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Abstract 

In recent years, small-scale studies have suggested that we may be able to substantially 

strengthen children's general cognitive abilities and intelligence quotient (IQ) scores using a 

relational operant skills training program (SMART). Only one of these studies to date has 

included an active Control Condition, and that study reported the smallest mean IQ rise. The 

present study is a larger stratified active-controlled trial to independently test the utility of 

SMART training for raising NVIQ and processing speed. We measured personality traits, 

NVIQs, and processing speeds of a cohort of school pupils (aged 12-15). Participants were 

allocated to either a SMART intervention group or a Scratch computer coding control group, for 

a period of three months. We reassessed pupils’ NVIQs and processing speeds after the three-

month intervention. We observed a significant mean increase in the SMART training group’s 

(final nexp = 43) Non-Verbal IQs of 5.98 points, while there was a non-significant increase of 

1.85 points in the Scratch active-control group (final ncont = 27). We also observed an increase in 

processing speed across both conditions (final nexp = 70; ncont = 55) over Time. Our results 

suggest that relational skills training may be useful for improving performance on matrices tasks, 

and perhaps in future, accelerating children’s progression towards developmental milestones.  

Keywords: SMART training, relational frame theory, personality, matrices, processing speed, 

cognitive ability, brain-training 
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Relational operant skills training increases standardized matrices scores in adolescents: A 

stratified active-controlled trial. 

Scores on tests of disparate aspects of cognitive performance positively co-vary. Based on that 

common variance, it is also possible to extract a common latent factor from these tests (known as 

g; cf., Haier, 2016). Once corrected for age, this common factor is typically known as an 

intelligence quotient (IQ), and is used to rank individuals intellectually, relative to their peers. 

Not only is IQ a reflection of the common variance across tests, but IQ scores in turn predict 

scores across tests (Conway & Kovacs, 2015; Van Der Maas et al., 2006). “Tests”, in this case, 

includes not only paper-and-pencil tests, but any enterprise in which success depends upon the 

capacity for relatively complex symbolic manipulation, including education, occupation, health 

behaviors, and social success (cf., Strenze, 2007, for a full review). Furthermore, IQ appears to 

be the most powerful predictor of success in cognitively complex domains. For example, 

O’Boyle and colleagues’ (2011) meta-analysis found that IQ is a much better predictor of job 

performance than “emotional intelligence” and The Big Five personality traits. IQ also predicts 

educational attainment more so than personality (Bergold & Steinmayr, 2018), with 

Conscientiousness positively associated and Neuroticism negatively associated with attainment. 

The predictive validity of IQ is arguably among the best-established findings in psychology 

(Gottfredson & Deary, 2004; Haier, 2016; Ritchie, 2015), along with behavioral selection-by-

consequences (Skinner, 1957).  

The acid test of whether one has enhanced g, or IQ, is that any improvement will 

manifest across multiple tests. Psychologists have not managed to develop cognitive training 

exercises such that reliably produce cross-domain effects. That is, training participants in one, or 

even several cognitive skills, will not generally result in improvements in tests of other cognitive 
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skills. For example, training working memory will typically not increase performance on tests of 

general knowledge, and subsequently, real-world outcomes predicted by performance on tests of 

general knowledge (Haier, 2016; Peijnenborgh, Hurks, Aldenkamp, Vles, & Hendriksen, 2016; 

Ritchie, 2015; Sala & Gobet, 2017b). Indeed, there is mounting evidence that a large portion of 

the variation in intellectual abilities is attributable to variation in a relatively small number of 

genes (Davies et al., 2018; Hill et al., 2018a; Hill et al., 2018b; Plomin & Von Stumm, 2018; 

Savage et al., 2018; Smith-Woolley et al., 2018; Zabaneh et al., 2017). However, it is not yet 

clear how much of cognitive ability is malleable, how much of it is fixed, and how much is 

attributable to random environmental variation. Some variance in cognitive ability may yet be 

manipulable from outside of the organism. 

