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Abstract
Plants release carbon-based exudates from their roots into the rhizosphere to increase

phosphorus (P) supply to the soil solution. However, if more P than required is brought

into solution, additional P could be available for leaching from riparian soils. To inves-

tigate this further, soil columns containing a riparian arable and buffer strip soil, which

differed in organic matter contents, were sown with three common agricultural and

riparian grass species. The P loads in leachate were measured and compared with

those from unplanted columns, which were 0.17 ± 0.01 and 0.89 ± 0.04 mg kg−1 for

the arable and buffer strip soil, respectively. A mixture of ryegrass and red fescue sig-

nificantly (p ≤ .05) increased dissolved inorganic P loads in leachate from the arable

(0.23 ± 0.01 mg kg−1) and buffer strip soil (1.06 ± 0.05 mg kg−1), whereas barley

significantly reduced P leaching from the buffer strip soil (0.53 ± 0.08 mg kg−1). This

was dependent on the dissolved organic C released under different plant species and on

interactions with soil management history and biogeochemical conditions, rather than

on plant uptake of P and accumulation into biomass. This suggested that the amount

and forms of P present in the soil and the ability of the plants to mobilize them could

be key factors in determining how plants affect leaching of soil P. Selecting grass

species for different stages of buffer strip development, basing species selection on

root physiological traits, and correcting soil nutrient stoichiometry in riparian soils

through vegetative mining could help to lower this contribution.

1 INTRODUCTION

Diffuse pollution remains a major threat to surface waters
due to eutrophication caused by nutrient transfers originating,
in part, from agricultural land (Carpenter et al., 1998; Le
Moal et al., 2019; Zhang, Collins, Murdoch, Lee, & Naden,
2014). A large proportion of catchment nutrient loads comes

Abbreviations: DIP, dissolved inorganic phosphorus; DOC, dissolved
organic carbon; DON, dissolved organic nitrogen; DOP, dissolved organic
phosphorus; TDN, total dissolved nitrogen; TDP, total dissolved
phosphorus.
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from agricultural areas where high nutrient sources, a high
potential for mobilization from those sources and transport
pathways that allow delivery to surface waters coincide (i.e.,
“critical source areas”) (Lemunyon & Gilbert, 1993; Pionke,
Gburek, Sharpley, & Schnabel, 1996). Delivery of nutrients
from these areas can be reduced by establishing vegetated
buffer strips in the downslope riparian zone by ceasing cul-
tivation, fertilizer application, and grazing. The shallowing
slopes of the riparian zone and the denser vegetation cover
slow overland flow and encourage nutrient-laden water
to infiltrate and leach through the soil profile. Particulate
phosphorus (P) forms are deposited on or within the soil,

74 wileyonlinelibrary.com/journal/jeq2 J. Environ. Qual. 2020;49:74–84.

https://orcid.org/0000-0002-1600-3041
https://orcid.org/0000-0003-1483-376X
https://orcid.org/0000-0002-1672-6290


ROBERTS ET AL. 75

and dissolved P forms can become absorbed to the soil itself
(Dorioz, Wang, Poulenard, & Trévisan, 2006; Hoffmann,
Kjaergaard, Uusi-Kämppä, Hansen, & Kronvang, 2009).
However, several studies have observed elevated dissolved P
in leachate, shallow groundwater, and overland flow leaving
buffer strip soils compared with upslope managed soils
(Dupas et al., 2015; Ulén & Etana, 2010; Uusi-Kämppä,
2005), and the exact mechanisms responsible remain unclear
(Hoffmann et al., 2009; Roberts, Stutter, & Haygarth, 2012).

Leaching involves the eluviation of solutes through soils
(Haygarth & Sharpley, 2000). However, despite numerous P
leaching studies involving agricultural plants, it remains dif-
ficult to isolate the effects of plant roots based on the current
literature. Studies involving plants have often used simulated
rainfall, which incorporates the effects of stems and leaves
(Riddle & Bergstrőm, 2013), or have been conducted without
an unplanted treatment for comparison (Newman et al., 2009;
Sovik & Syversen, 2008). Where only total P in leachate is
measured, changes in the dissolved P forms that result from
the leaching process may have been masked (Fraser, Carty,
& Steer, 2004; Marrs, Gough, & Griffiths, 1991; Syversen &
Haarstad, 2005).

