. It is possible that the proposed vasodilation aids venous return during this initial

phase.

Whilst the reduction in the delay of the onset of the primary phase of V02 kinetics was

small, there are potential implications for performance. If a theoretical example is again

examined (using a hypothetical subject, who has a Vo-rnax of 5 L.min-1 but achieves only

90% of this rate during an exhaustive test at 120% V o-max lasting 2 minutes), the effect

of a change in 0 can be seen. Figure 10.2 shows the difference in the response if the 5 is

altered from 12 to 9 seconds, as occurred following a supra AT warm-up.
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Figure 10.2: Theoretical change in the V Oz response and Oz deficit for severe
intensity exercise lasting 2 minutes when the 0 is reduced from 12 s
(closed symbols) to 9 s (open symbols). The 't and GAIN of phase-2 are
assumed to be equal in both traces. VOzmax (solid line) and V02
required (broken line) are also shown.
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Both traces (in figure 10.2) reach the same asymptotic V02 yet the reduced 8 results in a

reduction in the 02deficit ofO.20 L (4.5%). Such an effect is still small (approximately 2.8

ml.kg" for a subject mass of70 kg), yet any shift in the aerobic / anaerobic energy

contribution to exercise metabolism will theoretically have some impact on performance,

Within Chapter 8 this difference in the response and the potential benefits to performance

did not result in an increased time to exhaustion, although a fairly high degree of

variability was apparent in test duration.

Study 5 further supported the model used to describe the V02 response to severe intensity

running and showed that prior supra AT exercise altered the initial part of this response.

The shortfall in \102 was unchanged however and the mechanism responsible for this

shortfall was still unknown. This was further investigated in Study 6 with separate groups

of sprinters and middle distance and distance runners. This was a necessary next step since

previous research had shown that both aerobic training (Casaburi et al. 1987; Womack et

a1.1995) and fibre type (Crow and Kushmerick 1982; Barstow et al 1996) affect the V02

response to heavy intensity exercise. In addition the breath-by-breath data presented in

Study 3 showed a strong correlation between the magnitude of this shortfall in V02 and

V02max itself. Theoretically the sprinters might be expected to possess a higher capacity

to do anaerobic work and a lower V o-rnax than the endurance-trained group (Medbo and

Burgers 1990). Conversely endurance athletes have been shown to possess no greater

capacity for anaerobic work (as estimated from Osdeficit) than untrained subjects (Medbo

and Burgers 1990). These differences in both aerobic and anaerobic capabilities would

presumably result in differences in the relative aerobic and aerobic contributions to

exercise, as the sprinters would compensate for a limited V02max with a greater capacity

for anaerobic energy provision. This would result in the sprinters maintaining a greater

V02 required relative to their V02max.

Study 6 however failed to demonstrate any differences in the V02 response to severe

intensity running between the two groups. This result was probably due to the limitations

of the study. The study recruited from local club athletes who competed at sprint events or

middle distance / distance events. Unfortunately, owing to the sub elite nature of the

subject groups (coupled with the practice of participation in several events in club

athletics), the subject groups were of mixed aerobic capabilities. The range of Vo-max
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values from the sprint group reflected this variance. The groups were however sufficiently

different for the endurance group to demonstrate a faster VOz response to moderate

exercise than the sprint group. Both groups demonstrated a similar and fast phase-2

response to the severe intensity exercise.

It appeared that the shortfall in VOz had more to do with the aerobic capability of the

subject than with the involvement in sprint and endurance competition and training. When

the data from this chapter were examined as a single group, a strong correlation was again

present between the shortfall in V Oz and VOzpeak from the ramp test. The fastest of the

sprint group, with the lowest VOzpeak from the ramp test, was able to exceed this

V02peak during the 2 minute test. Linear regression suggested that any Vo-max greater

than 57 ml.kglmin" would result in a shortfall in V02 during severe intensity running

(R2=0.66, SEE ± 5 ml.kg'imin"). Whilst there is a high degree of variance in these data it

is apparent that for subjects who possess a high Vo-max (as would be expected for elite

800 m runners), there will be a considerable discrepancy between achieved and maximum

aerobic power. The subject with the highest Vozmax of those tested in this thesis (80

ml.kglrnin") (subject 8 in Study 3) achieved only 73% of this VOzmax during an

exhaustive run at 800 m race pace despite exhibiting extremely fast VOzkinetics (r = 7.8

seconds). As shown in Study 3, the asymptotic vOz, for an exhaustive run at 800 m pace

varies little among trained subjects. Thus whilst the anaerobic contribution to 800 m

running has generally been overestimated (Spencer et al. 1996), this contribution is vital to

success. That is, if two runners have an identical capacity for anaerobic work, the runner

with the higher V02max will derive little benefit from this aerobic potential. When this

situation is reversed however and V o-max is equal, the runner with the greater anaerobic

capacity will have a considerable advantage since V02 will plateau at a similar rate.

Identification of the physiological mechanisms that might cause VOz to plateau below its

maximum is of course complex. No consensus yet exists on what may limit VOz at the

onset of exercise at any exercise intensity (Hughson et al. 2001 a; Grassi 2001) or is

responsible for the slow component of VOz (Poole et al 1994a), despite considerable

research into both areas. The factors that might potentially influence both Oz delivery and

Oz consumption are numerous (Richardson 1998). The matching of Oz delivery to O,
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requirement is a complex process even for moderate intensity exercise and requires both

feed forward and feedback control mechanisms (Hughson et al. 200 Ia). It is apparent that

there is some feed forward control since heart rate and cardiac output are known to

increase very early in the exercise transition (Phase-l \102 kinetics), largely due to a

reduction in parasympathetic activity (Rowell 1993). In addition the muscle pump itself

will increase O2 supply to the working musculature at the onset of exercise, although not

enough to meet the \;02 required even at moderate exercise intensities (Shoemaker and

Hughson 1999). Further increases arise from the activation of the sympathetic nervous

system and appropriate arterial vasodilation to increase blood flow. Arterial blood

pressure needs to be maintained however and this vasodilatation must be accompanied by

vasoconstriction of non-working regions (Hughson 200 la). Since subjects achieved a

higher V02 in the ramp tests it is apparent that further adaptation is possible; what is

unclear is at what point this complex process may fail during severe intensity exercise, or

alternatively what time period is necessary for its full response.

10.5 Implications for existing models of middle-distance running

Mathematical models of running performance were reviewed in detail in chapter 2. The

contemporary models, or more specifically the part of these models that describes the \1 02

response (and therefore the aerobic and anaerobic contribution) to middle distance running,

all share two major assumptions. Firstly, and most importantly, it is assumed that \102 will

tend towards V o-max. Secondly it is assumed, that the \;02 response is a simple

exponential (no time delay or Phase-1 response is included in the model) (Wilkie 1980;

DiPrampero 1986; Perronet and Thibault 1989; Capelli 1999). The models differ however

in the 't assigned to this response. Some have taken the value for t from published research

into V 02 kinetics and assigned values of 24 seconds (Capelli 1999) or 30 seconds

(Perronet and Thibault 1989); others have arrived at a r of 10 seconds. The figure of 10

seconds has been derived from the best fit the model of the performance data rather than

based on previous research (Wilkie 1980; DiPrampero 1986). Whilst a similar twas

demonstrated in this thesis, it should be realised that a delay (8) was also incorporated,

making the thesis response much slower than that described by these models.
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The methods employed by existing models of middle-distance running performance to

describe the V02 response only really differ then in the assigned value of r. Since the \;02

response demonstrated in this thesis is different from that proposed in the existing

literature (Whipp 1994a), this section will compare the V 02 response to severe intensity

running (2 minutes duration) with the response suggested by the contemporary models of

800 m running performance. Since all of the models share the assumption that \;02 will

tend to \; 02max in middle distance events, this will be done by examining a model which

assigns a 't of las and one which assigns a 't of 30 s. It is perhaps curious that all models

assume that \;02 will tend to V02max when the popular assumption is that the response

will tend to the ",,02required in this intensity domain (Whipp 1994a; Hughson et al. 2000;

Hill and Stevens 200 1). This is perhaps because it would be impossible to describe such a

response with a simple exponential function.

In order to compare these models, the example used was again of an individual with a

V02max of 5 Lmin", performing 2 minutes of exhaustive running at 120% V02max.

Figure 10.3 shows the response assumed in Perronet and Thibault's (1989) model where t

is 30 s and the response tends to V02max. This is similar to the response suggested by

Capelli (1999), except that Capelli used a 't of 24 seconds. The thesis response that tends to

only 90% V o-max, assumes a t of 10 seconds but also incorporates a delay of 10 seconds.

Figure 10.4 shows the difference between the Vo-response proposed in this thesis to that

used in models assuming that \;02will tend to Vo-max with a t of las (Wilkie 1980,

DiPrampero 1986). The thesis response is as in Figure 10.3.
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Figure 10.3: Schematic comparing the typical V02 response shown in this thesis
(open symbols) assuming a 't of 10 seconds, a 8 of 10 seconds and that
V02 will tend to only 90% VOzmax with that generated from a model
(closed symbols) which assumes a e of30 seconds, no delay and that
V02 will tend to 100% Vo2max. V02max (solid line) and V02required
(broken line) are also shown.
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Figure 10.4: Schematic comparing the typical V02 response shown in this thesis
(open symbols) assuming a 1: of 10 seconds, a 8 of 10 seconds and that
V02 will tend to only 90% V02max with that generated from a model
(closed symbols) which assumes a 1: of 10 seconds, no delay and that
V02will tend to 100% V02max. V02max (solid line) and -V02required
(broken line) are also shown.

These comparisons illustrate the differences between the actual V02 responses shown in

trained runners and the assumed responses used in contemporary models of running

performance. Comparisons can be made both in terms of how well the two responses are

matched and perhaps more importantly in the differences in the relative aerobic and

anaerobic energy contributions to the exercise.

The model that assumes a 1: of 30 s (Figure 10.3) shows a very gradual V02 response that

is very different to the very rapid response shown in trained runners in this thesis. In terms

of the relative aerobic and anaerobic energy contributions, the difference in O2 deficit is

however small (~2 % higher in the thesis response). This apparent agreement is achieved

since the 02 deficit is overestimated early in the exercise due to the slow kinetics, yet is
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underestimated during the last phase of exercise, in which V02 is wrongly assumed to

reach V o-max.

The model that assumed a t of 10 seconds, which agrees with the speed of the response

demonstrated in this thesis, showed a closer agreement with the actual response. The lack

of any delay component, to account for venous return, resulted in a trace that rose earlier

and again the assumption was that the response would tend to V o-max. These two factors

both resulted in an underestimation of the 02 deficit. A difference was found of 1.6 L

(22.5 ml.kg" for a 70 kg subject) in O2deficit. A typical value for the maximal

accumulated 02 deficit (MAOD) is 45 ml.kg' in aerobically trained individuals (Medbo

and Burgers 1990; Spencer et al. 1996). Therefore such an error is a major one.

The model assuming this fast t of 10 seconds performs reasonably well in predicting

running performance at longer distances but has been shown to be poor in predicting

performance at 800 m and 1000 m (DiPrampero 1986). The model has tended to

overestimate the sustainable running speed over these distances. DiPrampero (1986)

explained this problem by suggesting that perhaps the duration of the event was

insufficient to fully exhaust the capacity to do anaerobic work. Such a suggestion is

problematic however, since evidence suggests that the anaerobic capacity is exhausted

within 2 minutes (Medbo et al. 1988), which is less than it takes to complete the 1000 m

even at world record pace. The results of this thesis suggest that the overestimation of

running speed (DiPrampero 1986) may in fact be the result of the incorrect assumption that

the V 02 response will achieve V o-max.

None of the current mathematical models of middle distance running performance

adequately describes the V 02 response, and therefore the aerobic contribution, to

exhaustive severe intensity running such as the 800 m. The current models are based on

flawed assumptions regarding both the speed of the V 02 response and the asymptote of

this response. A model that would adequately describe this response would, in addition to

a t of approximately 10 seconds, need to incorporate a 8 and reference the V 02 response to

an asymptote that is somewhere below V 02max. This asymptote would need to be

estimated based on the V02max of the individual.
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Perhaps part of the problem with the current models is that they attempt to predict

performance across a large range ofrace distances (and hence exercise intensities). Since

however the VOz response differs greatly across intensities, particularly in the severe

intensity domain, a less global approach may be necessary.

10.6 Recommendations for future research

This thesis aimed to investigate the VOz response to exhaustive severe intensity running in

an appropriately trained population. The investigation demonstrated that this response is

very different to that which has been previously proposed. The thesis however raises as

many questions as it answers, as the physiological mechanisms responsible for this

different response are unknown. Furthermore the investigations examined the response

during exhaustive exercise lasting 2-, 5- and 8 minutes only. The 5- and 8 minute tests

exhibited a V02 response consistent with previous literature, whilst the 2 minute tests did

not. To further understanding of the response it would be necessary to investigate a range

of exhaustive intensities where the exercise time would perhaps range from 30 seconds to 5

minutes.

Subjects with a high V02max showed the greatest shortfall in V02 during the 2 minute

test. Conversely subjects with a limited Vozmax were able to reach this maximum during

such a test. The correlation between Vo-rnax (ml.kgimin") and the magnitude of the

shortfall in VOz (as a % Vo-max) (Figure 9.2) supported this. Most of the analysis in the

thesis was performed however with subjects who were reasonably homogenous for

V o-max. A study that examined a subject group that was as heterogeneous for V o-max

as possible might more fully explain the nature of this relationship. If subjects with the

highest Vozmax figures cannot achieve a higher rate of v02 during a square wave run

than those possessing a lower Vo-max, there may exist an optimum V o-max beyond

which there is no performance benefit.

In terms of identifying the mechanisms responsible for the sub maximal plateau in VOz,

there are of course many manipulations that might be attempted in order to answer this
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question in whole body exercise (other than those used in this thesis). Hypoxic and

hyperoxic gases might be breathed to manipulate 02 saturation and delivery, or beta-

blockade could be used to limit heart-rate (and thus cardiac output) kinetics. Study 6

(sprint versus endurance runners) could be repeated if a very elite group of subjects could

be recruited, or a biopsy based study might be a more sophisticated means to assess the

influence of fibre-type on the V 02 response to severe intensity running.