Cognitive training is a resource-intensive enterprise (Mohammed et al., 2017), so we 

must pay close attention to strategies that have not yielded positive results in the past. For 

example, perhaps the most recent and largely unsuccessful attempt to raise general cognitive 

ability (albeit the most successful to date) to gain mainstream traction was a working memory 

training known as N-Back training. Despite several reported successful N-Back training studies 

(Buschkuehl, Hernandez-Garcia, Jaeggi, Bernard, & Jonides, 2014; Jaeggi, Buschkuehl, Jonides, 

& Shah, 2011; Jaeggi et al., 2010; Ramani, Jaeggi, Daubert, & Buschkuehl, 2017; Stepankova et 

al., 2014), other researchers have failed to independently replicate these training effects (Chooi 

& Thompson, 2012; Clark, Lawlor-Savage, & Goghari, 2017; Colom & Román, 2018; Colom et 

al., 2013; Melby-Lervåg & Hulme, 2013, 2016; Melby-Lervåg, Redick, & Hulme, 2016; Park & 

Brannon, 2016; Rabipour & Raz, 2012; Redick et al., 2013; Salminen, Strobach, & Schubert, 

2012; Schwaighofer, Fischer, & Bühner, 2015; Shipstead, Redick, & Engle, 2012; Soveri, 

Karlsson, Waris, Grönholm-Nyman, & Laine, 2017; Stephenson & Halpern, 2013; Strobach & 



SMART TRAINING: MATRICES AND PROCESSING SPEED  6 

Huestegge, 2017; Thompson et al., 2013). A meta-analysis conducted by the research group by 

whom N-Back training was originally advocated reported a 2-3 point mean increase in IQ across 

all available studies at that time (Au et al., 2015), and many believe there is no effect of working 

memory training at all (cf., Peijnenborgh et al., 2016; Sala & Gobet, 2017). Our interpretation of 

the available data is that there is an overwhelming weight of evidence on the side of the null 

hypothesis that working memory training is not an effective way to improve general cognitive 

ability. The same can be said of music (Sala & Gobet, 2017a), chess (Sala, Foley, & Gobet, 

2017), video-game training (Simons et al., 2016), and compensatory education (McKey, 1985), 

all of which are arguably theoretically quite imprecise approaches. On the other hand, 

converging evidence from education (Alexander, 2019), cognitive science (Goldwater & Schalk, 

2016; Halford, Bain, Maybery, & Andrews, 1998), linguistics (Everaert, Huybregts, Chomsky, 

Berwick, & Bolhuis, 2015), neuroscience (Davis, Goldwater, & Giron, 2017), and especially 

behavior analysis suggest that successful cognition involves the ability to relate symbols for 

functional purposes. 

According to one track of behavior-analytic research known as Relational Frame Theory 

(RFT; Hayes, Barnes-Holmes, & Roche, 2001), human language and cognition both, at their 

core, involve the adaptive ability to respond symbolically to environmental contingencies. RFT 

purports that the key skill underlying the complexity and generativity in language and cognition 

is arbitrarily applicable relational responding (AARR). AARR, writ large, is the behavior of 

responding to one event in terms of another based on their symbolic properties. For example, 

“left” is only understood relative to “right” (spatial responding; May, Stewart, Baez, Freegard, & 

Dymond, 2017), “more” relative to “less” (comparative responding; Dymond & Barnes, 1995), 

“before” relative to “after” (temporal responding; O’Hora et al., 2008), “part” relative to “whole” 
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(hierarchical responding; Slattery & Stewart, 2014), or “opposite/different” relative to “same” 

(equivalence; Steele & Hayes, 1991).  