The presence of plant roots in the soil generally reduces
N leaching. Plants withdraw N directly from the soil solu-
tion, where it is present in sufficient concentrations to meet
plant needs via passive uptake (Richardson, Barea, McNeill,
& Prigent-Combaret, 2009a; Scherer-Lorenzen, Palmborg,
Prinz, & Schulze, 2003). Plants also withdraw P exclusively
from the soil solution (in the form of orthophosphate). How-
ever, due to the strong geochemical fixation of P within the
soil, the supply of P to the soil solution is typically too low to
meet plant needs (Bieleski, 1973; Hinsinger, 2001; Schacht-
man, Reid, & Ayling, 1998; Turner, Baxter, & Whitton, 2003).
A key way in which plants meet their need for P is by influenc-
ing the mobilization of soil P into the soil solution through the
production and release of carbon (C)-based exudates from the
roots into the rhizosphere soil (Kuzyakov & Domanski, 2000;
Richardson, Hocking, Simpson, & George, 2009b; Walker,
Bais, Grotewold, & Vivanco, 2003). Plants release exudates,
such as organic acids and enzymes, that can solubilize P from
mineral surfaces and mineralize organically complexed phos-
phate, respectively. Exudates can also be metabolized by the
microbial biomass, thereby increasing microbial activity. This
can increase P mobilization into soil solution through a range
of mechanisms and/or cause inorganic P to become immobi-
lized within the microbial biomass in organic form (Dinke-
laker, Mheld, & Marschner, 1989; Hinsinger, 2001; Richard-
son et al., 2009a). Even though farmers apply fertilizer to
increase the supply of P to the soil solution, plants still release
exudates, albeit sometimes at lower rates (Lyu et al., 2016;
Ratnayake, Leonard, & Menge, 1978). If by the action of its
roots, a plant mobilizes more soil P into solution than it needs
or has the ability to take up during growth, then excess P could

Core Ideas
• Mobilization of soil P by plants could contribute

to P leaching.
• The presence of plant roots either increased or

reduced P leaching.
• The leaching was related to dissolved organic C

released under plants.
• Leaching was also dependent on species interac-

tions with soil conditions.
• The results indicate a range of potential options for

managing this leaching.

be available for leaching. Indeed, several studies have reported
the accumulation of soluble inorganic and organic P fractions
in rhizosphere soils (Grinsted, Hedley, White, & Nye, 1982;
Kirk, Santos, & Findenegg, 1999a, 1999b).

The amount of P mobilized by plants and the need or ability
for P uptake by plants varies greatly and is dependent on fac-
tors such as plant species and soil biogeochemical conditions.
For example, plant species release different exudates that may
be more or less effective in a given soil, and plants can mobi-
lize more P into soil solution in soils with large P contents
and solubility (Hinsinger & Gilkes, 1995, 1996, 1997). Buffer
strip soils often have a higher proportion of total and soluble
P in organic form compared with field soils (Roberts et al.,
2013; Stutter et al., 2015), which may favor mobilization by
species that specialize in mineralizing these organic forms.
Furthermore, buffer strips are often established on soils with
high P levels that are further elevated by P inputs from ups-
lope, meaning that there is more likely to be excess P mobi-
lization by plants. In terms of P uptake by plants and accu-
mulation into biomass, some plant species naturally require
more P than others (McDowell, Sharpley, Crush, & Simmons,
2011; Räty, Uusi-Kämppä, Yli-Halla, Rasa, & Pietola, 2010),
so they could reduce the soil solution P available for leaching
to a lower level. Furthermore, plant requirements for P uptake
are often suppressed under N limitation, which is common in
terrestrial habitats (Bracken et al., 2015; Elser et al., 2007).
Nevertheless, the elevated organic matter contents in buffer
strip soils could act as source of plant-available N, which
could enhance P uptake and accumulation into plant biomass
(Baligar, Fageria, & He, 2001; Blevins, Thomas, & Cornelius,
1977; Mazzoncini et al., 2016). It is therefore likely to be a
fine balance between P mobilization and uptake by plants that
determines how P leaching is affected.

To investigate this further, an analog model of the plant–
soil system was established in a glasshouse leaching experi-
ment (i) to compare C, N, and P leaching under a range of
grass species during growth against an unplanted soil; (ii)
to identify how these differences vary in riparian arable and
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buffer strip soils of the same type but with differing biogeo-
chemical conditions; and (iii) to determine whether plant P
uptake and accumulation into biomass or C release in the
soils determines the magnitude of P leaching under the range
of grasses. It is hoped that achieving these objectives will
improve understanding of the mechanisms of plant-mediated
soil P cycling with different plants and of the buffer strip–
specific factors of changing soil conditions on P leaching
interactions with plants involved.