The above manipulations and interventions may represent little more than a best guess

however. Greater scrutiny and understanding of the V02 response itself might be

necessary before such studies are undertaken. Two important questions remain about the

model used to describe the response in this thesis. Firstly, does the primary (Phase-2)

response tend towards the sub maximal asymptote or is it that it tends to a higher

asymptote but gets cut-off at this sub maximal level? Secondly, how should the Phase-l

response to this exercise be dealt with?

Answering the first of these questions is problematic since the response is so fast. No

evidence was found to support the assumption that V 02 was tending to V02 required.

Therefore, whilst the analysis used by Hill and Stevens (2001) could show no differences

in this asymptote, this may not be conclusive evidence.

Inclusion of the Phase-l response is not a simple matter. Indeed many of the objections to

its inclusion have already been outlined in this chapter. A primary concern is that whilst

V 02 does increase during this initial phase, the mechanisms behind the increase are not

well understood (Casaburi et al. 1989a). The comparatively small magnitude of this

response means that a very large number of transitions must be averaged to model this

response. Moreover it must not be assumed that the response follows the same exponential

model as the Phase-2 response. Finally, the use of a Haldane transformation based breath-

by-breath calculation of V02 is likely to be particularly problematic during this phase since

changes in lung gas stores are likely to be large in the early stages of a rest to exercise

transition. Therefore a measurement of inspired volume and a correction for estimated

alveolar V02 should be made (Beaver et al. 1981). Current methods for making this

correction however assume a constant lung volume and would need to be improved for this

purpose. The turbine device used in conjunction with the QP9000 mass spectrometer is bi-
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directional. It should be possible therefore (albeit with considerable developmental work

to overcome technical problems with measuring the inspired flow signal) to calculate V02

using this equipment. It is the contention of this author that a major review of the

modelling of Phase-l at all intensities should be conducted, as current methods are

unsound.

10.7 Summary and conclusions

In summary the primary finding from this thesis was that in aerobically trained individuals

the V 02 response to running performed at an intensity that is severe enough to result in

exhaustion in approximately 2 minutes differs considerably from that which has previously

been proposed. This response tends neither to the V02 required nor to Vo-rnax but rather

to an asymptote that is some way below Vosnax. Furthermore this response appears to be

much faster than has previously been reported for any exercise intensity, with a t of

approximately 10 seconds. This \;02 plateau below its maximum was shown to be a

robust and repeatable phenomenon in running, amongst the aerobically trained, and this

was demonstrated using both on-line and off-line gas analysis systems.

The effect of mode of exercise was investigated and showed that the resulting response

was different between running and cycling. The sub maximal plateau in \;02 was clearly

demonstrated in running. A similar response was shown in cycling, in that subjects were

unable to attain V o-max but a clear plateau was not seen. This was important to establish

because it was unclear whether the response reported by Spencer et al. (1996) was an effect

of aerobic training or the mode of exercise employed.

The V02 response was modelled as a single exponential after removing the initial 15

seconds of data to exclude Phase-I. If lesser trained individuals were used this would need

to be reviewed, as it is uncertain whether the length of phase-l is the same. The model

resulted in a t and 8 both of approximately 10 seconds. Since it was demonstrated that the

noise on the \;02 data was Gaussian, confidence limits could be calculated. It was shown

that if interpolated second-to-second data was averaged across two exercise transitions the
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95% confidence limits of these parameters was <± 1.2 seconds for r and 8 in severe

intensity exercise. Itwas also concluded that these confidence limits were applicable only

to a single exponential model and that researchers using exponential models containing

two- or three- exponential terms would require many more transitions to achieve the same

level of reliability.

No evidence was found to suggest that the V02 response was at any time tending to either

V02max or the V02 required; however the speed of the response made any analysis of the

early part of exercise difficult. Previous research (Hill and Stevens 2001) had analysed the

first 45 seconds of severe intensity exercise to determine the initial asymptote; however

this analysis involved a V02response for which 't was -40 seconds.

Attempts to identify the mechanisms that might result in a shortfall in the V02 response

were largely unsuccessful. An increased metabolic acidosis at the onset of exercise,

caused by a prior bout of heavy intensity exercise, failed to affect the asymptotic V02.

This did however speed the overall response (MRT), although this was largely due to a

reduction in the Phase-l duration, presumably due to vasodilation improving venous

return. There was no difference in the V02 response of sprint and endurance trained

subjects (although the heterogeneous nature of these groups may have masked such a

difference). What was again apparent the strong link between V02max (ml.kg'lrnin") and

the magnitude of the shortfall in the response (asymptotic V02 as a %V02max). Whilst

further investigation is required into this phenomenon it appears that there may be little

benefit to the performer in possessing a very high V02max. Furthermore, since the V02

response appears to be an important determinant of 800 m running performance, any

laboratory assessment of middle-distance athletes should include an assessment of V 02

kinetics. What is critical to 800 m performance will be the achievable v02 not V02max

and the assessment of the athlete should reflect this.

The thesis also reviewed current mathematical models of running performance and

concluded than none adequately describe the V02 response of trained runners in the

shorter middle distance events. Many of these models over-estimate running speed since

the incorrect assumption is made that V02 will tend to and reach V 02max. It is perhaps
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for this reason that such models have struggled to adequately describe 800 m running

performance (DiPrampero 1986).

In conclusion, the current view of "02 kinetics for exhaustive severe intensity exercise of

a short duration is incorrect. In subjects with high aerobic capabilities "02 will tend, in a

very fast response, to an asymptote which is below V o-rnax.
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APPENDIX 1

Abstract of initial findings from Study 1: Presented at European College of Sport
Science Annual Congress, Rome 1999

THE V02 RESPONSE TO EXHAUSTIVE SUPRAMAXIMAL EXERCISE OF DIFFERING DURATION
IN CYCLING AND RUNNING EXERCISE

S. Draper, J. Fallowfield
Centre for Sports Sciences, Chichester Institute of Higher Education, Chichester, UK.

The majority of research into the kinetics of V02 kinetics has been concerned with the moderate and
heavy exercise domains, and using cycle exercise. The V02 response to treadmill exercise particularly in the
supramaximal domain is perhaps less well understood. Williams et al (1998), found that in exhaustive
treadmill exercise of duration's between 2 and 5 mins, there was no difference between final V02 and
V02max. However Spencer et ai, (1996) showed a final V02 which was lower than V02max in a treadmill
run at 800m race pace.

Six physically fit male subjects (mean ± SO: age 26.0 ± 5.2 yrs; height 1.82 ± 0.07 m; mass 79.4 ± 10.3
kg) completed a V02peak test, and exhaustive constant intensity tests at speeds estimated to elicit exhaustion
in 8, 5, and 2 minutes, on both cycle ergometer and treadmill. Cycle tests were completed on a modified
Monark ergometer at 80/90 r.p.m., whilst all treadmill tests were completed on a zero gradient. Ramp rates
for the V02peak tests were 22.0/24.7 W.mln" and 1.2 km.h'l.min' respectively. Once the initial V02peak
test was completed the order for the subsequent constant intensity tests was randomised. The constant
intensity tests began either with the subject jumping onto a moving treadmill or the experimenter dropping
the test load after a short period of unloaded cycling at the desired cadence, tests continued until volitional
exhaustion. Thirty-second gas collections were made continuously throughout each test into Douglas bags.

There was no difference in V02peak for the two ramp tests, 4.56 ± 0.55 l.min' (cycling), 4.75 ± 0.57
l.min" (running), and no difference was found in test duration between cycling and running for the constant
intensity tests (P>O.05). V02peak values for the constant intensity tests are contained in Table 1, together
with the percentage ofY02peak, from the ramp test, that this represented. For treadmill exercise, the 2 min
test produced a lower V02peak (P<O.OI) than the 5 and 8 min tests, and only reached 93% ± 1% of the
V02peak from the ramp test. The cycling tests followed a similar trend but the results were not significant
(P>0.05). Interestingly V02 seemed to reach a plateau below V02peak for both conditions in the two minute
test, with a delta V02 between the last two collections of 0.19 ± 0.18 l.rnin" (cycle) and 0.004 ± 0.13 l.min"
(running). There was found to be no significant difference between the last two gas collections in either
condition (P<0.05), again this trend was stronger in treadmill exercise.
Table I: V02peak values (mean ± SO) for the constant intensity tests

8 min c cle 5 min e cle 2 min c cle 8 min run 5 min run 2 min run
Vo1peak
(l.min")

101%±3% 102% ± 5% 96%±6% 101% ± 3% lOO±2%
*#

93% ± 1%

4.60 ± 0.5 4.65 ± 0.63 4.37 ± 0.66 4.82 ± 0.58 4.75 ± 0.60 4.44 ± 0.54

*#
*p<O.OI vs 8 min, #p<0.01 vs Smin.

The results of the present study show a levelling of V02below V02peak in constant intensity treadmill
exercise at an intensity severe enough to reach volitional exhaustion in approximately 2 mins. Cycling
exercise showed a similar trend but results were not significant.

REFERENCES
Spencer,M.R., Gastin, P.B., Payne, W.R. (1996) New Studies in Athletics. 11:459-65.
Williams, C.S., Ehler, K.L., Ramirez, c.P., Poole, D.C., Smith, J.C., Hill, D.W. (1998) Official Jnl of the
ACSM. 30:5 s55.
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APPENDIX2

Statement of informed consent

UNIVERSITY COLLEGE
CHICHESTER

Bishop Otter Campus
College Lane Chichester
West Sussex P019 4PE

T: 01243 816000
F: 01243 816080

INFORMED CONSENT FOR PHYSIOLOGICAL TESTING PROCEDURES

I (print name and date)

hereby give my consent to participate in the exercise test(s) explained to me. I am satisfied
that I understand the procedures involved and accept the possible health risks due to the
nature of strenuous exercise testing.

In particular I am aware of the possible dangers of certain blood borne diseases (H.I.V.,
HEPATITIS B etc) associated with blood sampling. Also I recognise that I am at liberty to
withdraw my involvement at any stage of the work.

Subject's full signature:

Experimenter's signature:

Supervisor's signature:

Head of section's signature:

A REGISTERED CHARITY
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APPENDIX3

Health history questionnaire

UNIVERSITY COLLEGE
CHICHESTER

Bishop Otter Campus
College Lane Chichester
West Sussex POl9 4PE

T: 01243816000
F: 01243 816080

Before we can carry out any physiological tests on you we have to check that you are in a satisfactory
condition to undergo strenuous exercise. We would therefore like you to fill in the following questionnaire
about yourself. All information given will be treated as strictly confidential

Name: Date of Birth: _

Specialist Sport: _

Sex (MlF): D Age: D
I. How would you describe your present level of activity in both your work and recreation?

Sedentary ~ Moderately II
Active l__j

Active ~ Highly Active ~

2. In terms of fitness how would you describe your present level of fitness?

Very unfit ~ Moderately fit ~ Trained ~ Highly trained ~

3. How do you view your current body weight? Are you:

Underweight ~ Ideal weight ~ Slightly overweight ~ Very overweight ~

If yes how many did / or do you smoke a day?

Yes~

r
Yes~

4. Are you, or have you ever been a smoker?

5. Do you drink alcohol?

If you do, do you consider yourself to be a:

Very light drinker ~ Light II
drinker l__j

Heavy II Very heavy drinker II
drinker l__j l__j

6. Have you had to consult your doctor during the last six months? If so, briefly say why:
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7. Have you suffered from a bacterial or viral infection
in the last 2 weeks?

YesD

If yes, give details:

8. Are you presently taking any form of medication? Yes c=J
If yes, give details:

9. Do you suffer or have you ever suffered from
Diabetes?

YesD

If yes, give details:

10. Do you suffer or have you ever suffered from
Asthma? -r

If yes, give details:

11. Do you suffer or have you ever suffered from
Bronchitis? -r

If yes, give details:

12. Do you suffer or have you ever suffered from any
form of Heart Complaint?

YesD

If yes, give details:

13. Is there a history of Heart Disease in your family? YesD

If yes, give details:

14. Do you currently suffer from any form of
Muscular or Joint Injury?

YesD

If yes, give details:

No c=J

15. Have you ever suffered from Hepatitis? YesD
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18. Have you for any reason, had to suspend your
normal training for the past two weeks prior to this
test?

16. Have you ever had a blood transfusion?

17. Are you a member of a social grouping which is
considered to be particularly at risk from Acquired
Immune Deficiency Syndrome?

If yes, give details:

19. Lastly, is there anything to your knowledge that
may prevent you from successfully completing the
tests that have been outlined to you?