These patterns of relational framing of behavioral events (AARR) develop as a person 

recognizes physical relational regularities in the presence of a particular contextual cue (non-

arbitrarily applicable relational responding; NAARR). Recognition of physical similarity 

between stimuli appears to be a natural concept that does not require learning (cf., Zentall, 

Andrews, & Case, 2018). It is also possible to learn more complex patterns of relational (as 

opposed to physical) responding from that starting point. For example, one can condition either a 

human or a non-human to choose a picture of an apple in the presence of a picture of a different 

apple. After multiple exemplars of responding based on the common physical properties of 

stimuli wherein (i) a relational pattern of behavior has been consistently reinforced by the verbal 

community (e.g., a parent or teacher saying ‘correct’ or ‘yes, well done’), (ii) in a particular 

context, then (iii) (only) humans can abstract the pattern of behavior and apply it to novel stimuli 

based on the contextual cue alone, independent of whether a physical relation exists (cf., Barnes-

Holmes & Barnes-Holmes, 2000). In experimental terms, what would this look like? If several 

instances of matching behavior (e.g., matching apples to apples, matching people to people) are 

reinforced across multiple trials in which the word “same” is spoken, then matching behavior 

will come under stimulus control of the contextual cue “same” such that it becomes a generalized 

operant. Subsequently, an experimenter can use the word “same” to indicate that physically 

dissimilar stimuli (e.g., an apple and the word “úl” – the Irish word for apple) should be treated 

as being functionally the same. The critical test of this is whether the participant responds to the 

word “úl” as if it had the functional properties of an apple (round, sweet, nutritious, etc.). Based 
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on this simple pattern of relational framing, experimenters can then train more complex operants, 

such as distinction and opposition (cf., Steele & Hayes, 1991). 

There are three core properties of AARR. The first is mutual entailment: given the 

relation “A is to B” (or A:B), it is possible to symbolically derive B:A without the need for 

explicit training of B:A. For simpler relations such as “same”, “different”, and “opposite”, the 

A:B relation is the same as the derived symmetrical relation, B:A (e.g., if A = B, then B = A; if 

A is the opposite of B, then B is the opposite of A). For other relations such as “more than/less 

than”, the generalized operant follows an asymmetrical pattern of behavior (e.g., if A is more 

than B, B is less than A). In this example, more than and less than are separate contextual cues 

that bring about different patterns of behavior on a set of stimuli (cf., Pennie & Kelly, 2018). The 

second property of AARR is combinatorial entailment. Here, having learnt an A:B relation and a 

B:C relation, it becomes possible to syllogistically derive relations between previously unrelated 

stimuli (i.e., A:C and C:A). For instance, if one British pound (A) is greater than one US dollar 

(B), and one dollar (B) is more than one Japanese Yen (C), then I can derive that one Yen (C) is 

less than one pound (A). The third property of AARR is transformation of stimulus functions, 

wherein stimulus functions change in accordance with their relations with other stimuli. Given 

the A:C and C:A derivations in the previous example, I will treat the Yen as less valuable than 

the pound by choosing the pound, if given the choice. However, AARR is also a necessarily 

contextually controlled set of behaviors. For example, if you found yourself in Japan with US 

dollars and have no means of trading currency, in that context, one dollar is no longer more than 

one Yen. The relation brought to bear on stimuli depends on both (i) the context, and (ii) the 

needs/values of the person. Training generalized operants allows the person to adapt and function 

effectively across multiple environments/contexts across time, nonetheless. 



SMART TRAINING: MATRICES AND PROCESSING SPEED  9 

“Strengthening Mental Abilities with Relational Training” (SMART) is an online 

program that trains relational framing operants via multiple exemplar training in a gamified 

format (Cassidy, Roche, Colbert, Stewart, & Grey, 2016). Across 70 stages of incrementing 

complexity, SMART trains both symmetrical (same/opposite) and asymmetrical (more/less) 

patterns of relational framing between arbitrary nonsense syllables. For example, given the 

relations “WUG is more than JUP” and “JUP is more than PEK” in a set of training trials, 

participants will derive that PEK is less than WUG in a test trial despite WUG and PEK never 

before appearing on screen together during training trials. The use of nonsense syllables allows 

the experimenter to train the pattern of AARR independent of the nature of the stimuli involved. 