2 MATERIALS AND METHODS

2.1 Treatment and experimental design

Two soils were collected from the toe of a hillslope (5% slope)
at Newton Rigg Agricultural College, Cumbria, UK (54.664◦

N, –2.798◦ W). The field on the hillslope was under contin-
uous spring barley (Hordeum vulgare L.), with conventional
tillage for 3 yr prior to sampling and as part of an oilseed rape
(Brassica napus L.) and winter barley rotation for 5 yr prior
to that. Fertilizers were applied to match annual crop offtakes,
which were ∼22 kg P ha−1 for spring barley. Overland flow
from the upslope barley field passes through a 6-m-wide ripar-
ian buffer strip before reaching the adjacent stream. The buffer
strip was established 8 yr prior to sampling by ceasing tillage
and using annual topping to control weed growth. One soil
was collected from the rooting zone (0–7 cm depth) at three
points in the center of the buffer strip parallel to the field edge
and bulked. Another soil was collected (also 0–7 cm depth) at
three adjacent points 3 m upslope of the buffer strip within the
arable field and bulked. Both soils have a sandy silt loamy tex-
ture (25% sand, 58% silt, and 17% clay), making them suitable
for both arable and livestock farming (Collins et al., 2012; Soil
survey of England and Wales, 1983). This allowed the effects
of plant roots on P leaching to be compared between riparian
soils of the same type and total P contents but with signifi-
cantly higher organic matter contents, water holding capacity,
microbial biomass P, and P solubility in the buffer strip soil
(Supplemental Table S1). Soils were dried at 25◦C for 7 d.
Soil drying is one of the most common abiotic perturbations
experienced by soils, especially during plant growth in spring
(Blackwell et al., 2010), and drying of this intensity is likely
to become more frequent under climate change (Forber et al.,
2017). The arable soil was then sieved to 6 mm. This gave a
similar structure to the fine tilth achieved in the field by har-
rowing earlier in the year. The buffer strip soil was treated in
the same way so that results were comparable.

Fifty polyvinyl chloride columns (7 cm wide, 30 cm high)
covered at the bottom end by 1-mm-gauge nylon mesh were
packed with 2 cm of gravel (5–10 mm diameter) to prevent
soil washout. Twenty-five of the columns were packed with
800 g of the arable soil, and 25 columns were packed with

800 g of the buffer strip soil. This was done to achieve a
bulk density of 1 g cm−3 to reflect the low bulk density mea-
sured at the site after spring tillage for arable cropping or
buffer strip establishment (Roberts, 2013). Five replicates of
the following plant treatments were applied to the columns
for both soils separately: unplanted control, perennial ryegrass
(Lolium perenne L.), red fescue (Festuca rubra L.), a 50:50
mixture of ryegrass and red fescue, and spring barley. Rye-
grass and barley are both widespread in UK agricultural sys-
tems, and ryegrass and red fescue are among the most com-
mon grasses found in UK riparian buffer strips (Collins et al.,
2012; Cope & Gray, 2009). This allowed comparisons in P
leaching between grasses present in buffer strips and those
present under and adapted to arable cultivation. Furthermore,
it allows comparisons between plants of different P uptake,
because these species show contrasting P uptake and accumu-
lation into biomass when grown in P-enriched soils (Brown
et al., 2018).

Seeds were germinated on agar plates, and the seedlings
were transferred to the columns. A total of two seedlings per
column for barley and six for all other plant treatments were
transferred to achieve plant densities similar to those in the
arable field and buffer strip, respectively. One week prior to
transferring seedlings, the dried soils in the columns were
rewetted gradually to prevent leachate and maintained at 60%
water holding capacity throughout the experiment by daily
weighing and addition of deionized water. All treatments were
kept in a completely randomized design within a temperature-
controlled greenhouse (18◦C day and 14◦C nighttime tem-
perature) with ∼16 h of daylight supplemented with arti-
ficial lighting to maintain a minimum light intensity of
200 μmol quanta m−2 s−1 to represent spring/summer growth
conditions.

2.2 Column leaching and sampling

Columns were leached with a simulated runoff solution five
times between 45 and 75 d after germination, which is the
period when all plants were displaying high growth rates. To
simulate the runoff solution, eroded sediments collected from
traps on the mid-slope of the field were air dried at 25◦C
for 7 d, and subsamples of 0.34 g were dispersed in 250 ml
of deionized water on a reciprocating shaker for 1 h prior
to each leaching cycle. This resulted in the following mean
P concentrations across all five leaching cycles (mg L−1):
total particulate P, 0.36 ± 0.04; dissolved inorganic P (DIP),
0.08 ± 0.006; and dissolved organic P (DOP), 0.008 ± 0.002.
Phosphorus concentrations were low to reflect those found in
overland flow originating from the mid-slope during a spring
storm as measured in a barley field at Newton Rigg (Roberts,
2013). The volume applied to each column was large (250 ml)
to mimic spring/summer overland flow, generated under
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infiltration excess conditions (Peukert, Griffith, Murray,
Macleod, & Brazier, 2014, 2016), entering buffer strips via
concentrated flow paths and infiltrating into the buffer strip
soil. The solutions were applied to the columns in 50-ml incre-
ments, without excessive ponding and contact with stems, to
total the 250 ml over 1 h. Plastic beakers collected leachate
from the columns, which were then weighed to determine
leachate volumes and calculate accumulated P loads. Five
days prior to the final leaching cycle, 25 ml of N solution
(2.5 M NH4SO4, 400 mM CaNO3, and 400 mM KNO3) was
applied to each column to relieve the developing N limita-
tion that had been noted in the absence of legumes and/or
chemical fertilizer application. This was to avoid grasses
being N stressed on analysis of plant P at the end of the
experiment.