If yes, give details:

Please sign: Date:. _
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APPENDIX4

Individual data and statistical output for Study 1 (Chapter 4)

Table A4.1: Physiological responses to all tests contained in Study 1 (individual
data)

2
Subject

456 7 8 9

Age
Height
Mass
Vo2peak
(ramp)
Vo2peak
(8 min)
Vo2peak
(5 min)
Vo2peak
(2 min)
HRpeak
(ramp)
HRpeak
(8 min)
HRpeak
(5 min)
HRpeak
(2 min)
Lac (post)

(ramp)
Lac (post)

(8 min)
Lac (post)

(5 min)
Lac (post)
(2 min)
RERpeak
(ramp)
RERpeak
(8 min)
RERpeak
(5 min)
RERpeak
(2 min)
dV02

(2 min)
Slow-
comp
(8 min)
Slow-
comp
(5 min)

(yrs)
(m)
(kg)
(l.min')

(b.rnin")

(b.min")

(b.min")

(b.min")

(mM)

(mM)

(mM)

(mM)

Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run
Cycle
Run

Cycle
Run

3

21 22 21 31 32
1.73 I.79 1.80 1.86 1.84
70.2 80.9 88.8 63.9 82.8
4.05 4.48 4.95 3.85 4.71
4.38 5.10 4.96 3.78 4.96

4.10 4.51 4.95 4.06 5.05
4.32 5.13 4.85 3.96 5.11

4.23 4.73 5.18 3.59 4.92
4.34 4.99 4.93 3.84 4.85

3.82 4.62 5.03 3.39 4.36
4.15 4.66 4.63 3.50 4.65

I~ 1M I~ I~ 1M
207 206 189 188 174
182 190 177 180 170
203 204 183 200 168
182 182 185 171 165
I~ 1% 1M IW I~
171 186 180 170 160
190 188 179 176 170
8.4 6.4 7.4 10.3 7.0
8.1 7.9 5.9 8.0 4.5
6.8 6.6 7.7 11.4 7.4
8.5 7.8 S.3 6.9 S.O
7.4 7.4 7.8 8.2 7.9
8.9 8.5 6.7 6.6 5.2
8.3 6.4 7.7 8.3 5.9
9.3 7.5 5.6 6.6 4.8
1.14 1.12 1.21 1.27 1.12
1.14 1.21 1.12 1.27 1.11
1.08 1.11 1.12 1.19 1.21
1.08 1.10 1.16 1.12 1.06
1.10 1.21 1.16 1.31 1.22
1.19 1.17 1.08 1.19 1.17
1.24 1.21 1.33 1.47 1.29
1.35 1.36 1.16 1.37 1.20
0.04 0.43 0.17 -0.09 0.27
-0.06 -0.17 -0.07 0.05 0.15

0.36 0.61 0.35 0.63 0.86
~42 ~32 0.30 ~35 ~38

0.44 0.12 0.16 0.20 0.29
0.17 0.00 0.27 0.17 0.01

29 23
1.95 1.76
89.7 79.0
5.32 3.90
5.36 4.47

5.18 4.23
5.56 4.55

5.24 4.42
5.59 4.48

5.03 3.65
5.06 4.29

180 191
193 190
193 184
195 187
185 186
190 186
174 183
188 175
8.4 9.1
7.2 8.1
9.9 9.3
9.6 7.4
6.8 9.4
7.8 7.3
7.6 8.6
6.8 8.1
1.14 1.36
1.16 1.23
1.28 1.24
1.19 1.25
1.30 1.33
1.20 1.27
1.33 1.53
1.35 1.34
0.12 0.26
0.07 0.03

0.69 0.61
0.50 0.58

0.20 0.42
0.37 0.12

27 23
1.78 1.88
75.1 85.4
3.79 4.95
4.09 4.81

3.88 4.77
4.09 4.95

3.75 4.54

4.36 4.83

3.44 4.38
3.89 4.52

173 192
177 205
173 199
176 207
175 191
177 202
163 185
177 200
9.0 8.1
6.4 6.4
9.2 9.5
6.8 8.1
9.1 9.5
7.6 7.9
8.7 6.6
8.7 6.8
1.24 1.28

1.09 1.16
1.14 1.25
1.11 1.11
1.24 1.39
1.18 1.21
1.47 1.42
1.22 1.36
0.30 0.17
0.01 0.00

0.70 0.52
0.48 0.43

0.46 0.03
0.24 0.14
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Output A4.1: Two-way RM ANOVA (ergometry x duration) for Vo2peak from
square wave tests in Study 1

Mauchly's Test of Sphericity

Approx. Chi]
Epsilon

Within Subjects Effect Mauchly's Greenhouse- Huynh- Lower-
W Square I df Sig. Geisser Feldt bound

ERGO 1.000 .000
I 0

1.000 1.000 1.000
DURATION .625 3.291

I ~

.193 .727 .847 .500
ERGO * DURATION .943 .410 .815 .946 1.000 .500

T t f Wth' S b' t Eft tes s 0 I in- U )Jec s ec s
~ource Type III df Mean F SiQ.! Eta Noncent. Observed

Sum of Square Squared Parameter Power
Squares

ERGO Sphericity Assumed .471 1 .471 8.106 .022 .503 8.106 .704

Greenhouse-Geisser .471 1.000 .471 8.106 .022 .503 8.106 .704

Huynh-Feldt .471 1.000 .471 8.106 .022 .503 8.106 .704

Lower-bound .471 1.000 .471 8.106 .022 .503 8.106 .704

Error(ERGO) Sphericity Assumed .465 8 5.815E-02

Greenhouse-Geisser .465 8.000 5.815E-02

Huynh-Feldt .465 8.000 5.815E-02

Lower-bound .465 8.000 5.815E-02

DURATION Sphericity Assumed 1.329 2 .664 32.931 .000 .805 65.862 1.000

Greenhouse-Geisser 1.329 1.454 .913 32.931 .000 .805 47.897 1.000

Huynh-Feldt 1.329 1.694 .784 32.931 .000 .805 55.796 1.000

Lower-bound 1.329 1.000 1.329 32.931 .000 .805 32.931 .999

Error(DURA TION) Sphericity Assumed .323 16 2.017E-02

Greenhouse-Geisser .323 11.636 2.774E-02

Huynh-Feldt .323 13.555 2.381 E-02

Lower-bound .323 8.000 4.034E-02

ERGO' DURATION Sphericity Assumed 9.710E-04 2 4.855E-04 .022 .978 .003 .044 .053

Greenhouse-Geisser 9.710E-04 1.892 5.131E-04 .022 .974 .003 .042 .053

Huynh-Feldt 9.710E-04 2.000 4.855E-04 .022 .978 .003 .044 .053

Lower-bound 9.710E-04 1.000 9.710E-04 .022 .886 .003 .022 .052

Error(ERGO*DURA TION) Sphericity Assumed .352 16 2.197E-02

Greenhouse-Geisser .352 15.138 2.322E-02

Huynh-Feldt .352 16.000 2.197E-02

Lower-bound .352 8.000 4.395E-02

Observed power computed uSing alpna> .05
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Output A4.2: Two-way RM ANOVA (ergometry x duration) for HRpeak from
square wave tests in Study 1

Mauchly's Test of Sphericity

Epsilon
lWithin Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound
DURATION .445 5.674 2 .059 .643 .713 .500
ERGO 1.000 .000 0 1.000 1.000 1.000
DURATION * ERGO .451 5.572 2 .062 .646 .717 .500

T t f Wth· S bi t Eft tes so I in- u nee s ec s
Source Type III df Mean F Sig. Eta Noncent. Observed

Sum of Square Squared Parameter Power
Squares

DURATION Sphericity Assumed 677.333 2 338.667 15.482 .000 .659 30.964 .997

Greenhouse-Geisser 677.333 1.286 526.753 15.482 .002 .659 19.908 .970

Huynh-Feldt 677.333 1.426 475.067 15.482 .001 .659 22.074 .980

Lower-bound 677.333 1.000 677.333 15.482 .004 .659 15.482 .930

Error(DURA TION) Sphericity Assumed 350.000 16 21.875

Greenhouse-Geisser 350.000 10.287 34.024

Huynh-Feldt 350.000 11.406 30.685

Lower-bound 350.000 8.000 43.750

ERGO Sphericity Assumed 748.167 1 748.167 14.116 .006 .638 14.116 .907

Greenhouse-Geisser 748.167 1.000 748.167 14.116 .006 .638 14.116 .907

Huynh-Feldt 748.167 1.000 748.167 14.116 .006 .638 14.116 .907

Lower-bound 748.167 1.000 748.167 14.116 .006 .638 14.116 .907

Error(ERGO) Sphericity Assumed 424.000 8 53.000

Greenhouse-Geisser 424.000 8.000 53.000

Huynh-Feldt 424.000 8.000 53.000

Lower-bound 424.000 8.000 53.000

DURATION * ERGO Sphericity Assumed 12.444 2 6.222 .345 .714 .041 .689 .096

Greenhouse-Geisser 12.444 1.291 9.637 .345 .625 .041 .445 .086

Huynh-Feldt 12.444 1.434 8.677 .345 .646 .041 .494 .088

Lower-bound 12.444 1.000 12.444 .345 .573 .041 .345 .081

Error(DURATION*ERGO) Sphericity Assumed 288.889 16 18.056

Greenhouse-Geisser 288.889 10.330 27.965

Huynh-Feldt 288.889 11.474 25.179

Lower-bound 288.889 8.000 36.111

Observed power computed uSing alpha = .05
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Output A4.3: Two-way RM ANOVA (ergometry x duration) for Lac (post) from
square wave tests in Study 1

Mauchly's Test of Sphericity

Epsilon
Within Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound
DURATION .629 3.246 2 .197 .729 .851 .500
ERGO 1.000 .000 0 1.000 1.000 1.000
DURATION * ERGO .971 .206 2 .902 .972 1.000 .500

Tests of Within-Sub'ects Effects
Source df Mean F Sig. Eta Noncent. .Observed

Square Squared Parameter Power

DURATION Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Error(DURATION) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

ERGO Sphericity Assumed .13 2.75 .31

Greenhouse-Geisser .13 2.75 .31

Huynh-Feldt .13 2.75 .31

Lower-bound .13 2.75 .31

Error(ERGO) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

DURATION * ERGO Sphericity Assumed .05 6.8

Greenhouse-Geisser .06

Huynh-Feldt 6.8

Lower-bound .10

Error(DURA TION*ERGO) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt .341

Lower-bound .681

Observed power computed using alpha = .05
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Output A4.4: Two-way RM ANOVA (ergometry x duration) for RERpeak from
square wave tests in Study 1

Mauchly's Test of Sphericity

Epsilon
~ithin Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound
DURATION .658 2.934 2 .231 .745 .876 .500
ERGO 1.000 .000 0 1.000 1.000 1.000
DURATION * ERGO .425 5.988 2 .050 .635 .701 .500

f ffTests 0 Within-Subjects E ects
lSource Type III df Mean F Sig. Eta Noncent. Observed

Sum of Square Squared Parameter Power
Squares

DURATION Sphericity Assumed .29~ • .141 66.947 .ooe .89• 133.89~ 1.00e

Greenhouse-Geisser .29~ 1.49C .197 66.947 .ooe .89< 99.74~ 1.00e

Huynh-Feldt .29~ 1.753 .167 66.947 .ooe .89• 117.32f 1.00e

Lower-bound .29~ 1.000 .29~ 66.947 .ooe .89~ 66.947 1.00(

Error(DURA TION) Sphericity Assumed 3.50SE-O" 16 2.192E-O~

Greenhouse-Geisser 3.50SE-O~11.919 2.942E-O~

Huynh-Feldt 3.50SE-O~14.020 2.501E-O~

Lower-bound 3.50SE-O~ 8.000 4.383E-O~

ERGO Sphericity Assumed 4.930E-O. 1 4.930E-02 7.503 .02~ .48~ 7.50~ .671

Greenhouse-Geisser 4.930E-02 1.000 4.930E-02 7.503 .02~ .48~ 7.50~ .671

Huynh-Feldt 4.930E-O~ 1.000 4.930E-02 7.501 .02~ .484 7.S0~ .671

Lower-bound 4.930E-O" 1.000 4.930E-02 7.503 .02~ .484 7.50~ .671

Error(ERGO) Sphericity Assumed 5.25SE·02 8 6.571E-03

Greenhouse-Geisser 5.25SE-O. 8.000 6.S71E-0.:

Huynh-Feldt 5.256E-02 8.000 6.571E-0~

Lower-bound 5.25SE-O. 8.000 6.571E-O~

DURATION * ERGO Sphericity Assumed 1.019E-O~ :2 S.097E-04 .140 .870 .017 .28C .068

Greenhouse-Geisser 1.019E-O~ 1.27C 8.027E-04 .140 .77~ .017 .178 .06~

Huynh-Feldt 1.019E-03 1.401 7.276E-04 .140 .797 .017 .196 .06f

Lower-bound 1.019E-O~ 1.00e 1.019E-O~ .140 .71€ .017 .140 .O6~

Error(DURA TION*ERGO) Sphericity Assumed 5.821E-O" 1€ 3.638E-O~

Greenhouse-Geisser 5.821E-02 10.156 5.730E-03

Huynh-Feldt 5.821E-02 11.20e 5.193E-03

Lower-bound 5.821E-02 8.00e 7.276E-0~

Observed power computed using alpha = .05
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Output A4.5: Two-way RM ANOVA (ergometry x duration) for test duration from
square wave tests in Study 1

Mauchly's Test of S_Q_hericl!Y_

Epsilon
lWithin Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound
ERGO 1.000 .000 0 1.000 1.000 1.000
DURATION .342 7.504 2 .023 .603 .652 .500
ERGO * DURATION .957 .305 2 .861 .959 1.000 .500

T t f Wth· S b· t Eft tes s 0 I In- U )Jec s ec s
lSource Type 1111 df Mean F Sig. Eta I Noncen!. Observed

Sum of Square Squared Parameter Power
Squares

ERGO Sphericity Assumed 9.757E·02 1 9.757E-02 .099 .761 .012 .099 .059

Greenhouse-Geisser 9.757E·02 1.000 9.757E-02 .099 .761 .012 .099 .059

Huynh-Feldt 9.757E-02 1.000 9.757E-02 .099 .761 .012 .099 .059

Lower-bound 9.757E-02 1.000 9.757E-02 .099 .761 .012 .099 .059

Error(ERGO) Sphericity Assumed 7.878 8 .985

Greenhouse-Geisser 7.878 8.000 .985

Huynh-Feldt 7.878 8.000 .985

Lower-bound 7.878 8.000 .985

PURATION Sphericity Assumed 368.304 2 184.152 141.485 .000 .946 282.971 1.000

Greenhouse-Geisser 368.304 1.206 305.267 141.485 .000 .946 170.702 1.000

Huynh-Feldt 368.304 1.304 282.450 141.485 .000 .946 184.492 1.000

Lower-bound 368.304 1.000 368.304 141.485 .000 .946 141.485 1.000

Error(DURA TION) Sphericity Assumed 20.825 16 1.302

Greenhouse-Geisser 20.825 9.652 2.158

Huynh-Feldt 20.825 10.432 1.996

Lower-bound 20.825 8.000 2.603

ERGO * DURATION Sphericity Assumed .276 2 .138 .288 .754 .035 .576 .088

Greenhouse-Geisser .276 1.918 .144 .288 .745 .035 .552 .087

Huynh-Feldt .276 2.000 .138 .288 .754 .035 .576 .088

Lower-bound .276 1.000 .276 .288 .606 .035 .288 .076

Error(ERGO*DURA TION) Sphericity Assumed 7.680 16 .480

Greenhouse-Geisser 7.680 15.346 .500

Huynh-Feldt 7.680 16.000 .460

Lower-bound 7.680 8.000 .960

Observed power computed uSing alpha = .05
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APPENDIX5

Individual data and statistical output for Study 2 (Chapter 5)

Table A5.1: Individual data from Study 2. Data are averages of 2 transitions.