In other words, as participants have no prior pre-experimental history with the nonsense 

syllables, greater experimental control and internal validity is established. The SMART program 

includes a 55-item test of relational operant skills known as the Relational Abilities Index (RAI; 

Colbert, Dobutowitsch, Roche, & Brophy, 2017) that correlates strongly with both full-scale and 

component measures of IQ.  

A key feature of operant skills is that they are patterns of behavior that can be trained (cf., 

Kishita, Ohtsuki, & Stewart, 2013; Moran, Walsh, Stewart, McElwee, & Ming, 2015). SMART 

has previously been proposed as one way of training the generally adaptive operant repertoires 

that manifest as g. In an initial pilot study, Cassidy, Roche, and Hayes (2011) assessed the IQs of 

four children (aged 10-12) at baseline, following stimulus equivalence training (the most basic 

form of relational framing; cf., Sidman, 1971), and finally, after SMART training. Experimental 

participants showed large rises in IQ (> 1 SD on the Wechsler Intelligence Scale for Children; 

WISC-III) following both stimulus equivalence and especially after SMART training, while four 

inactive controls (aged 8-12) did not. In a second experiment, children with educational 
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difficulties were exposed to the SMART intervention, finding another large increase in IQ such 

that participants with educational difficulties were intellectually indistinguishable from their 

typically developing peers (Cassidy et al., 2011). The sample size and experimental design of 

this study lacked power and rigour. Nonetheless, the magnitude of the observed IQ gains merited 

attention, as the items on the IQ test were not structurally related to one another, nor to the 

training, in any obvious way, suggesting that the researchers had demonstrated the elusive cross-

domain transfer effects.  

These initial results have since been corroborated with larger samples. For example, 

Cassidy and colleagues (2016) reported that fifteen 11-12 year olds who completed SMART 

training gained 23 IQ points on the Wechsler Intelligence Scale for Children-IV (WISC-IV), 

rising from a mean of 97 to a mean of 120. The magnitude of this average IQ score increase 

needs to be acknowledged here as it is an increase of one-and-a-half standard deviations (i.e., a 

standard deviation on a Wechsler IQ test is 15 points). To put this finding in context, these 

results far-exceed the 2-3 point average increase found using N-Back training (Au et al., 2015) 

and therefore demand replication in a larger controlled experiment. In their second experiment, 

thirty 15-17 year old children completed SMART training. Cassidy and colleagues (2016) 

observed substantial improvements on both the verbal and numerical subscales of the 

Differential Aptitude Test, indicating yet further transfer of the training effects towards 

developmentally and educationally relevant tests.  

Other small-scale relational skills training intervention studies have also reported to  

enhance scores on various tests of specific cognitive abilities such as analogical responding 

(Ruiz & Luciano, 2011), hierarchical responding (Mulhern, Stewart, & Elwee, 2017; Mulhern, 

Stewart, & McElwee, 2018), statistical learning (Sandoz & Hebert, 2017), and, overall general 
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cognitive ability (Parra & Ruiz, 2016; Thirus, Starbrink, & Jansson, 2016; Vizcaíno-Torres et al., 

2015), though they are typically under-powered. Taken together, however, these studies show 

some evidence for the utility of relational skills training and that operant abilities are skills 

through which we adapt to our environments (cf., also O’Hora et al., 2008; O’Hora, Pelaez, & 

Barnes-Holmes, 2005; O’Toole, Barnes-Holmes, Murphy, O’Connor, & Barnes-Holmes, 2009; 

also cf., Cassidy, Roche, & O’Hora, 2010, for a discussion of how relational skills are related to 

IQ test items). 

Hayes and Stewart (2016) attempted to independently replicate and extend previous 

findings on the utility of SMART training. They tested the differential effects of SMART 

training (n = 14) and an active Control Condition (computer programming, which also involves 

symbolic manipulation; n = 14) for improving performance on memory, literacy, and numeracy 

in children aged 10-11 years. Those who completed SMART training improved their scores on 

the digit span letter/number sequencing task, spelling, reading, and numerical operations. This 

remains the only active-controlled RCT testing the far-transfer of SMART training effects to 

date. We sought to extend this research in a much larger sample.  