2.3 Laboratory analysis

The leachate samples were filtered to <0.45 μm within 1 h
of each leaching cycle. Filtrates were analyzed for dissolved
molybdate reactive P (a proxy for DIP), nitrate (NO3

−–N),
and ammonium (NH4

+–N). After an automated digestion pro-
cedure, filtrates were analyzed for total dissolved N (TDN),
total dissolved P (TDP), and dissolved organic C (DOC) by
colorimetry. These were all performed according to the man-
ufacturer’s instructions (San++). Dissolved organic N (DON)
and dissolved unreactive P (a proxy for DOP) were determined
by difference as DON = TDN − (NO3–N + NH4–N) and
DOP = TDP − DIP. Detection limits were 1 μg L−1 for DIP
and TDP and 1.0, 0.1, and 0.5 mg L-1 for NO3

−–N, NH4
+–N,

and DOC, respectively.
After the completion of all leaching cycles, plants were

removed from the columns, washed in deionized water, and
separated into roots and shoots. The different fractions were
oven dried at 60◦C for 5 d or until constant weight was
achieved, weighed, and milled. The resulting milled samples
were digested in concentrated nitric acid and hydrogen per-
oxide solution prior to determination of P concentration by
malachite green colorimetry (Irving & McLaughlin, 1990).

2.4 Statistics

All statistical analyses were performed using R statistical soft-
ware (version 3.2.2) with the nlme and Lme4 packages (Bates,
2010; Pinheiro, Bates, DebRoy, & Sarkar, 2007). A mixed-
effects linear model was used to identify statistically signifi-
cant differences and interactions between treatments in con-
centration and nutrient ratio data. The analysis was performed
with soil and plant as fixed factors and with leaching cycle as
a random factor and included interactions between fixed fac-
tors. Fixed-effects linear modeling was used for the same pur-

pose on data for accumulated loads and plant P contents data,
and was conducted using soil and plant as fixed factors and
included interaction terms.

Linear modeling was used to determine the effect of
covariates, specifically DOC release and plant P uptake and
accumulation into biomass, on DIP concentrations in leachate.
However, the temporal replication in concentration data was
averaged away to better match the structure of the plant P
data (resulting in n = 50). This was performed based on the
aforementioned soil and plant factors with the addition of
covariates: DOC concentration and root, shoot and plant total
P contents. This analysis was also repeated with the substi-
tution of DIP and DOC concentrations for the corresponding
accumulated loads.

The fits of all models were investigated in plots of resid-
uals versus fitted values to ensure assumptions were met.
Results were considered significant when probability values
were ≤ .05. Because of highly significant interactions in the
data sets, those interactions and simple effects, rather than
main effects, were reported.

3 RESULTS

3.1 Leaching of carbon, nitrogen, and
phosphorus forms

Overall means and standard errors for nutrient concentrations
leached under the different plants grown in each of the two
soils are presented in Table 1. With the exception of red fes-
cue growing in the arable field soil, DOC concentrations were
increased by the presence of plant roots (Table 1), with greater
increases observed in the buffer strip soil (plant–soil interac-
tion: p < .001). Plants always reduced leaching of N forms,
but reductions in NO3

−–N were greater and more signifi-
cant under the plants growing in the buffer strip soil, whereas
reductions in DON by plants were greater and more signifi-
cant in the arable soil (Table 1) (plant–soil interactions: both
p < .05).

When growing in the arable field soil, ryegrass and the mix-
ture significantly increased mean DIP concentrations (p = .05
and p = .009, respectively) to levels above those of the
unplanted control (Table 2). However, in the buffer strip soil,
it was red fescue and the mixture that elevated mean DIP
concentrations (p = .005 and p = .002, respectively) whereas
barley reduced mean concentration (p < .001; plant–soil inter-
action: p < .001). In addition to an overall decline in DIP
concentrations at the fifth leaching, the differences in DIP
concentrations leached under the different treatments began
to diminish in both soils (Figure 1). Despite differences
in leachate volumes between plant treatments, accumulated
loads of P fractions followed the same patterns as those found
in the concentration data (Table 1).
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T A B L E 1 Means and standard errors for determinant concentrations and accumulated P loads in leachate samples for the different plants
grown in the arable field soil and the buffer strip soil