Subject

2 3 4 5 6

Age (yrs) 26 32 30 22 28 31

Height (m) 1.79 1.84 1.95 1.77 1.79 1.84

Mass (kg) 78.6 63.0 92.3 91.1 82.3 79.1

V02
(l.min") Rest DB 0.39 0.33 0.50 0.42 0.35 0.46

BxB 0.45 0.24 0.56 0.44 0.40 0.56

Moderate DB 2.32 2.14 3.10 2.82 2.43 2.35

BxB 2.51 2.22 3.23 2.86 2.50 2.22

Severe DB 4.09 3.74 5.39 4.27 3.74 4.00

BxB 4.13 3.74 5.42 4.15 3.80 3.85

Max DB 3.97 3.84 5.56 4.17 3.61 3.79

BxB 4.06 3.75 5.56 4.19 3.54 3.85

Ve02
(l.min") Rest DB 0.37 0.26 0.39 0.32 0.31 0.41

BxB 0.39 0.20 0.50 0.35 0.35 0.48

Moderate DB 2.13 1.91 2.78 2.64 2.21 2.11

BxB 2.18 1.94 2.81 2.51 2.28 1.99

Severe DB 4.63 4.34 6.14 5.00 3.37 4.30

BxB 4.49 4.18 5.93 4.93 4.36 3.96

Max DB 4.64 4.53 6.31 4.87 4.07 4.06

BxB 4.38 4.23 6.03 4.80 3.97 4.01

V E(BTPS) (l.min') Rest DB 9.3 14.6 12.9 9.6 10.7 15.1

BxB 9.9 13.7 17.4 9.3 9.4 13.8

Moderate DB 60.4 58.0 80.0 65.8 63.9 65.9

BxB 60.5 52.5 77.1 63.3 60.0 63.2

Severe DB 138.3 144.8 192.6 137.7 127.1 144.6

BxB 133.3 136.1 186.6 130.2 124.3 128.5

Max DB 134.1 143.1 192.8 137.7 125.0 123.1

BxB 125.2 133.8 183.5 133.1 120.6 123.7
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Output AS.1: Two-way RM ANOVA (intensity x method) for V02 from the constant
intensity tests in Study 2

Mauchly's Test of Sphericity

~ithin Subjects Effect
Epsilon

Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-
W Square df Sig. Geisser Feldt bound

INTENS .385 3.823 2 .146 .619 .721 .500
METHOD 1.000 .000 0 1.000 1.000 1.000
INTENS * METHOD .458 3.122 2 .207 .649 .781 .500

T t f Wth' S b' t Eft tes so I In- U nee S ec S

~ource Type III df Mean F Sig. Eta Noncen!. Observed
Sum of Square Squared Parameter Power
~uares

INTENS Sphericity Assumed 85.608 2 42.804 239.857 .000 .980 479.714 1.000
Greenhouse-Geisser 85.608 1.238 69.149 239.857 .000 .980 296.948 1.000
Huynh-Feldt 85.608 1.443 59.331 239.857 .000 .980 346.087 1.000
Lower-bound 85.608 1.000 85.608 239.857 .000 .980 239.857 1.000

IError(INTENS) Sphericity Assumed 1.785 10 .178

Greenhouse-Geisser 1.785 6.190 .288

Huynh-Feldt 1.785 7.214 .247

Lower-bound 1.785 5.000 .357

METHOD Sphericity Assumed 5.650E-03 1 5.650E-03 1.026 .358 .170 1.026 .132

Greenhouse-Geisser 5.650E-03 1.000 5.650E-03 1.026 .358 .170 1.026 .132
Huynh-Feldt 5.650E-03 1.000 5.650E-03 1.026 .358 .170 1.026 .132

Lower-bound 5.650E-03 1.000 5.650E-03 1.026 .358 .170 1.026 .132
Error(METHOD) Sphericity Assumed 2.754E-02 5 5.508E-03

Greenhouse-Geisser 2.754E-02 5.000 5.508E-03

Huynh-Feldt 2.754E-02 5.000 5.508E-03

Lower-bound 2.754E-02 5.000 5.508E-03

INTENS • METHOD Sphericity Assumed 1.211E-02 2 6.053E-03 1.981 .188 .284 3.962 .316

Greenhouse-Geisser 1.211E-02 1.297 9.332E-03 1.981 .210 .284 2.570 .243
Huynh-Feldt 1.211E-02 1.562 7.750E-03 1.981 .202 .284 3.094 .271
Lower-bound 1.211E-02 1.000 1.211E-02 1.981 .218 .284 1.981 .210

Error(INTENS·METHOD) Sphericity Assumed 3.055E-02 10 3.055E-03

Greenhouse-Geisser 3.055E-02 6.486 4.710E-03

Huynh-Feldt 3.055E-02 7.809 3.912E-03

Lower-bound 3.055E-02 5.000 6.110E-03

-Observed power computed uSing alpha - .05
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Output A5.2: Two-way RM ANOVA (intensity x method) for V C02 from the
constant intensity tests in Study 2

Mauchly's Test of Sphericity

Within Subjects Effect
EQsilon

Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-
W Square df Sig. Geisser Feldt bound

INTENS .164 7.234 2 .026 .545 .580 .500
METHOD 1.000 .000 0 1.000 1.000 1.000
INTENS * METHOD .909 .380 2 .829 .917 1.000 .500

T fW h' 5 bl Eft tests 0 It In- U )Jects ec s
lSource Type III df Mean F I Sig. Eta Noncent. Observed

Sum of Square Squared Parameter Power
Squares

INTENS Sphericity Assumed 114.386 2 57.193 235.524 .000 .979 471.048 1.000
Greenhouse-Geisser 114.386 1.089 105.011 235.524 .000 .979 256.551 1.000

Huynh-Feldt 114.386 1.160 98.626 235.524 .000 .979 273.161 1.000

Lower-bound 114.386 1.000 114.386 235.524 .000 .979 235.524 1.000

iError(INTENS) Sphericity Assumed 2.428 10 .243

Greenhouse-Geisser 2.428 5.446 .446

Huynh-Feldt 2.428 5.799 .419

Lower-bound 2.428 5.000 .486

METHOD Sphericity Assumed 1.S24E-02 1 1.624E-02 3.520 .119 .413 3.520 .332

Greenhouse-Geisser 1.S24E-02 1.000 1.624E-02 3.520 .119 .413 3.520 .332

Huynh-Feldt 1.S24E-02 1.000 1.624E-02 3.520 .119 .413 3.520 .332

Lower-bound 1.S24E-02 1.000 1.624E-02 3.520 .119 .413 3.520 .332

jerror(METHOD) Sphericity Assumed 2.30SE-02 5 4.612E-03

Greenhouse-Geisser 2.30SE-02 5.000 4.612E-03

Huynh-Feldt 2.30SE-02 5.000 4.612E-03

Lower-bound 2.30SE-02 5.000 4.612E-03

INTENS * METHOD Sphericity Assumed 5.S93E-02 2 2.847E-02 7.271 .011 .593 14.541 .838

Greenhouse-Geisser 5.S93E-02 1.834 3.104E-02 7.271 .014 .593 13.334 .809
Huynh-Feldt 5.S93E-02 2.000 2.847E-02 7.271 .011 .593 14.541 .838

Lower-bound 5.S93E-02 1.000 5.693E-02 7.271 .043 .593 7.271 .583

iError(INTENS*METHOD) Sphericity Assumed 3.915E-02 10 3.915E-03

Greenhouse-Geisser 3.915E-02 9.170 4.270E-03

Huynh-Feldt 3.915E-02 10.000 3.915E-03

Lower-bound 3.915E-02 5.000 7.831E-03

-Observed power computed usmg alpha - .05
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Output A5.3: Two-way RM ANOVA (intensity x method) for V E from the constant
intensity tests in Study 2

Mauchly's Test of Sphericity

~pprox. .,
Epsilon

~ithin Subjects Effect Mauchly's Greenhouse- Huynh- Lower-
W Square df Sig. Geisser Feldt bound

INTENS .225 5.960 2 .050 .564 .615 .500

METHOD 1.000 .000 0 1.000 1.000 1.000

INTENS * METHOD .618 1.923 2 .380 .724 .941 .500

T t f Wth' S b' t Eft tes S 0 I In- u )leC S ec S
~ource Type III df Mean F Sig. Eta Noncent. Observed

Sum of Square Squared Parameter Power
Squares

INTENS Sphericity Assumed 105283.71 2 52641.857 197.269 .000 .975 394.538 1.000

Greenhouse-Geisser 105283.71 1.127 93418.845 197.269 .000 .975 222.323 1.000

Huynh-Feldt 105283.71 1.230 85627.749 197.269 .000 .975 242.552 1.000

Lower-bound 105283.71 1.000 105283.71 197.269 .000 .975 197.269 1.000

5

Error(INTENS) Sphericity Assumed 2668.533 10 266.853

Greenhouse-Geisser 2668.533 5.635 473.561

Huynh-Feldt 2668.533 6.148 434.066

Lower-bound 2668.533 5.000 533.707

METHOD Sphericity Assumed 106.296 1 106.296 16.449 .010 .767 16.449 .895

Greenhouse-Geisser 106.296 1.000 106.296 16.449 .010 .767 16.449 .895

Huynh-Feldt 106.296 1.000 106.296 16.449 .010 .767 16.449 .895

Lower-bound 106.296 1.000 106.296 16.449 .010 .767 16.449 .895

Error(METHOD) Sphericity Assumed 32.310 5 6.462

Greenhouse-Geisser 32.310 5.000 6.462

Huynh-Feldt 32.310 5.000 6.462

Lower-bound 32.310 5.000 6.462

NTENS * METHOD Sphericity Assumed 95.117 2 47.558 11.264 .003 .693 22.528 .959

Greenhouse-Geisser 95.117 1.448 65.709 11.264 .008 .693 16.305 .889

Huynh-Feldt 95.117 1.882 50.544 11.264 .003 .693 21.197 .949

Lower-bound 95.117 1.000 95.117 11.264 .020 .693 11.264 .764

rror(INTENS*METHOD) Sphericity Assumed 42.221 10 4.222

Greenhouse-Geisser 42.221 7.238 5.834

Huynh-Feldt 42.221 9.409 4.487

Lower-bound 42.221 5.000 8.444

Observed power computed uSing alpha = .05
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Output AS.4: One-way RM ANOVA (comparison) on the intra-individual SDs of
V 02 from the three comparisons of the incremental test data from
Study 2

Mauchly's Test of Sphericity

Eosilon
Within Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound

~OMPARISON .667 1.623 : 2 1.4421 .750 1.000 .500

Tests of Within-Subjects Effects
lSource Type III df Mean F Sig. Eta Noncen!. Observed

Sum of Square Squared Parameter Power
Squares

~OMPARE Sphericity Assumed 2183.37~ 4! 1091.681 2.351 .14€ .32( 4.702 .361

Greenhouse-Geisser 2183.37" 1.50C 1455.75~ 2.351 .16~ .32C 3.52E .30E

Huynh-Feldt 2183.37~ 2.00C 1091.90.<1 2.351 .14€ .32C 4.701 .367

Lower-bound 2183.37~ 1.00C 2183.37~ 2.351 .18€ .32C 2.351 .24C

Error(COMPARISON) Sphericity Assumed 4643.13.: 10 464.31.:

Greenhouse-Geisser 4643.13~ 7.499 619.15€

Huynh-Feldt 4643.13~ 9.998 464.40€

Lower-bound 4643.13.: 5.00q 928.621

Observed power computed uSingalpha = .05
Note: Individual data are contained in Table 5.2 (Chapter 5)

Output AS.S: One-way RM ANOVA (comparison) on the intra-individual SDs of
V C02 from the three comparisons of the incremental test data from
Study 2

Mauchly's Test of Sphericity

!
Epsilon

rtvithin Subjects Effect Mauchly's I Approx. Chi- Greenhouse- HUynh-I Lower-
W Square df Sig. Geisser Feldt bound

~OMPARISON .454 I 3.157 ! 2 .204. .647 .777 I .500
Tests of Within-Subjects Effects

T tv« hi S bl Eft tests 0 It IO- U Ijects ec s
lSource Type III df Mean F Sig. Eta Noncen!. Observed

Sum of Square Squared Parameter Power
Squares

~OMPARE Sphericity Assumed 1287.768 2 643.884 .322 .732 .061 .645 .088

Greenhouse-Geisser 1287.768 1.294 995.332 .322 .645 .061 .417 .080

Huynh-Feldt 1287.768 1.555 828.188 .322 .682 .061 .501 .083

Lower-bound 1287.768 1.000 1287.768 .322 .595 .061 .322 .075

~rror(COMPARISON) Sphericity Assumed 19973.239 10 1997.324

Greenhouse-Geisser 19973.239 6.469 3087.514

Huynh-Feldt 19973.239 7.775 2569.033

Lower-bound 19973.239 5.000 ! 3994.648

Observed power computed uSingalpha = .05
Note: Individual data are contained in Table 5.2 (Chapter 5)
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Output A5.6: One-way RM ANOVA (comparison) on the intra-individual SDs of V E

from the three comparisons of the incremental test data from Study 2

Mauchly's Test of Sphericity

Epsilon
~ithin Subjects Effect Mauchly's Approx. Chi- Greenhouse- I Huynh-I Lower-

W Square df SiQ. Geisser Feldt I bound

~OMPARISON .650 I 1.725 I 2 I .419 i .741 I .979 I .500

T fW S Effests 0 ithin- ubiects ects
lSource Type III I df Mean F Sig. Eta Noncent. Observed

Sum of Square Squared Parameter Power
Squares I

iCOMPARE Sphericity Assumed 1.623 2 .811 .339 .720 .064 .678 .090
Greenhouse-Geisser 1.623 1.481 1.096 .339 .662 .064 .502 .084
Huynh-Feldt 1.623 1.957 .829 .339 .716 .064 .664 .090
Lower-bound 1.623 1.000 1.623 .339 .586 .064 .339 .077