The training effects of SMART also appear to manifest in non-Western samples. For 

example, Amd and Roche (2018) provided SMART training to a sample of 35 socially 

disadvantaged children in Bangladesh and observed rises in fluid intelligence (as measured using 

Raven’s Matrices). Furthermore, those who completed more training stages showed the greatest 

improvements in fluid intelligence. This raises the question of whether there was a common 

factor (e.g., motivation) responsible for both the number of training stages completed and for the 

observed improvement in fluid intelligence. We attempted to address this question in the current 

study.  
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It is now more important than ever to provide large-scale, well-controlled tests of the 

utility of SMART training. The main aim of this study was to provide a larger-scale, 

independent, stratified (by ability) active-controlled trial to test the effects of SMART training on 

one indicator of Non-Verbal IQ (NVIQ), the domain-general ability to manipulate abstractions 

for functional purposes, and processing speed. However, as previously mentioned, there are also 

non-cognitive factors such as Conscientiousness and Neuroticism which may affect test 

performance (Bergold & Steinmayr, 2018). Personality, in particular may be a useful “catch all” 

way of measuring non-cognitive factors, as previous research has found that it may account for 

factors such as test anxiety (Chamorro-Premuzic, Ahmetoglu, & Furnham, 2008), emotional 

intelligence (Schulte, Ree, & Carretta, 2004), and grit (Ivcevic & Brackett, 2014). Therefore, a 

secondary aim of the present study was to assess whether cognitive and non-cognitive factors 

(i.e., personality traits) are differentially associated with the amount of SMART training students 

complete. 

Method  

Participants  

We recruited from a cohort of 183 school pupils aged 12-15 years and then assigned them 

to one of two conditions (cf., Design for details). Participants were in the first year of a new post-

primary curriculum at an Irish secondary school (i.e., high school).  

Exclusion criteria. To ensure equal opportunity to participate, those who were allocated 

to the Control Condition were given access to SMART training after the study. In each of our 

two main analyses (DV = NVIQ/DV = processing speed), we excluded those who: (i) did not 

complete both a Time 1 and Time 2 assessment, (ii) did not provide their age so that we could 

compute standard scores, (iii) those who appeared to under-perform at Time 1 (Time 1 NVIQ < 
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70 or ΔNVIQ > 30), (iv) those whose Time 1 and Time 2 data could not be linked (i.e., no ID 

provided). 

Inclusion criteria. To be included in this study, participants needed to be students at the 

school in question, participating in the standard curriculum, in their first year of the Irish 

secondary school curriculum. 

Final numbers. Out of the 183-student cohort, eight students were excluded from the 

study at the request of the school. The remaining 175 were stratified (by ability, based on a prior 

entrance exam) to mixed-ability classes; four of these classes were in the Experimental 

Condition (SMART; n = 93) and three were in the Control Condition (Scratch; n = 82), with a 

Control:Experimental ratio of 88.17:100.00. Another 57 students chose not to complete the 

NVIQ test at any time point. Twenty NVIQ scores were completed at Time 2 (M = 104.50) but 

could not be linked to a corresponding IQ test at Time 1. Similarly, 45 NVIQ scores completed 

at Time 1 (M = 99.80) could not be linked to the corresponding test at Time 2. Nineteen 

participants who only provided NVIQ data at Time 1 did not include their participant IDs, so we 

do not know precisely how many cases with missing data at one time point have corresponding 

data at the other time point that simply cannot be linked and how many were absent/withdrew at 

one time point or the other. Overall, 70 participants completed both NVIQ tests and included IDs 

at both times such that their data could be linked for final analyses (overall, M Time 1 = 106.83; 

M Time 2 = 111.07), 43 of whom completed SMART training, and 27 of whom completed 

Scratch training (a Control: Experimental ratio of 62.79:100.00).  