Sample characteristicsa Unplanted Ryegrass Red fescue Mixture Barley
Arable field soil

Leachate volume, ml 221 ± 9 214 ± 7 219 ± 11 219 ± 5 203 ± 10

pH 6.2 ± 0.04 6.3 ± 0.03* 6.3 ± 0.06 6.4 ± 0.03* 6.5 ± 0.03*

DOC, mg L−1 6.5 ± 0. 7 8.5 ± 0.8* 6.5 ± 0.6 9.0 ± 0.9* 10.6 ± 1.6*

NO3
−–N, mg L−1 33.1 ± 3.1 16.2 ± 2.8** 23.2 ± 8.5* 19.7 ± 4.5** 10.2 ± 3.2***

DON, mg L−1 4.0 ± 0.7 1.2 ± 0.1*** 1.77 ± 0.2*** 1.4 ± 0.3*** 1.4 ± 0.2***

DIP, mg L−1 0.12 ± 0.01 0.16 ± 0.02* 0.12 ± 0.02 0.17 ± 0.01** 0.12 ± 0.01

DIP, mg kg−1 0.17 ± 0.01 0.20 ± 0.02 0.17 ± 0.02 0.23 ± 0.01** 0.14 ± 0.01

DOP, mg L−1 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.04 ± 0.01*

DOP, mg kg−1 0.04 ± 0.012 0.03 ± 0.005 0.02 ± 0.001 0.03 ± 0.005 0.05 ± 0.007

Buffer strip soil

Leachate volume, ml 215 ± 3 169 ± 11** 191 ± 5* 179 ± 9** 167 ± 8**

pH 6.0 ± 0.04 6.2 ± 0.03* 6.1 ± 0.02* 6.2 ± 0.02* 6.3 ± 0.02*

DOC, mg L−1 20.1 ± 1.5 39.2 ± 2.2*** 31.7 ± 2.4* 37.9 ± 2.0** 41.3 ± 2.2**

NO3
−–N, mg L−1 24.9 ± 1.6 5.0 ± 1.1*** 11.5 ± 2.2** 5. 5 ± 1.3*** 2.8 ± 0.7***

DON, mg L−1 4.6 ± 0.3 2.9 ± 0.2* 3.0 ± 0.3* 3.1 ± 0.6* 3.7 ± 0.3*

DIP, mg L−1 0.69 ± 0.03 0.81 ± 0.05 0.89 ± 0.05** 0.97 ± 0.05** 0.45 ± 0.03***

DIP, mg kg−1 0.89 ± 0.04 0.84 ± 0.06 1.02 ± 0.05 1.06 ± 0.05* 0.53 ± 0.08*

DOP, mg L−1 0.12 ± 0.02 0.19 ± 0.01** 0.11 ± 0.02 0.10 ± 0.01 0.14 ± 0.01

DOP, mg kg−1 0.16 ± 0.012 0.20 ± 0.018 0.14 ± 0.008 0.1164 ± 0.006 0.168 ± 0.026

aDIP, dissolved inorganic P; DOC, dissolved organic C; DON, dissolved organic N; DOP, dissolved organic P.
*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 probability level.

T A B L E 2 Means and standard errors for nutrient ratios based on concentrations in leachate samples for the different plants grown in the arable
field soil and the buffer strip soil

Nutrient ratioa No plants Ryegrass Red fescue Mixture Barley
Arable field soil

DOC/TDN (molar) 0.27 ± 0.02 1.58 ± 0.32* 0.46 ± 0.08 1.39 ± 0.31* 2.07 ± 0.62***

DOC/TDP (molar) 118.50 ± 11.29 117.35 ± 6.89 129.85 ± 9.12 120.75 ± 7.53 174.22 ± 20.63***

DIP/TDP, mg L−1 0.85 ± 0.04 0.83 ± 0.04 0.87 ± 0.03 0.87 ± 0.02 0.73 ± 0.03**

Buffer strip soil

DOC/TDN (molar) 1.21 ± 0.15 7.99 ± 1.09*** 4.22 ± 0.63* 7.39 ± 0.99*** 8.54 ± 0.93***

DOC/TDP (molar) 63.68 ± 3.76 111.01 ± 8.71*** 84.12 ± 4.56 98.65 ± 5.20* 193.89 ± 12.47***

DIP/TDP, mg L−1 0.86 ± 0.02 0.84 ± 0.02 0.90 ± 0.02 0.92 ± 0.01** 0.79 ± 0.01**

aDIP, dissolved inorganic P; DOC, dissolved organic C; TDN, total dissolved N; TDP, total dissolved P.
*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 probability level.