Error(COMPARISON) Sphericity Assumed 23.919 10 2.392
Greenhouse-Geisser 23.919 7.406 3.230
Huynh-Feldt 23.919 9.786 2.444
Lower-bound 23.919 5.000 4.784

-Observed power computed USingalpha - .05
Note: Individual data are contained in Table 5.2 (Chapter 5)

Output 5.7: One sample t-tests for slope, of the regression of differences, between
each of the three comparisons and for all three variables

SOne- ample Test
Test Value = 0

t df Sig. (2-tailed) Mean 95% Confidence Interval of the
Difference Difference

Lower Upper
~02 bxb v db -1.498 5 I .194 -6.9833E-02 -.1897 5.000E-02I
~02 bxb v db -2.077 5 .092 -8.6333E-02 -.1932 2.0S1E-02

~E bxb v db -1.089 5 .326 -2.7573E-02 -9.2676E-02 3.753E-02

rv02 bxb1 v bxb2 1.220 5 .277 4.067E-02 -4.4996E-02 .1263

~02 bxb1 v bxb2 -.184 5 .862 -7.1667E-03 -.1075 9.321E-02

rvE bxb1 v bxb2 1.213 5 .279 6.133E-02 -6.8684E-02 .1914

rv02 db1 v db2 -.063 5 .952 -4.1667E-03 -.1731 .1648

~02 db1 v db2 .158 5 .881 9.333E-03 -.1425 .1612

rvE db1 v db2 .437 I 5 .681 I 2.146E-02 -.1048 .1477
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APPENDIX6

Individual data and statistical output for Study 3 (Chapter 6)

Table A6.1: Individual data from Chapter 6

Subject
2 3 4 5 6 7 8

Age (yrs) 32 22 24 21 24 18 18 20

Height (m) 1.84 1.80 1.73 1.74 1.82 1.78 1.79 1.90

Mass (kg) 64.0 81.1 64.8 70.8 64.1 65.0 70.2 70.6

Incremental Duration (s) 723 698 701 695 724 775 799 783

V02peak (Lmin') 4.13 5.22 4.23 4.63 4.32 4.61 5.14 5.67

V02peak (ml.kglmin") 64.5 64.3 65.1 65.4 67.3 70.9 73.3 80.2

HRpeak (b.min') 196 193 185 199 190 193 194 188

800 m (track) Duration (s) 139.1 141.7 145.7 135.0 140.7 119.8 118.9 119.0

Av. speed (krn.h") 20.7 20.3 19.8 21.3 20.5 24.1 24.2 24.2

HRpeak (b.min') 183 188 184 201 187 217 179 182

800 m (lab) Duration (s) 136.7 134.4 119.7 139.4 124.3 114.7 82.4 93.1

Speed (km.h') 21.7 213 20.8 22.3 21.5 25.1 25.2 25.2

V02peak (Lmin") 3.94 4.86 3.94 4.25 3.98 3.87 4.15 4.14

V02peak (rnl.kglmin') 61.6 60.0 60.8 60.0 62.1 59.5 59.2 58.6

HRpeak (b.min") 189 181 175 192 187 210 169 184

(initial 45s) Asymptote (Lmin") 3.82 4.96 3.39 4.91 3.85 3.90 4.25 4.09

't (s) 13.9 13.2 5.0 24.5 8.9 8.6 9.7 7.8

Table A6.2: Test duration from the pilot tests at the average track speed (n = 4) and
at the speed adjusted for air resistance

Test duration (s)
Adjusted speed Average track speed

76 171
49 147
71 158
71 156
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Output A6.1: One-way RM Al~OVA (protocol) for HRpeak Chapter 5

Mauchly's Test of Sphericity

Eosilon
rtJithin Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Sauare df Sia. Geisser Feldt bound
PROTOCOL .570 I 3.377

1 2 1.1821
.699 .820 .500

T fW S Effests 0 ithin- ubjects ects
lSource Type III I df

I
Mean F I Sig. Eta Noncent. Observed

Sum of Square Squared Parameter Power
Sauares

!PROTOCOL SphericityAssumed 168.58~ 2 84.292 1.595 .23E .18€ 3.18~ .281

168.58~ 1.398 120.573 1.595 .24E .18€
I

Greenhouse-Geisser 2.22
d

.231

Huynh-Feldt 168.58~ 1.640 102.812 1.595 .24. .18€ 2.61 . .251

Lower-bound 168.58~ 1.000 168.583 1.595 .247 .18€ 1.59~ .195
I

Error(PROTOCOL) SphericityAssumed 740.08~ 14 52.86~

Greenhouse-Geisser 740.08. 9.787 75.617

Huynh-Feldt 740.08. 11.478 64.47S

Lower-bound 740.08~ 7.000 10S.72E

-Observed power computed uSingalpha - .05

Output A6.2: One-sample t-test for slope of \102 response for final30 s of laboratory
based 800 m pace run

SOne- ample Test
Test Value = 0

t df Sig. (2-tailed) Mean 95% Confidence Interval of the
Difference Difference

Lower Upper
SLOPE -.302 I 7

1

.771 -29.3825 -259.2680 200.5030
..Note: Individual data are contained In Table 6.3
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Output A6.3: Non-linear regression to model the V02 response of subject 1 to the
laboratory based 800 m paced run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

ASSYM 3.276177626 .025144152 3.226298391 3.326056860
DELAY 6.974134049 1.342492829 4.310989403 9.637278695
CONSTANT 14.563863282 1.289185348 12.006466338 17.121260226

Output A6.4: Non-linear regression to model the V02 response of subject 2 to the
laboratory based 800 m paced run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

ASSYM 4.043509804 .030934916 3.982233689 4.104785918
DELAY 11.713118428 .864246949 10.001211554 13 .425025301
CONSTANT 11.929152850 .997786136 9.952730548 13.905575152

Output A6.5: Non-linear regression to model the V02 response of subject 3 to the
laboratory based 800 m paced run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

ASSYM 3.143718226 .025144131 3.093839033 3.193597419
DELAY 7.575208453 1.296226545 5.003843669 10.146573237
CONSTANT 14.563854917 1.289183043 12.006462546 17.121247287

Output A6.6: Non-linear regression to model the V02 response of subject 4 to the
laboratory based 800 m paced run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

ASSYM 3.760805792 .021941938 3.717343036 3.804268548
DELAY 10.417381016 .687541244 9.055494134 11.779267897
CONSTANT 16.163875206 .842003621 14.496028084 17.831722327
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Output A6.7: Non-linear regression to model the V02 response of subject 5 to the
laboratory based 800 m paced run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

ASSYM 3.314206349 .019847201 3.274853016 3.353559682
DELAY 12.357115706 .606829374 11.153885154 13.560346258
CONSTANT 9.806379224 .688787789 8.440640275 11.172118172

Output A6.8: Non-linear regression to model the V02 response of subject 6 to the
laboratory based 800 m paced run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

ASSYM 3.229356512 .012506413 3.204528143 3.254184880
DELAY 12.293588308 .426297949 11.447279878 13.139896738
CONSTANT 7.138914910 .421642530 6.301848655 7.975981165

Output A6.9: Non-linear regression to model the V02 response of subject 7 to the
laboratory based 800 m paced run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

ASSYM 3.459700460 .033179040 3.393397440 3.526003480
DELAY 11.644785005 .965241809 9.715903166 13.573666845
CONSTANT 6.921884572 .903987849 5.115409003 8.728360140

Output A6.10:Non-linear regression to model the V02 response of subject 8 to
the laboratory based 800 m paced run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

ASSYM 3.381027825 .023093931 3.335001688 3.427053963
DELAY 13 .369732188 .453231642 12.466442828 14.273021549
CONSTANT 8.082979131 .555015425 6.976834984 9.189123277
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Output A6.11: Correlation matrix from Chapter 6

Correlations
V02peak Asymptotic % V02peak Constant

V02
V02peakl kg Pearsor 1.000 .035 -.951 -.690

(ramp) Correlation
Sig. (2-tailed .935 .000 .058

N 8 8 8 8

Asymptotic V02 Pearsor .035 1.000 .263 .074
I kg Correlation

Sig. (z-tailed) .935 .529 .861

N 8 8 8 8

% V02peak Pearson -.951 .263 1.000 .713
achieved Correlation

Sig. (2-tailed .000 .529 .047

N 8 8 8 8

Time constant Pearson -.690 .074 .713 1.000
Correlation

Sig. (2-tailed .058 .861 .047

N 8 8 8 8

Output A6.12: Correlation matrix from Chapter 6 (Subject 8 removed)

Correlations
V02peak Asymptotic % V02peak Constant

V02
V02peak I kg Pearson 1.000 .058 -.889 -.327

(ramp) Correlation
Sig. (2-tailed .901 .007 .474

1\ 7 7 7 7
Asymptotic V02 Pearsor .058 1.000 .400 -.079

I kg Correlation
Sig. (2-tailed .901 .374 .866

1\ 7 7 7 7
% V02peak Pearson -.889 .400 1.000 .244

achieved Correlation
Sig. (2-tailed .007 .374 .597

N 7 7 7 7
Time constant Pearson -.327 -.079 .244 1.000

Correlation
Sig. (2-tailed .474 .866 .597

N 7 7 7 7
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APPENDIX 7

Individual data and statistical output for Study 4

Table A7.1: Individual subject data from Study 4

Subject
2 3 4

Age (yrs) 31 24 24 22

Height (m) 1.94 1.88 1.78 1.69

Mass (kg) 95.9 85.4 80.8 71.4

Vo2peak (ml.kg'lrnin") 59.1 56.7 53.3 54.6

Output A7.1: Correlation of 1/ -JD with SD in the moderate domain

Correlations
1/sqrt n SO

1/sqrt n Pearson Correlation 1.000 .990

Sig. (2-tailed) .001

N 5 5
SO Pearson Correlation .990 1.000

Sig. (2-tailed) .001

N 5 5

Output A7.2: Correlation of 1/ -JD with SD in the severe intensity domain

Correlations
1/sqrt n SD

1/sqrt n Pearson Correlation 1.000 .996

Sig. (2-tailed) .000

N 5 5

~D Pearson Correlation .996 1.000

Sig. (2-tailed) .000

N 5 5
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APPENDIX8

Individual data and statistical output for Study 5 (Chapter 8)

Table A8.1: Individual subject and test data from Study 5

2 3
Subject
5 6 104 8 97

Ramp

Moderate!

severe

Heavy!

severe

Age

Height

Mass

(yrs)

(m)

(kg)

Y· (l.rnin')
O,peak

VO,peak
HRpeak

Lac

(rnl.kglmin")

(b.min')

(mM)

. (l.min")
Yo,peak

Y· (%ramp)
O,peak

Phase-I (s)

Baseline (l.rnin")

Gain

Asymp

t

I)

MRT

HRpeak

Lac

Duration

(l.min")

(l.min")

(s)

(s)

(s)

(b.min')

(mM)
(s)

Baseline

Gain

Asymp

t

I)

MRT

HRpeak

Lac

Duration

(l.min')

(I.min")

(I.min")

(5)

(5)

(5)

(b.rnin')

(mM)

(s)

24

1.78

70.1

23

1.83

24

1.84

81.6

23

1.75

69.2

19

1.78

6700

20

1.71

70.7

25

1.77

71.8

34

1.77

60.6

19

1.78

74.6

25

1.83

67.576.2

4.24 4.35 4.764.69 4054 4096 3.91 3.51 4.87 4.38

6005 57.1 67.8 580367.7 70.2 54.4 58.0 65.2 64.9

189

5.7

193

8.0

179

5.8

198

6.7

189

5.0

197

7.4

204

7.0

177

5.0

177

9.5

188

5.6

4.05 4.00 4.414.45 3.89 4.55 4.10 4.283.39 3.14

95.5 91.0 94.9 90.085.7 91.7 86.7 89.3 90.6 93.6

14

0.98

17

0.63

13

0.75 0.70

12

0.75

16

0.72

12

0.60

16

0.65

13

0.94

12

0.63

16

2.98 3.33 3.65 3.25 3.44 2.69 2.34 3.55 3.28 3.38

3.96 3.96 4.40 3.89 4.38 3.31 3.04 4.30 3.99 3.98

7.6 12.5 7.9 11.7 10.0 9.0 7.2 7.5 11.1 4.2

12.4 11.0 12.6 12.6 11.2 10.4 13.4 12.6 11.0 13.7

20.0 23.5 20.5 24.2 21.2 19.3 20.6 20.1 22.1 17.9

183 188 184 178 190 195 175 169 178 170

6.2 8.6 7.6 6.8 5.0 8.5 6.1 9.2 5.4 8.0

119.5 104.5 103.0 102.0 104.0 128.0 113.0 113.5 117.5 96.5

4.02 4.59 4.05 4.353.91 4.73 3.59 3.29 4.144.00

94.7 92.0 97.8 92.5 91.486.2 93.7 85.095.2 92.0

11 9 10 10II14 II 10 10 IS

0.83 0.51 0.65 0.50 0.86 0.61 0.59 0.67 0.68 0.62

3.06 3.49 3.S9 3.41 3.78 2.S9 2.65 3.34 3.28 3.64

3.89 4.00 4.54 3.90 4.64 3.50 3.23 4.01 3.96 4.26

6.6 16.4 8.2 13.8 8.9 12.4 6.6 7.7 9.8 5.8

11.7 2.0 12.3 4.0 10.1 6.7 11.8 9.8 10.1 14.1

18.3 18.4 20.4 17.8 IS.9 19.1 18.4 17.5 19.9 20.0

189 191 186 187 197 193 176 177 181 ISO

6.7 9.4 6.2 8.3 6.7 7.8 4.7 9.0 5.7 6.8

119.5 104.5 92.5 108.5 106.0 132.5 91.5 129.5 126.5 98.5
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Output A8.1: One-way RJ.'\1 ANOVA (protocol) for \'02peak between the ramp test
and constant intensity tests in Study 5

Mauchly's Test of Sphericity

Epsilon
~ithin Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound
PROTOCOL .797 I 1.815 2 I .401 .831 .997 .500