Fourteen students did not complete the Digit Symbol test at any time point. Twenty-four 

Digit Symbol scores were completed at Time 1 (M Time 1 = 35.96) but could not be linked to the 

corresponding test at Time 2. 21 Digit Symbol scores were obtained at Time 2 (M Time 2 = 
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36.76) but could not be linked to the corresponding test at Time 1. We analyzed data from 125 

participants in our final analysis of the effects of SMART training on processing speed, 70 of 

whom completed SMART training, and 55 of whom completed Scratch training (a 

Control:Experimental ratio of 78.57:100.00. More details concerning specific demographic 

information can be found in Table 1. 

***Table 1*** 

Measures 

We chose NVIQ and Processing Speed as our two main outcome variables, as they both 

differed substantially from the experimental and control training tasks. As such, our two outcome 

variables, NVIQ and Processing Speed, functioned as tests of differential cross-domain transfer 

of training effects. 

 Non-Verbal IQ. We measured NVIQ using the Non-Verbal subscale of the Kaufman 

Brief Intelligence Test (KBIT-2; Kaufman & Kaufman, 2004). This is a 46-item standardized 

test of abstract matrix reasoning ability. Across these 46 trials, participants were presented with a 

series of abstract geometric/colored shapes and were required to complete the pattern by 

selecting the appropriate image from an array of possible alternatives. As such, this is a test of 

abstract symbolic manipulation. The test-retest reliability of the KBIT-2 Non-Verbal subscale 

was higher in our Control Condition (r[25] = .84, p < .001) than in the Experimental Condition 

(r[41] = .64, p < .001).  

Processing Speed. As an indicator of psychomotor performance, we measured 

processing speed using an automated version of the Digit Symbol Substitution Test, which is a 

timed (2-minute) task-switching exercise, commonly employed in intelligence testing (cf., 

McLeod, Griffiths, Bigelow, & Yingling, 1982). In this test, participants were presented with a 
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“key” for pairing digits (1-9) with respective arbitrary symbols. Their task was then to progress 

through a random list of these arbitrary symbols, entering the corresponding number in a box 

under each, referring back to the “key” as necessary. Therefore, within the 2-minute time limit, 

the number of trials correctly completed was used as an indicator of each participant’s net 

processing speed. The test-retest reliability of the Digit Symbol Substitution Test was similar in 

our Control Condition (r[53] = .77, p < .001) and in the Experimental Condition (r[68] = .73, p < 

.001).  

Personality. We also measured personality factors using the Big Five Aspects Scale 

(BFAS; DeYoung, Quilty, & Peterson, 2007), as we wanted to include exploratory analyses of 

the effects of non-cognitive individual differences and behavioral preferences on study 

participation. The BFAS is a 100-item self-report scale on non-cognitive behavioral 

preferences/temperaments that provides fifteen different scores: each of the Big Five traits, and 

two “aspects” comprising each. These are Neuroticism (aspects: Volatility and Withdrawal), 

Agreeableness (Compassion/Politeness), Conscientiousness (Industriousness/Orderliness), 

Extraversion (Assertiveness/Enthusiasm), and Openness (Intellectual/Aesthetic Openness). 

Aspects of the Big Five have been found to differentially predict behavior. For example, the two 

aspects of Openness differentially predict success in the arts and sciences (Kaufman et al., 2016). 

The two aspects of each Big Five domain are, therefore, likely to provide important 

differentiations for assessing discriminant validity within each domain. Scores on each of the Big 

Five are derived based on the average score on each of its two aspect sub-scales. The BFAS is 

answered one a seven-point Likert scale (Disagree Strongly – Agree Strongly). Table 2 presents 

baseline Cronbach’s α values for each of the 10 personality aspects. The BFAS is a well-

validated measure, converging strongly with other measures of the Big Five (DeYoung et al., 
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2007). However, as can be seen in Table 2, the Cronbach’s α values we produced with younger 

participants were not as strong as those originally reported in the sample in which this scale was 

validated (αrange = .75-.85; De Young et al., 2007), so results reported below in relation to 

personality factors must be interpreted with caution. 