Plant treatments had little impact on mean concentrations
of DOP, except for barley, which increased mean concentra-
tion in the arable soil (p = .04), and ryegrass, which signif-
icantly (p = .01) elevated mean concentrations in the buffer
strip soil relative to the unplanted controls (Table 1).

Overall means and standard errors for nutrient ratios in
leachate from different plant treatments within each soil are
presented in Table 2. For unplanted columns, the arable
soil had a significantly lower DOC/TDN ratio and a signif-

icantly higher DOC/TDP ratio in leachate than the buffer
strip soil (p < .001) (Table 2). Nutrient ratios were also
affected by the presence of plant roots, with roots generally
increasing DOC/TDN and DOC/TDP ratios in leachate rela-
tive to the unplanted soil (Table 2). Barley caused the greatest
increases in both ratios in both soils. The mixture increased
the DIP/TDP ratio in the buffer strip soil, whereas barley
reduced the DIP/TDP ratio in leachate from both soils rela-
tive to the unplanted soil (Table 2).
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F I G U R E 1 Means and SEM (n = 5) for dissolved inorganic P
concentrations (with axis break at 0.299 mg L−1) in leachate from the
different plants grown in the two soils measured at 45, 50, 55, 65, and
75 d after germination when all plants were displaying high growth
rates. Nitrogen solution was applied at Day 70 to relieve any developing
N limitation in the plants

F I G U R E 2 Means and SEM (n = 5) for the total P contents of
plants grown in each of the two soils showing the contribution of root
and shoot P. Different letters between plant treatments within each soil
indicate a significant difference in means at p ≤ .05 as determined by
linear modeling

3.2 Effects of dissolved organic carbon and
plant phosphorus contents on phosphorus
leaching

Means and standard errors for the P contents of plants grown
in each of the two soils are shown in Figure 2. In the arable
soil, only barley and red fescue had significantly different P

F I G U R E 3 Relationships between dissolved inorganic P and
dissolved organic C concentration (with axis break at 0.299 mg
DIP L−1) isolated based on analysis of covariance. Regression statistics
are for unplanted, ryegrass, red fescue, and the mixture data combined
and for barley separately in each of the two soils

contents, with barley containing more P (Figure 2). In the
buffer strip soil, ryegrass, the mixture, and barley showed
significantly greater P uptake and accumulation into biomass
than red fescue. The greater differences in P contents between
the plants growing in the buffer strip soil compared with those
growing in the arable soil meant that the soil–plant interac-
tion was significant (p = .02). In both soils, plant P contents
were positively correlated with plant biomass (both r = .9 and
p < .001) (see Supplemental Tables S2 and S3).

When the DIP data were analyzed with DOC concentration
and root, shoot, and plant total P included as covariates, the
model explained 98% of variance in DIP concentration and
indicated that DOC concentration was a significant (t = 2.5;
p = .01) factor in explaining DIP concentrations. In both soils,
barley resulted in the lowest slope values and the highest inter-
cept values, which were significantly different from those of
the other plant treatments (p < .05). The same model, but with
loads instead of concentrations, explained 97% of variance
in DIP load and identified DOC load as being a significant
(t = 4.6; p < .001) factor in explaining DIP load. Neither root,
shoot nor plant P contents had an effect on DIP concentrations
or loads, so they were removed from both models with no sig-
nificant impact on Akaike’s information criterion. The indi-
vidual relationships between DIP and DOC concentrations
separated on the basis of this analysis are shown in Figure 3.
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4 DISCUSSION

To explore the effects of plant roots on P leaching, this study
quantified nutrient leaching under a range of grass species that
were selected based on their widespread use in UK agricul-
ture. The use of the arable and buffer strip soils meant that
the leaching experiment was conducted on soils that had ele-
vated organic matter content and water holding capacity in the
buffer strip soil. The differences showed that total P did not
differ and that agronomic soil P status (via Olsen P) was high
in both soils but only slightly greater in the field soil. However,
altered P cycling in the higher-C buffer strip soil led to signif-
icantly greater microbial biomass P and water-soluble P than
the field soil. Such indicators of labile P turnover and potential
for leaching being greater in adjacent buffer than arable soils
(based on the same parent materials) have been previously
reported (Roberts et al., 2013; Stutter & Richards, 2012). Fur-
thermore, buffer strip soils have greater organic matter and
microbial biomass P, and therefore buffer strip soils are more
susceptible to P release after tillage and drying–rewetting
cycles (Blackwell et al., 2010; Gu et al., 2018), which
were simulated in this study. As a combined result of these
factors, leachate P concentrations and loads were highest from
the buffer strip soil.