T rw: h· S b· Eftiests 0 It in- U nects ects
lSource Type 111 df Mean F Sig. Eta Noncent. Observed

Sum of Square Squared Parameter Power
SQuares

!PROTOCOL Sphericity Assumed .945 2 .473 37.248 .000 .805 74.497 1.000

Greenhouse-Geisser .945 1.663 .568 37.248 .000 .805 61.926 1.000

Huynh-Feldt .945 1.993 .474 37.248 .000 .805 74.245 1.000

Lower-bound .945 1.000 .945 37.248 .000 .805 37.248 1.000

Error(PROTOCOL) Sphericity Assumed .228 18 1.269E-02

Greenhouse-Geisser .228 14.963 1.526E-02

Huynh-Feldt .228 17.939 1.273E-02

Lower-bound .228 9.000 2.537E-02

-Observed power computed uSing alpha - .05

Output A8.2: One-way RM ANOVA (protocol) for HRpeak between the ramp test
and constant intensity tests in Study 5

Mauchly's Test of Sphericity
I

Eosilon
~ithin Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound

PROTOCOL .871 1.100 I 2 .575 .886 1.000 .500I

T f'Wi h· S bi Eftiests 0 It m- Uojects ects
lSource Type III df Mean F Sig. Eta Noncent. Observed

Sum of Square Squared Parameter Power
Sauares

IPROTOCOL Sphericity Assumed 343.817 2 171.908 22.259 .000 .712 44.518 1.000

Greenhouse-Geisser 343.817 1.772 193.999 22.259 .000 .712 39.449 1.000

Huynh-Feldt 343.817 2.000 171.908 22.259 .000 .712 44.518 1.000

Lower-bound 343.817 1.000 343.817 22.259 .001 .712 22.259 .987

Error(PROTOCOL) Sphericity Assumed 139.017 18 7.723

Greenhouse-Geisser 139.017 15.950 8.716

Huynh-Feldt 139.017 18.000 7.723

Lower-bound 139.017 9.000 15.446

Observed power computed uSing alpha = .05
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Output A8.3: One-way RM ANOVA (protocol) for lactate between the ramp test and
constant intensity tests in Study S

Mauchlv's Test of Sphericity

Epsilon

Within Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Siq. Geisser Feldt bound

PROTOCOL .978
, .175 2 .919 .979 1.000 .500I

T Efliests 0 I In- u nects ects
Source Type III I df Mean F Sig. Eta Noncent. Observed

Sum of Square Squared Parameter Power
Squares

PROTOCOL Sphericity Assumed 2.222 2 1.111 1.483 .253 .141 2.965 .275

Greenhouse-Geisser 2.222 1.958 1.135 1.483 .254 .141 2.903 .272

Huynh-Feldt 2.222 2.000 1.111 1.483 .253 .141 2.965 .275

Lower-bound 2.222 1.000 2.222 1.483 .254 .141 1.483 .194

Error(PROTOCOl) Sphericity Assumed 13.486 18 .749

Greenhouse-Geisser 13.486 17.618 .765

Huynh-Feldt 13.486 18.000 .749

Lower-bound 13.486 9.000 1.498

Observed power computed uSing alpha = .05

Output A8.4: Non-linear regression to model the V02 response of subject 1 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.975116557 .024187793 2.926875525 3.023357588
CONSTANT 7.548825378 .726960202 6.098948973 8.998701783
DELAY 12.410339797 .684384452 11.045378048 13.775301546

Output A8.S: Non-linear regression to model the V02 response of subject 2 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.331554269 .017211257 3.297227500 3.365881038
CONSTANT 12.498461014 .516185084 11.468962327 13.527959702
DELAY 10.967679815 .415842683 10.138307736 11.797051895
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Output A8.6: Non-linear regression to model the V02response of subject 3 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.651725760 .012729453 3.626398142 3.677053378
CONSTANT 7.914760847 .331190937 7.255794769 8.573726924
DELAY 12.610755708 .303005352 12.007870104 13.213641313

Output A8.7: Non-linear regression to model the V02 response of subject 4 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.244696458 .014610670 3.215556395 3.273836522
CONSTANT 11.646813642 .394796491 10.859416869 12.434210415
DELAY 12.582857996 .289592277 12.005284412 13.160431580

Output A8.8: Non-linear regression to model the V02 response of subject 5 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.435418020 .029939323 3.375890625 3.494945414
CONSTANT 9.949871501 .990449237 7.980593069 11.919149934
DELAY 11.204773544 .938305040 9.339171746 13.070375341

Output A8.9: Non-linear regression to model the V02response of subject 6 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.684933689 .009688214 2.665727934 2.704139444
CONSTANT 8.946684796 .521606817 7.912660116 9.980709476
DELAY 10.366768291 .579184356 9.218602856 11.514933726
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Output A8.10: Non-linear regression to model the V02 response of subject 7 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.339381333 .014046228 2.311484311 2.367278355
CONSTANT 7.225376485 .551913740 6.129228159 8.321524811
DELAY 13.380812744 .483096021 12.421342346 14.340283141

Output A8.11: Non-linear regression to model the V02 response of subject 8 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.553615147 .022944663 3.508010145 3.599220149
CONSTANT 7.501483196 .636954894 6.235466373 8.767500019
DELAY 12.639707547 .599489811 11.448156634 13.831258460

Output A8.12:Non-linear regression to model the V02 response of subject 9 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.278670227 .015439512 3.248014714 3.309325739
CONSTANT 11.094718614 .578336615 9.946417709 12.243019520
DELAY 10.970631567 .535264689 9.907850980 12.033412155

Output A8.13:Non-linear regression to model the V02 response of subject 10 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.380156393 .041753593 3.296838396 3.463474390
CONSTANT 4.190026371 .880902885 2.432212033 5.947840709
DELAY 13.703844494 .890903784 11.926073672 15.481615317
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Output A8.14:Non-linear regression to model the V02 response of subject 1 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.059060185 .018254825 3.022804527 3.095315843
CONSTANT 6.551728150 .697524330 5.166384621 7.937071678
DELAY 11.744129143 .784631204 10.185783844 13.302474441

Output A8.15:Non-linear regression to model the V02 response of subject 2 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.486953071 .020836840 3.445523851 3.528382290
CONSTANT 16.432569562 1.166423126 14.113407893 18.751731230
DELAY 1.945495816 1.373334201 -.785060502 4.676052134

Output A8.16:Non-linear regression to model the V02 response of subject 3 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.887738804 .017375895 3.853026464 3.922451145
CONSTANT 8.162206152 .384108608 7.394860995 8.929551308
DELAY 12.252827571 .348603810 11.556411402 12.949243740

Output A8.17:Non-linear regression to model the V02 response of subject 4 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.404502532 .014090221 3.376487399 3.432517666
CONSTANT 13.759260678 .780486854 12.207443714 15.311077642
DELAY 4.002914116 .966347515 2.081556365 5.924271866

SB Ora er 2002 223



PhD Thesis Appendix 8

Output A8.18:Non-linear regression to model the V02 response of subject 5 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.778031729 .030287524 3.717831996 3.838231462
CONSTANT 8.868767718 1.063396378 6.755152269 10.982383166
DELAY 10.059629744 1.196243733 7.681965793 12.437293696

Output A8.19: Non-linear regression to model the V02 response of subject 6 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.893992843 .010276143 2.873633950 2.914351737
CONSTANT 12.438035326 .687486483 11.076000609 13.800070043
DELAY 6.692609750 .823287535 5.061528656 8.323690845

Output A8.20: Non-linear regression to model the V02 response of subject 7 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.644558631 .015443675 2.613696910 2.675420353
CONSTANT 6.585408961 .542755738 5.500798165 7.670019756
DELAY 11.807506740 .585022774 10.638432013 12.976581467

Output A8.2l: Non-linear regression to model the V02 response of subject 8 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.341781151 .015007559 3.312023935 3.371538368
CONSTANT 7.687403606 .714932301 6.269824919 9.104982292
DELAY 9.794183253 .911097066 7.987646075 11.600720430
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Output A8.22: Non-linear regression to model the V02 response of subject 9 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.277958323 .017215496 3.243834224 3.312082422
CONSTANT 9.790587651 .771904383 8.260539252 11.320636051
DELAY 10.119295038 .834215653 8.465734891 11.772855185

Output A8.23: Non-linear regression to model the V02 response of subject 10 to the
severe runs with prior moderate intensity exercise

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.636871565 .021921519 3.593182040 3.680561090
CONSTANT 5.842120009 .421251276 5.002567427 6.681672592
DELAY 14.123490883 .348896373 13.428141415 14.818840351
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APPENDIX9

Individual data and statistical output for Study 6 (Chapter 9)

Table A9.1: Individual subject and test data from Sprint group in Study 6

Subject
2 3 4 5 6

Age (yrs) 23 24 24 27 15 15

Height (m) 1.76 1.81 1.73 1.76 1.76 1.81

Mass (kg) 79.2 76.0 76.9 74.9 61.2 74.1

100m (PB) (s) 11.7 10.9 10.6 11.0 11.3 11.1

Ramp V02peak
(l.min") 3.83 4.18 3.05 4.42 3.76 4.15

V02peak
(ml.kg'lmin") 50.2 60.5 40.0 62.0 61.0 53.3

HRpeak (b.min") 191 196 205 183 204 197

Lac (mM) 5.7 8.5 4.6 6.5 7.0 6.4

Moderate Phase-I (s) 14 13 18 13 17 21

Baseline (l.min") 0.56 0.58 0.29 0.66 0.50 0.55

Gain (l.min") 1.69 1.45 1.76 2.38 1.59 2.20

Asymp (l.min") 2.24 2.04 2.04 3.04 2.08 2.75

t (s) 24.3 14.5 11.0 24.4 16.0 9.5

0 (s) 3.7 18.6 19.2 7.0 18.6 20.9

MRT (s) 28.0 33.1 30.2 31.4 34.6 30.4

Severe V02peak
(l.min") 3.73 4.20 3.60 4.23 3.24 4.08

V02peak
(%ramp) 97.2 100.5 118.1 95.7 85.9 98.3

Phase-I (s) 10 16 14 14 14 12

Baseline (l.min") 0.74 0.69 0.70 0.83 0.50 0.64

Gain (l.min") 2.91 3.38 2.70 3.28 2.64 3.39

Asymp (I.min") 3.65 4.08 3.40 4.11 3.14 4.02

r (s) 12.6 12.2 1l.5 9.7 11.0 10.1

0 (s) 6.4 12.6 12.3 11.4 8.6 13.2

MRT (s) 19.0 24.8 23.8 21.1 19.6 23.3

HRpeak (b.min") 178 193 195 171 197 192

Lac (mM) 7.7 7.0 5.4 8.7 8.2 8.2

Duration (s) 132.5 134.5 114.0 98.0 112.0 102.5
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Table A9.2: Individual subject and test data from Endurance group in Study 6

Subject
2 3 4 5 6

Age (yrs) 19 19 23 25 24 20

Height (m) 1.78 1.78 1.75 1.83 1.78 1.71

Mass (kg) 74.6 67.0 69.2 67.5 70.1 70.7

10km (PB) (min) 31.7 32.1 31.5 32.9 33.9 33.8

Ramp V02peak
(l.min") 4.87 4.54 4.69 4.38 4.24 4.96

V02peak
(rnl.kglmin") 65.2 67.7 67.8 64.9 60.5 70.2

HRpeak (b.min') 177 189 198 188 189 197

Lac (mM) 9.5 5.0 6.7 5.6 5.7 7.4

Moderate Phase-I (s) 22 17 17 14 15 19

Baseline (l.min") 0.46 0.36 0.75 0.53 0.57 0.48

Gain (l.min") 2.87 2.49 2.23 1.98 2.22 2.08

Asymp (l.min') 3.33 2.85 2.98 2.52 2.79 2.56

t (5) 10.7 11.7 10.8 16.2 10.6 14.0

s (5) 15.8 13.7 14.0 8.0 12.9 11.5

MRT (s) 26.5 25.4 24.8 24.2 23.5 25.5

Severe V02peak
(l.min") 4.41 3.89 4.45 4.10 4.05 4.55

V02peak
(%camp) 90.6 85.7 94.9 93.6 95.5 91.7

Phase-I (s) 12 16 13 16 14 13

Baseline (l.min") 0.75 0.65 0.75 0.72 0.98 0.94

Gain (l.min") 3.55 3.25 3.65 3.28 2.98 3.44

Asymp (l.rnin") 4.30 3.89 4.40 3.99 3.96 4.38

't (s) 7.5 11.7 7.9 11.1 7.6 10.0

s (5) 12.6 12.6 12.6 11.0 12.4 11.2

MRT (s) 20.1 24.2 20.5 22.1 20.0 21.2

HRpeak (b.min") 169 178 184 178 183 190

Lac (mM) 9.2 6.8 7.6 5.4 6.2 5.0

Duration (s) 113.5 102.0 103.0 117.5 119.5 104.0
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Output A9.1: Two way RM ANOYA (test x group) for HR peak in Study 6

hiMauc ly's Test of Sphericity

Epsilon
Within Subjects Effect Mauchly's Approx. Chi- Greenhouse- I Huynh- Lower-

W Square df Sig. Geisser Feldt bound
1EST 1.000 .000 0 1.000 11.000 1.000

T rw: h' S bi Eftiests0 It m- U )Jects ects
fSource Type III df Mean F Sig. Eta Noncen!. Observed

Sum of Square Squared Parameter Power
Squares

ITEST Sphericity 463.76C 1 463.76C 58.137 .OOC .85.J 58.131 1.000

Assumed
Greenhouse- 463.76C 1.000 463.76C 58.137 .OOC .85~ 58.131 1.000

Geisser
Huynh-Feldt 463.76C 1.000 463.76C 58.13( .OOC .85~ 58.131 1.000
Lower-bound 463.76C 1.000 463.760 58.137 .OOC .85~ 58.131 1.000