***Table 2*** 

Design  

Allocation to Conditions. Participants were allocated to one of two conditions, the 

Experimental and Control Conditions (see below). All students applying to the school in question 

completed a literacy and numeracy test prior to entry. Subsequently, those who had specific 

learning difficulties were not eligible to participate in the present study. All other students were 

stratified to mixed-ability classes by school administrators to pursue the standard curriculum 

prior to the beginning of this study by the first-year coordinator. At the beginning of this study, 

the IT coordinator supervising the training selected which of the mixed-ability classes would be 

in each condition based on timetabling convenience. We tested for differences in median scores 

in Age, NVIQ, Processing Speed, and Personality across the Experimental and Control 

Conditions at Time 1. Those in the Experimental Condition scored higher in Trait Agreeableness 

than those in the Control Condition (U = -3.50, p < .05). Importantly, though, there were no 

differences in Age, NVIQ, Processing Speed, Trait Neuroticism, Aspect Volatility, Aspect 

Withdrawal, Trait Conscientiousness, Aspect Industriousness, Aspect Orderliness, Trait 

Extraversion, Aspect Enthusiasm, Aspect Assertiveness, Trait Openness, Aspect Intellect, nor 

Aspect Aesthetic Openness across conditions at Time 1. There were also no differences in the 

components of Trait Agreeableness (Aspect Compassion and Aspect Politeness) across 
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conditions at Time 1. Therefore, it appears that our method of allocating participants to 

Condition did not distribute participant traits unevenly across conditions. 

Experimental Conditions. Those in the Experimental Condition were given access to 

SMART training for a period of three months, in which they received 240 minutes of supervised 

SMART training during their Information Communications Technology class under their 

teacher’s supervision. During this period, participants were also encouraged to practice SMART 

training at home. To encourage extra participation, we held a monthly prize draw for which 

participants were given tickets commensurate with the number of training points earned that 

month. At the same time, those in the Control Condition (hereinafter, Group 2) were given 240 

minutes of Scratch computer coding training in their Information Communications Technology 

classes over the same period. Participants in this condition were assigned mandatory computer 

coding homework and were not eligible for the monthly prize draw. We measured participants’ 

NVIQs and processing speeds before and after SMART / Scratch training. We also measured 

personality traits at baseline. 

SMART Experimental Condition. Participants received training in the general ability to 

derive relations between arbitrary nonsense syllables based on English language contextual cues. 

This program trained the receptive ability to derive relations of sameness/opposition and more 

than/less than. The training consisted of 70 stages of incrementing complexity (see Figure 1).  

***Figure 1*** 

Participants unlocked new stages of increased complexity upon mastery of the previous 

stage. For example, the early stages involve simply deriving relations based on A-B networks 

(e.g., JUM is the same as GUP. Is GUP opposite JUM?), while a more complex network might 

involve A-C networks (e.g., LEP is the same as FOP. TEK is opposite FOP. Is TEK the same as 
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LEP?). More advanced stages involved more/less relations, which are more complex because 

they are asymmetrical. For example, if A is “the same as” B, then B is simply “the same as” A, 

while on the other hand, if A is “more than” B, B is not simply “more than” A. Users were 

limited to progressing through a maximum of five new stages per day by the software. During 

blocks of training trials, participants received corrective feedback provided after each response 

(see Figure 2, top). To proceed from a training block to testing, participants were required to 

answer 16 trials consecutively correct. During testing, participants received the same array of 

trial types, but without corrective feedback (see Figure 2, bottom). Each nonsense syllable 

stimulus was only used once across all training and testing stages, ensuring that each trial was 

unique. Participants were given a maximum of 30 seconds to respond to each trial before the 

software recorded an incorrect response and presented a new trial. Participants had the option to 

adjust the time limit for each trial if they wished to challenge themselves further, however, we 

did not control for the use of this feature.  