Elevated DOC leaching under plants, as observed in this
study, is thought to be mainly derived from root exudates
but also from elevated microbial activity and decomposition
(Jones, Nguyen, & Finlay, 2009; Martin, 1971). Consistent
reductions in N leaching under plants, as also seen here, have
been attributed to removal of NO3

−–N by plant roots directly
from the soil solution and, in the case of DON, to enzymatic
mineralization of soluble organic N (Leimer, Oelmann, Wirth,
& Wilcke, 2015; Scherer-Lorenzen et al., 2003). However, the
greater reductions in DON leaching under the plants growing
in the arable soil could indicate greater mineralization rates
than in the buffer strip soil. Indeed, high rates of N mineraliza-
tion have been shown in previous studies to be at least partly
related to low substrate C/N (Lovett, Weathers, & Athur,
2002; Scherer-Lorenzen et al., 2003), and the unplanted arable
soil had significantly lower DOC/TDN in leachate than the
unplanted buffer strip soil. Mineralized DON can also con-
tribute to NO3

−–N leaching (Leimer et al., 2015), and the
lesser reduction in NO3

−–N leaching from the arable field soil
could further support the idea of increased mineralization.

Through their roots, different plants species showed con-
trasting effects on P leaching, with perennial grasses tend-
ing to increase and barley tending to reduce P leaching. This
finding is supported by several studies investigating how root-
induced rhizosphere pH change affects P solubility. Although
these studies noted soluble P accumulations in rhizosphere
soils compared with unplanted soils and attributed this to
reductions in pH, however even in such fine-scale experi-

ments the exact cause was difficult to isolate due to the com-
plexity of the rhizosphere (Grinsted et al., 1982; Hinsinger,
Gobran, Gregory, & Wenzel, 2005; Kirk et al., 1999a, 1999b).
Indeed, in this study leachate measurements indicated an
overall increase in pH of the soil solution, probably due to
OH–/HCO–3 release from roots associated with nitrate uptake.

In this study, suppression of the effects of roots and the
overall decline in P concentrations at the fifth leaching cycle
could be due to several factors. These may include recovery
of the soil from drying and disturbance during conditioning
of the soil and forming of the columns, the addition of N due
to signs of limitation, and/or maturation of the grasses and
reduction in root activity. All of these factors could reduce
soil solution P and/or increase competition for P (Addiscott &
Thomas, 2000; Blackwell et al., 2010; Gu et al., 2018; Rowe
et al., 2016; Selles et al., 2011).

The effects of plant roots on P leaching varied between the
soils originally sourced from locations that differed in soil
management history and associated biogeochemical condi-
tions. The conditions brought about by the buffer strip soil
promoted plant biomass and P accumulation into it. Despite
this, the presence of ryegrass roots appeared to elevate DIP
concentrations in leachate from the arable soil only, whereas
red fescue roots appeared to cause more P leaching from the
buffer strip soil, despite accumulating more P. When grow-
ing together, ryegrass and red fescue elevated DIP loads from
both soils, which may have been driven by the concentration
increases caused by ryegrass in the arable soil and by red fes-
cue in the buffer strip soil. However, concentrations and loads
of DIP were always greater under the mixtures than under the
monocultures, which could indicate interactions between the
two species in the access to P fractions and forms (Brooker
et al., 2015; Giles et al., 2017; Hinsinger et al., 2011).

In both soils, the DOC released under perennial grasses
was related to DIP leaching. Because the majority of DOC
released under plants is thought to be derived from root exu-
dates, this relationship could indicate that C-based exudates
(e.g., organic acids and enzymes) were directly mobilizing P
by solubilization of P from mineral surfaces and/or by miner-
alization of organic P. However, a proportion of this DOC and
DIP will also result indirectly from increased microbial activ-
ity and associated P mobilization mechanisms under plants.
The potential mechanisms are numerous and could range from
microbes releasing P from organic matter as they increase
decomposition to situations where labile C fuels microbes to
lower oxygen conditions, leading to redox-related P release
from Fe oxides. For the former mechanism, the fact that
soil C/P and leachate DOC/TDP ratios were low would sup-
port the idea that P is preferentially mineralized or mobilized
during decomposition because higher threshold ratios ranging
from 200 to 300 have been suggested (Stutter et al., 2015).
Regardless of uncertainty around the mechanisms involved,



ROBERTS ET AL. 81

even finer-scale rhizosphere studies have measured depletions
in the immediate vicinity of ryegrass roots and accumula-
tions further away (Hinsinger & Gilkes, 1996; Hinsinger et al.,
2005). This indicates that plants can influence P solubility
outside the rhizosphere where they do not have the ability to
take up P and where there is a risk of P leaching.