IrEST * GROUP Sphericity .844 1 .844 .106 .752 .01C .106 .060

Assumed
Greenhouse- .844 1.000 .844 .106 .752 .010 .106 .060

Geisser
Huynh-Feldt .844 1.00C .844 .106 .75~ .010 .106 .06C

Lower-bound .844 1.00C .844 .106 .752 .010 .106 .06C

Error(TEST) Sphericity 79.771 1C 7.977

Assumed
Greenhouse- 79.771 10.00C 7.977

Geisser
Huynh-Feldt 79.771 10.00C 7.977

Lower-bound 79.771 10.00C 7.977

Observed power computed uSing alpha = .05

T fB S bi Effiests0 etween- U )Jects ects
~ource Type III df Mean Square F Sig. Eta Noncent. Observed

Sum of Squared Parameter Power
Squares

Intercept 851455.010 1 851455.010 6632.453 .000 .998 6632.453 1.000

GROUP 283.594 1 283.594 2.209 .168 .181 2.209 .270

Error 1283.771 10 128.377

Observed power computed uSing alpha = .05
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Output A9.2: Two way RM ANOVA (test x group) for lactate in Study 6

M hi'aue Iy s Test of Sphericity

Eosilon
lWithinSubjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df SiQ. Geisser Feldt bound
tTEST 1.000 .000 0 1.000 1.000 1.000

T rw: hi S b' Effiests 0 It m- U nects eets
!Source Type 111 df Mean F Sig. Eta Noncen!. Observed

Sum of Square Squared Parameter Power
Squares

[rEST Sphericity 1.086 1 1.086 1.325 .276 .117 1.325 .181

Assumed
Greenhouse- 1.086 1.000 1.086 1.325 .276 .117 1.325 .181

Geisser
Huynh-Feldt 1.086 1.000 1.086 1.325 .276 .117 1.325 .181

Lower-bound 1.086 1.000 1.086 1.325 .276 .117 1.325 .181

IrEST * GROUP Sphericity 2.597 1 2.597 3.169 .105 .241 3.169 .363

Assumed
Greenhouse- 2.597 1.000 2.597 3.169 .105 .241 3.169 .363

Geisser
Huynh-Feldt 2.597 1.000 2.597 3.169 .105 .241 3.169 .363

Lower-bound 2.597 1.000 2.597 3.169 .105 .241 3.169 .363

Error(TEST) Sphericity 8.194 10 .819

Assumed
Greenhouse- 8.194 10.00 .819

Geisser
Huynh-Feldt 8.194 10.00 .819

Lower-bound 8.194 10.00 .819

Observed power computed uSing alpha = .05

T fB S bi Effiests 0 etween- U IJeets eets
Source Type I" df Mean Square F Sig. Eta Noncent. Observed

Sum of Squared Parameter Power
Squares

Intercept 413.420 1 413.420 1804.155 .000 .994 1804.155 1.000

IGROUP 1.854 1 1.854 8.089 .017 .447 8.089 .727

Error 2.291 10 .229

Observed power computed uSing alpha - .05
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Output A9.3: Two way RM ANOYA (test x group) for V02peak in Study 6

Mauehly's Test ofSpherieity

Epsilon
Within Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound
lEST 1.000 .000 0 1.000 1.000 1.000
Tests of Within-SubJects Effects

T fWi hi S b' Effiests 0 It m- u )Jeets eets
Source Type III df Mean F Sig. Eta Noncen!. Observed

Sum of Square Squared Parameter Power
Squares

TEST Sphericity .268 1 .268 7.143 .023 .417 7.143 .674

Assumed
Greenhouse- .268 1.000 .268 7.143 .023 .417 7.143 .674

Geisser
Huynh-Feldt .268 1.000 .268 7.143 .023 .417 7.143 .674

Lower-bound .268 1.000 .268 7.143 .023 .417 7.143 .674

TEST* GROUP Sphericity .153 1 .153 4.080 .071 .290 4.080 .447

Assumed
Greenhouse- .153 1.000 .153 4.080 .071 .290 4.080 .447

Geisser
Huynh-Feldt .153 1.000 .153 4.080 .071 .290 4.080 .447

Lower-bound .153 1.000 .153 4.080 .071 .290 4.080 .447

Error(TEST) Sphericity .376 10 3.7S9E-02

Assumed
Greenhouse- .376 10.000 3.759E-02

Geisser
Huynh-Feldt .376 10.000 3.759E-02

Lower-bound .376 10.000 3.7S9E-02

Observed power computed uSing alpha = .05

T fB S bi Eftiests0 etween- u )Jeets eets
Source Type III df Mean Square F Sig. Eta Noncent. Observed

Sum of Squared Parameter Power
Squares

Intercept 851455.010 1 851455.010 6632.453 .000 .998 6632.453 1.000
GROUP 283.594 1 283.594 2.209 .168 .181 2.209 .270
Error 1283.771 10 128.377
Observed power computed uSing alpha = .05
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Output A9.4: Two way RM ANOVA (intensity x group) for baseline in Study 6

Mauehly's Test of Sphericity

Epsilon
~ithin Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound
INTENSITY 1.000 .000 0 1.000 1.000 1.000

T rw: hi S bi Effiests 0 It 10- U )Jeets eets
~ource TypeIII df Mean F Sig. Eta Noncen!. Observed

Sumof Square SquaredParameter Power
Squares

INTENSITY Sphericity 283620.0 1 283620.04 23.990 .001 .706 23.990 .992

Assumed
Greenhouse- 283620.0 1.000 283620.04 23.990 .001 .706 23.990 .992

Geisser
Huynh-Feldt 283620.0 1.000 283620.04 23.990 .001 .706 23.990 .992

Lower-bound 283620.0 1.000 283620.04 23.990 .001 .706 23.990 .992

INTENSITY * Sphericity 18760.04 1 18760.042 1.587 .236 .137 1.587 .207

GROUP Assumed
Greenhouse- 18760.04 1.000 18760.042 1.587 .236 .137 1.587 .207

Geisser
Huynh-Feldt 18760.04 1.000 18760.042 1.587 .236 .137 1.587 .207

Lower-bound 18760.04 1.000 18760.042 1.587 .236 .137 1.587 .207

Error(INTENSITY) Sphericity 118224.4 10 11822.442

Assumed
Greenhouse- 118224.4 10.000 11822.442

Geisser
Huynh-Feldt 118224.4 10.000 11822.442

Lower-bound 118224.4 10.000 11822.442

-ObservedpowercomputeduSingalpha- .05

T fB S bi Effiests 0 etween- U )Jeets eets
Source Type III df Mean Square F Sig. Eta Noncent. Observed

Sum of Squared Parameter Power
Squares

Intercept 9564700.042 1 9564700.042 483.602 .000 .980 483.602 1.000

GROUP 19780.042 1 19780.042 1.000 .341 .091 1.000 .148

Error 197780.417 10 19778.042

ObservedpowercomputeduSingalpha= .05
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Output A9.5: Two way RM ANOVA (intensity x group) for phase-l duration in
Study 6

hi fMaue IY'S Test 0 Sphericity

Epsilon
~ithin Subjects Effect Mauchly's Approx. Chi- Greenhouse- I Huynh- Lower-

W Square df SiQ. Geisser Feldt bound
INTENSITY 1.000 .000 0 1.000 I 1.000 1.000

T Effiests 0 1 In- ubiects eets
lSource Type III df Mean F Sig. Eta Noncent. Observed

Sum of Square Squared Parameter Power
Sauares

INTENSITY Sphericity 54.000 1 54.000 5.978 .035 .374 5.978 .598

Assumed
Greenhouse- 54.000 1.000 54.000 5.978 .035 .374 5.978 .598

Geisser
Huynh-Feldt 54.000 1.000 54.000 5.978 .035 .374 5.978 .598

Lower-bound 54.000 1.000 54.000 5.978 .035 .374 5.978 .598

INTENSITY* Sphericity .667 1 .667 .074 .791 .007 .074 .057

iGROUP Assumed
Greenhouse- .667 1.000 .667 .074 .791 .007 .074 .057

Geisser
Huynh-Feldt .667 1.000 .667 .074 .791 .007 .074 .057

Lower-bound .667 1.000 .667 .074 .791 .007 .074 .057

Error(INTENSITY) Sphericity 90.333 10 9.033

Assumed
Greenhouse- 90.333 10.000 9.033

Geisser
Huynh-Feldt 90.333 10.000 9.033

Lower-bound 90.333 10.000 9.033

Observed power computed uSing alpha = .05

T fB S bi Eftiests 0 etween- u nects eets
lSource Type III df Mean Square F Sig. Eta Noncent. Observed

Sum of Squared Parameter Power
Sauares

Intercept 5520.667 1 5520.667 1440.174 .000 .993 1440.174 1.000

IGROUP 6.000 1 6.000 1.565 .239 .135 1.565 .205

Error 38.333 10 3.833

Observed power computed uSing alpha = .05
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Output A9.6: Two way RM ANOVA (intensity x group) for GAIN in Study 6

Mauchly's Test of Sphericity

Epsilon
Within Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound
INTENSITY 1.000 .000 0 1.000 1.000 1.000

T rw: h' S bi Eftiests 0 It m- u nects eets
Source Type III df Mean F Sig. Eta Noncent. Observed

Sum of Square Squared Parameter Power
SQuares

INTENSITY Sphericity 7590375.3 1 7590375.3 115.34 .000 .920 115.348 1.000

Assumed 8

Greenhouse- 7590375.3 1.000 7590375.3 115.34 .000 .920 115.348 1.000

Geisser 8

Huynh-Feldt 7590375.3 1.000 7590375.3 115.34 .000 .920 115.348 1.000
8

Lower-bound 7590375.3 1.000 7590375.3 115.34 .000 .920 115.348 1.000
8

INTENSITY* Sphericity 38962.04 1 38962.042 .592 .459 .056 .592 .107

~ROUP Assumed
Greenhouse- 38962.04 1.000 38962.042 .592 .459 .056 .592 .107

Geisser
Huynh-Feldt 38962.04 1.000 38962.042 .592 .459 .056 .592 .107

Lower-bound 38962.04 1.000 38962.042 .592 .459 .056 .592 .107

Error(INTENSITY) Sphericity 658044.0 10 65804.408

Assumed
Greenhouse- 658044.0 10.000 65804.408

Geisser
Huynh-Feldt 658044.0 10.000 65804.408

Lower-bound 658044.0 10.000 65804.408

Observed power computed uSing alpha = .05

T fB S b' Eftiests 0 etween- u nects eets
~ource Type III df Mean Square F Sig. Eta Noncent. Observed

Sum of Squared Parameter Power
Squares

Intercept 167286240.3 1 167286240.3 1181.661 .000 .992 1181.661 1.000

GROUP 899775.375 1 899775.375 6.356 .030 .389 6.356 .624

Error 1415687.750 10 141568.775

Observed power computed uSing alpha = .05
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Output A9.7: Two way RM ANOVA (intensity x group) for asymptote in Study 6

Mauchly's Test of Sphericity

Epsilon
lWithinSubjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sic. Geisser Feldt bound
INTENSITY 1.000 .000 0 1.000 1.000 1.000

T Effiests 0 I In- U nects ects
~ource Type III df Mean F Sig. Eta Noncen!. Observed

Sum of Square Squared Parameter Power
Sauares

INTENSITY Sphericity 10808468 1 10808468.1 188.13 .000 .950 188.139 1.000

Assumed 9

Greenhouse- 10808468 1.000 10808468.1 188.13 .000 .950 188.139 1.000

Geisser 9

Huynh-Feldt 10808468 1.000 10808468.1 188.13 .000 .950 188.139 1.000
9

Lower-bound 10808468 1.000 10808468.1 188.13 .000 .950 188.139 1.000
9

INTENSITY* Sphericity 3650.667 1 3650.667 .064 .806 .006 .064 .056

GROUP Assumed
Greenhouse- 3650.667 1.000 3650.667 .064 .806 .006 .064 .056

Geisser
Huynh-Feldt 3650.667 1.000 3650.667 .064 .806 .006 .064 .056

Lower-bound 3650.667 1.000 3650.667 .064 .806 .006 .064 .056

Error(INTENSITY) Sphericity 574493.1 10 57449.317

Assumed
Greenhouse- 574493.1 10.000 57449.317

Geisser
Huynh-Feldt 574493.1 10.000 57449.317

Lower-bound 574493.1 10.000 57449.317

Observed power computed uSing alpha = .05

T fB S bi Effiests 0 etween- u )Jects ects
lSource Type III df Mean Square F Sig. Eta Noncent. Observed

Sum of Squared Parameter Power
Squares

Intercept 256852008.1 1 256852008.1 1379.673 .000 .993 1379.673 1.000

~ROUP 1186370.667 1 1186370.667 6.373 .030 .389 6.373 .625

Error 1861687.167 10 186168.717

Observed power computed uSing alpha = .05
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Output A9.8: Two way RM ANOVA (intensity x group) for asymptote (as a
% YOzpeak) in Study 6

Mauchly's Test of Sphericity

Epsilon
Within Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound

INTENSITY 1.000 .000 0 1.000 1.000 1.000

T f'Wi hi S b' Effiests 0 It in- u nects ects
~ource Type III df Mean F Sig. Eta Noncen!. Observed

Sum of Square Squared Parameter Power
Squares

INTENSITY Sphericity .615 1 .615 184.87 .000 .949 184.877 1.000

Assumed 7

Greenhouse- .615 1.000 .615 184.87 .000 .949 184.877 1.000

Geisser 7

Huynh-Feldt .615 1.000 .615 184.87 .000 .949 184.877 1.000
7

Lower-bound .615 1.000 .615 184.87 .000 .949 184.877 1.000
7

INTENSITY * Sphericity 7.212E-03 1 7.212E-03 2.169 .172 .178 2.169 .266

GROUP Assumed
Greenhouse- 7.212E-03 1.000 7.212E-03 2.169 .172 .178 2.169 .266

Geisser
Huynh-Feldt 7.212E-03 1.000 7.212E-03 2.169 .172 .178 2.169 .266

Lower-bound 7.212E-03 1.000 7.212E-03 2.169 .172 .178 2.169 .266

Error(INTENSITY) Sphericity 3.325E-02 10 3.325E-03

Assumed
Greenhouse- 3.325E-02 10.000 3.325E-03

Geisser
Huynh-Feldt 3.325E-02 10.000 3.325E-03

Lower-bound 3.325E-02 10.000 3.325E-03

Observed power computed uSingalpha = .05

f b' fliTests 0 Between-Su nects E ects

lSource Type III df Mean Square F Sig. Eta Noncent. Observed
Sum of Squared Parameter Power
Squares