As further indicated by the analysis of covariance, the DOC
released under barley appeared to differ strongly in its effects
on P leaching compared with the DOC released under peren-
nial grasses. Although no indicators of DOC quality were
measured, the analysis of covariance results could indicate
that barley exuded a different quality of DOC that either mobi-
lized P less effectively or resulted in increased immobiliza-
tion of P within the microbial biomass (Menezes-Blackburn
et al., 2016; Richardson et al., 2009b). Indeed, the reduction in
DIP/TDP in leachate under barley indicates P immobilization,
and this is further supported by the DOC/TDP ratios nearing
200 under barley. This situation could be associated with the
breeding of barley for inorganic P replete conditions and loss
in its ability to control the availability of P by exudation or to
control priming of the microbial biomass as seen when com-
paring modern barley varieties with wild ones (Mwafulirwa
et al., 2016). When taken together, these results suggest that
the amount and forms of P present in the soil and the ability
of the plants to mobilize them could be key factors in deter-
mining how plants affect P leaching through their roots.

At least in the short-term during plant growth, the roots
of the perennial grasses could therefore contribute to the
reported increase in P leaching from riparian buffer strip
soils (Ulén & Etana, 2010; Uusi-Kämppä, 2005). With buffer
strips being highly connected to the stream through hydrology
and proximity, any P mobilized by roots could potentially
be delivered to the stream. This could occur when rainfall
or overland flow that has infiltrated into the buffer strip soil
moves vertically to shallow groundwater or horizontally
to the stream as shallow subsurface flows through buffer
strip surface soils. If leached P is adsorbed to the subsoil,
remobilization and delivery could occur at a later date, for
example by microbial Fe reduction stimulated by anaerobic
conditions when shallow groundwater saturates surface
soils (Dupas et al., 2015; Roberts et al., 2012). However,
despite potentially increasing P leaching in some instances,
by increasing DOC and reducing N leaching, plants tended
to improve the overall stoichiometry of nutrients leaching
from the soil and pushed ratios toward more optimal ones
for microbial rather than algal assimilation in the receiving
waterbody (Godwin & Cotner, 2015; Stutter, Graeber, Evans,
Wade, & Withers, 2018). Nevertheless, this could be pushed
further through appropriate management.

During the initial establishment of buffer strips, the contri-
bution of plant roots to leaching from buffer strips could be
minimized by planting with red fescue or species with similar
root physiological traits. As organic matter builds up due to

no-tillage, the buffer strip could be reseeded with ryegrass or
species with similar root physiological traits. However, inten-
sive tillage for reseeding, as simulated in this study through
the sieving of soil, can increase organic matter decomposi-
tion and the release of dissolved P (Addiscott & Thomas,
2000; Butler & Haygarth, 2007). As such, practices such as
no tillage, minimum tillage or over-seeding may be preferable.
Including species with similar root physiological traits to bar-
ley could actually reduce P leaching. The effects of plant roots
on P leaching in this study were observed under enriched soil
P conditions according to Olsen P soil testing. One approach
to reducing these effects may therefore be to reduce soil P lev-
els by vegetative mining (i.e., by cutting and removing vegeta-
tion along with the nutrients contained in the biomass). This
is in contrast to the current system in the United Kingdom,
where buffer strips are either left unmanaged or are topped
to control weed growth. Vegetative mining can reduce soil P
levels and leaching over varying timescales depending on a
range of factors including soil P levels, soil biogeochemical
conditions, and plant species used (Hille et al., 2018; Rowe
et al., 2016; Schulte et al., 2010). This study shows that plants
can accumulate as much as twice the amount of P into above-
ground biomass and effectively accelerate P drawdown when
growing in the conditions after buffer strip establishment.

5 CONCLUSION

The results presented in this study show that, through the
action of their roots, plants have the potential to either ele-
vate or reduce P leaching under the experimental conditions
used. This was dependent on DOC released under different
plant species and the on the interactions with soil manage-
ment history and biogeochemical conditions rather than on
plant uptake of P and accumulation into biomass. These find-
ings support the hypothesis that if a plant mobilizes more soil
P than it needs or has the ability to take up during growth, then
excess P will be available for leaching.

Because these effects were suppressed at the end of the
experiment, future studies could look in more detail at interac-
tions with soil moisture regimes and soil disturbance as plants
and plant communities mature. This would help determine if
these effects only occur immediately after tillage for buffer
strip establishment or if they are reoccurring with soil drying
and rewetting or plant growth and maturation cycles.

If future studies find that, through the action of their roots,
plants make a significant contribution to leaching losses under
more natural field conditions, then options for mitigating this
risk could be further explored. Options include using different
plant species at different stages of buffer strip development;
identifying and using plants with similar root physiological
traits to barley; and correcting soil C, N, and P stoichiometry
in buffer strip soils through vegetative mining.
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