Intercept 14.281 1 14.281 2298.835 .000 .996 2298.835 1.000

~ROUP 4.330E-03 1 4.330E-03 .697 .423 .065 .697 .118

Error 6.212E-02 10 6.212E-03

Observed power computed uSingalpha = .05
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Output A9.9: Two way RM ANOVA (intensity x group) for t in Study 6

Mauehly's Test of Sphericity

Epsilon
Within Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound
INTENSITY 1.000 .000 0 1.000 1.000 1.000

T f Wi hi S bi Eftiests 0 It In- u nects eets
Source Type III df Mean F Sig. Eta Noncent. Observed

Sum of Square Squared Parameter Power
Squares

INTENSITY Sphericity 107.950 1 107.950 9.795 .011 .495 9.795 .805

Assumed
Greenhouse- 107.950 1.000 107.950 9.795 .011 .495 9.795 .805

Geisser
Huynh-Feldt 107.950 1.000 107.950 9.795 .011 .495 9.795 .805

Lower-bound 107.950 1.000 107.950 9.795 .011 .495 9.795 .805

INTENSITY· Sphericity 8.520 1 8.520 .773 .400 .072 .773 .125

PROUP Assumed
Greenhouse- 8.520 1.000 8.520 .773 .400 .072 .773 .125

Geisser
Huynh-Feldt 8.520 1.000 8.520 .773 .400 .072 .773 .125

Lower-bound 8.520 1.000 8.520 .773 .400 .072 .773 .125

Error(INTENSITY) Sphericity 110.214 10 11.021

Assumed
Greenhouse- 110.214 10.000 11.021

Geisser
Huynh-Feldt 110.214 10.000 11.021

Lower-bound 110.214 10.000 11.021

Observed power computed uSing alpha = .05

T fB S bi Efliests 0 etween- U nects eets
iSource Type III df Mean Square F Sig. Eta Noncent. Observed

Sum of Squared Parameter Power
Squares

Intercept 3663.010 1 3663.010 249.585 .000 .961 249.585 1.000

GROUP 57.350 1 57.350 3.908 .076 .281 3.908 .431

Error 146.764 10 14.676

-Observed power computed uSing alpha - .05
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Output A9.10:Two way RM ANOVA (intensity x group) for (5 in Study 6

Mauchly's Test of Sphericity

Epsilon
Within Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound
INTENSITY 1.000 .000 0 1.000 1.000 1.000

T f Wi hi S b' Eft!ests 0 It m- u nects eets
Source Type III df Mean F Sig. Eta INoncent. Observed

Sumof Square Squared Parameter Power
Squares I

INTENSITY Sphericity 30.827 1 30.827 3.112 .108 .237 3.112 .358

Assumed
Greenhouse- 30.827 1.000 30.827 3.112 .108 .237 3.112 .358

Geisser
Huynh-Feldt 30.827 1.000 30.827 3.112 .108 .237 3.112 .358

Lower-bound 30.827 1.000 30.827 3.112 .108 .237 3.112 .358

INTENSITY * Sphericity 16.335 1 16.335 1.649 .228 .142 1.649 .214

~ROUP Assumed
Greenhouse- 16.335 1.000 16.335 1.649 .228 .142 1.649 .214

Geisser
Huynh-Feldt 16.335 1.000 16.335 1.649 .228 .142 1.649 .214

Lower-bound 16.335 1.000 16.335 1.649 .228 .142 1.649 .214

Error(INTENSITY) Sphericity 99.068 10 9.907

Assumed
Greenhouse- 99.068 10.000 9.907

Geisser
Huynh-Feldt 99.068 10.000 9.907

Lower-bound 99.068 10.000 9.907

ObservedpowercomputeduSingalpha= .05

T fB S bi Effiests 0 etween- u nects ects
Source Type III df Mean Square F Sig. Eta Noncent. Observed

Sum of Squared Parameter Power
Squares

Intercept 3765.015 1 3765.015 153.544 .000 .939 153.544 1.000

~ROUP .807 1 .807 .033 .860 .003 .033 .053

IError 245.208 10 24.521

ObservedpowercomputeduSingalpha= .05
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Output A9.11:Two way RM ANOVA (intensity x group) for MRT in Study 6

Mauchlv's Test of Sphericity

Epsilon
Iwithin Subjects Effect Mauchly's Approx. Chi- Greenhouse- Huynh- Lower-

W Square df Sig. Geisser Feldt bound
INTENSITY 1.000 .000 0 1.000 1.000 1.000

f b ffiTests 0 Within-Su oiects E ects
lSource TypeIII df Mean

I
F Sig. Eta Noncen!. Observed

Sumof Square Squared Parameter Power
Squares

INTENSITY Sphericity 254.150 1 254.150 78.480 .000 .887 78.480 1.000

Assumed
Greenhouse- 254.150 1.000 254.150 78.480 .000 .887 78.480 1.000

Geisser
Huynh-Feldt 254.150 1.000 254.150 78.480 .000 .887 78.480 1.000

Lower-bound 254.150 1.000 254.150 78.480 .000 .887 78.480 1.000

INTENSITY * Sphericity 48.450 1 48.450 14.961 .003 .599 14.961 .935

GROUP Assumed
Greenhouse- 48.450 1.000 48.450 14.961 .003 .599 14.961 .935

Geisser
Huynh-Feldt 48.450 1.000 48.450 14.961 .003 .599 14.961 .935

Lower-bound 48.450 1.000 48.450 14.961 .003 .599 14.961 .935

Error(INTENSITY) Sphericity 32.384 10 3.238

Assumed
Greenhouse- 32.384 10.000 3.238

Geisser
Huynh-Feldt 32.384 10.000 3.238

Lower-bound 32.384 10.000 3.238

ObservedpowercomputeduSingalpha= .05

T ts fB S b' t Efti tes 0 etween- U 'Jec s ec s
Source Type III df Mean Square F Sig. Eta Noncent. Observed

Sum of Squared Parameter Power
Sauares

Intercept 14855.350 1 14855.350 3562.933 .000 .997 3562.933 1.000

GROUP 71.760 1 71.760 17.211 .002 .633 17.211 .961

Error 41.694 10 4.169

ObservedpowercomputedUSingalpna= .05

Output A9.12: Non-linear regression to model the \'02 response of subject 1 of the
Sprint group to the severe run

Asymptotic 95 \
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

CONSTANT 12.585594682 1.502845334 9.607899294 15.563290069
DELAY 6.442512931 1.810844229 2.854557214 10.030468648
GAIN 2.908227465 .022341768 2.863960116 2.952494814
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Output A9.13: Non-linear regression to model the V02 response of subject 2 of the
Sprint group to the severe run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

CONSTANT 12.221074498 .765049746 10.705077354 13.737071642
DELAY 12.647732248 .604848878 11.449183817 13.846280679
GAIN 3.382646715 .021864400 3.339320947 3.425972484

Output A9.14: Non-linear regression to model the v02 response of subject 3 of the
Sprint group to the severe run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

CONSTANT 11.519923948 .897569737 9.737778195 13.302069702
DELAY 12.349455359 .725545013 10.908868728 13.790041989
GAIN 2.698274690 .022274089 2.654048965 2.742500415

Output A9.15: Non-linear regression to model the V02 response of subject 4 of the
Sprint group to the severe run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

CONSTANT 9.667430116 .967870619 7.741306201 11.593554031
DELAY 11.393289267 .906969271 9.588362897 13.198215637
GAIN 3.276719279 .029475843 3.218060482 3.335378077

Output A9.16: Non-linear regression to model the V02 response of subject 5 of the
Sprint group to the severe run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

CONSTANT 11.013746213 .836132687 9.352368374 12.675124051
DELAY 8.561894585 .928650080 6.716686656 10.407102514
GAIN 2.644121166 .014966101 2.614383841 2.673858490
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Output A9.17: Non-linear regression to model the V02 response of subject 6 of the
Sprint group to the severe run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

CONSTANT 10.073188441 .710021193 8.659058679 11.487318203
DELAY 13.175331289 .541812482 12.096218209 14.254444370
GAIN 3.384782492 .027636133 3.329740364 3.439824621

Output A9.18: Non-linear regression to model the V02 response of subject 1 of the
Endurance group to the severe run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.553615147 .022944663 3.508010145 3.599220149
CONSTANT 7.501483196 .636954894 6.235466373 8.767500019
DELAY 12.639707547 .599489811 11.448156634 13.831258460

Output A9.19: Non-linear regression to model the V02 response of subject 2 of the
Endurance group to the severe run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.244696458 .014610670 3.215556395 3.273836522
CONSTANT 11.646813642 .394796491 10.859416869 12.434210415
DELAY 12.582857996 .289592277 12.005284412 13.160431580

Output A9.20: Non-linear regression to model the V02 response of subject 3 of the
Endurance group to the severe run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.651725760 .012729453 3.626398142 3.677053378
CONSTANT 7.914760847 .331190937 7.255794769 8.573726924
DELAY 12.610755708 .303005352 12.007870104 13.213641313
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Output A9.21: Non-linear regression to model the V02 response of subject 4 of the
Endurance group to the severe run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.278670227 .015439512 3.248014714 3.309325739
CONSTANT 11.094718614 .578336615 9.946417709 12.243019520
DELAY 10.970631567 .535264689 9.907850980 12.033412155

Output A9.22: Non-linear regression to model the V02 response of subject 5 of the
Endurance group to the severe run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.975116557 .024187793 2.926875525 3.023357588
CONSTANT 7.548825378 .726960202 6.098948973 8.998701783
DELAY 12.410339797 .684384452 11.045378048 13.775301546

Output A9.23: Non-linear regression to model the V02 response of subject 6 of the
Endurance group to the severe run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 3.435418020 .029939323 3.375890625 3.494945414
CONSTANT 9.949871501 .990449237 7.980593069 11.919149934
DELAY 11.204773544 .938305040 9.339171746 13.070375341

Output A9.24: Non-linear regression to model the V02 response of subject 1 of the
Sprint group to the moderate run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 1.684954746 .018192975 1.649166707 1.720742785
CONSTANT 24.271973680 6.248694951 11.979946782 36.564000577
DELAY 3.719837982 8.834887865 -13.65957966 21.099255624
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Output A9.25: Non-linear regression to model the V02 response of subject 2 of the
Sprint group to the moderate run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 1.450880823 .009085803 1.433007822 1.468753823
CONSTANT 14.459911270 1.905910561 10.710727790 18.209094750
DELAY 18.566755765 2.029969597 14.573531408 22.559980123

Output A9.26: Non-linear regression to model the V02 response of subject 3 of the
Sprint group to the very moderate run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 1.757423158 .011145612 1.735498235 1.779348082
CONSTANT 11.039848792 1.862536528 7.375987892 14.703709691
DELAY 19.241518357 2.146431769 15.019197176 23.463839537

Output A9.27: Non-linear regression to model the V02 response of subject 4 of the
Sprint group to the very moderate run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.384445165 .015585234 2.353786905 2.415103425
CONSTANT 24.400247397 3.292357472 17.923735594 30.876759201
DELAY 7.044264535 4.225622039 -1.268104714 15.356633784

Output A9.28: Non-linear regression to model the V02 response of subject 5 of the
Sprint group to the very moderate run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 1.586284662 .008514763 1.569534973 1.603034350
CONSTANT 16.011616238 1.628478455 12.808179180 19.215053297
DELAY 18.603236192 1.657869262 15.341983446 21.864488937
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Output A9.29: Non-linear regression to model the V02 response of subject 6 of the
Sprint group to the very moderate run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.199703233 .011881751 2.176330225 2.223076242
CONSTANT 9.522965680 1.360442191 6.846792154 12.199139207
DELAY 20.912861360 1.470089067 18.020997620 23.804725099

Output A9.30: Non-linear regression to model the V02 response of subject 1 of the
Endurance group to the moderate run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.874447776 .012415234 2.850026133 2.898869419
CONSTANT 10.715644095 1.329717598 8.099995688 13.331292501
DELAY 15.822993658 1.601428075 12.672871558 18.973115757

Output A9.31: Non-linear regression to model the \'02 response ofsubject 2 of the
Endurance group to the moderate run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.494340599 .007756275 2.479084271 2.509596927
CONSTANT 11.653643956 .747788188 10.182770215 13.124517698
DELAY 13.658438548 .705539434 12.270666657 15.046210439

Output A9.32: Non-linear regression to model the V02 response of subject 3 of the
Endurance group to the very moderate run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.232188385 .009884010 2.212746876 2.251629893
CONSTANT 10.761212500 1.022662855 8.749669706 12.772755294
DELAY 13 .991219148 .964052950 12.094960030 15.887478267
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Output A9.33: Non-linear regression to model the V02 response of subject 4 of the
Endurance group to the very moderate run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 1.978445198 .013307083 1.952271440 2.004618956
CONSTANT 16.160595300 2.024337867 12.178916483 20.142274118
DELAY 8.024912765 2.010215253 4.071011778 11.978813752

Output A9.34: Non-linear regression to model the V02 response of subject 5 of the
Endurance group to the very moderate run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.221424620 .012868734 2.196112789 2.246736451
CONSTANT 10.572800863 1.230013692 8.153456618 12.992145108
DELAY 12.889501257 1.078873279 10.767438816 15.011563699

Output A9.35: Non-linear regression to model the V02 response of subject 6 of the
Endurance group to the very moderate run

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

GAIN 2.077864294 .017540299 2.043362397 2.112366191
CONSTANT 14.042480979 2.795707714 8.543303467 19.541658492
DELAY 11.527175143 3.202063516 5.228692797 17.825657489

Output A9.36: Correlation between VOspeak from the ramp test and %VOzpeak
achieved in the severe intensity run

V02PEAK PERCENT

~02PEAK Pearson 1.000 -.811
Correlation

Sig. (2-tailed) .001
N 12 12

PERCENT Pearson -.811 1.000
Correlation

Sig. (2-tailed) .001
N 12 12

** Correlation is significant at the 0.01 level (z-taued).
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