***Figure 2*** 

Scratch active control. Scratch training is a computer coding training program for 

children which aims to teach them how to program their own computer game (for a detailed 

overview, cf., Hayes & Stewart, 2016). In early lessons, participants were introduced to the 

Scratch interface and learned how to create and manipulate a character in their virtual 

environment. Participants used computer code that relied on developing an understanding of 

coordinate geometry and integers to assign movement functions to computer keys so that 

participants could manipulate their character with the keyboard. Subsequent lessons involved 

using code to develop their character and create a game-like environment in which it would 

operate. This activity was led by their classroom teacher on a weekly basis. In accordance with 
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RFT, computer coding involves the manipulation of symbols for pragmatic purposes, but with 

less precision than SMART training.  

In the case of Scratch, behavioral reinforcement came in the form of the “completed” 

program successfully running, rather than by reinforcing individual behaviors that led to the 

program running. In SMART, rewarding individual correct responses (thereby reinforcing them) 

was a core and deliberate feature of the training. There was no way of directly yoking progress 

with Scratch training to that of SMART, as Scratch was not set out in stages, per se, meaning 

that Scratch progress was not easily measurable. Nonetheless, both interventions were given 

equal classroom time, making any overall differences in engagement likely to be due to either (i) 

differences in the degree to which schedules of reinforcement were built into each intervention or 

(ii) individual differences across groups, which we have tried to account for with baseline 

measures of cognitive ability and personality. 

Results  

Preliminary Analyses 

 Preliminary descriptive statistics (including means, standard deviations, and confidence 

intervals) for our main variables of interest can be found in Tables 3 and 4. 

***Table 3*** 

***Table 4*** 

We then explored the intercorrelations between our main variables of interest, using a Bonferroni 

correction to control for multiple comparisons (see Table 5). 

***Table 5*** 

Test Completion 
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Due to high rates of absence and attrition, we decided to explore the characteristics of 

those who were not eligible for the final analysis further. We particularly wanted to know 

whether those who completed a Time 1 NVIQ test but did not complete it at Time 2 were of 

lower baseline ability, as this could affect our results. Using a single-sample t-test, we compared 

the overall Time 1 NVIQ scores (M = 104.83) to the known mean score for those who only 

completed the Time1 NVIQ test and not the Time 2 test (M = 99.80). These scores were 

significantly different from one another (t[116] = 3.34, p = .001). Therefore, if the predicted 

training effects are found in the Experimental Condition (SMART) only, they might be (i) 

deflated if those with lower baseline ability benefit from the training most, or (ii) over-inflated if 

those with higher baseline ability appear to benefit most.  

Training Completion 

Training completion was quite low (M = 15.77, SD = 8.19), perhaps indicating that the 

schedules of reinforcement included did not motivate those in the Experimental Condition. We 

examined the relationship between the number of SMART stages those in the training group 

completed and all our other baseline measures (see Tables 3, 4, and 5) to understand who, in our 

sample, was likely to engage in training. There was a moderate negative relationship between the 

Volatility aspect of the Neuroticism trait and the number of training stages completed (r[89] = -

.35, p = .016). We also observed a stronger relationship between training completion and the 

Politeness aspect of Agreeableness (r[87] = .40, p = .002). We found no other relationships 

between personality traits, nor their aspects, nor baseline NVIQ and processing speed, and 

training completion. 

Non-Verbal IQ 
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In the Experimental Condition, the mean number of training stages completed was 16.45 

(SD = 8.40, Mdn = 16) out of the 70 stages available. We removed two cases (one in each 

condition) who improved by 49 NVIQ points from Time 1 to Time 2, assuming this to be a result 

of test error at Time 1. We used a mixed-design analysis of variance to assess the effects of one 

between-subjects factor (Condition: SMART and Scratch) and one repeated measures factor 

(Time: Time 1 and Time 2) on NVIQ (see Figure 3).  

We observed no significant main effect of Condition on NVIQ (F[1, 68] = .48, MSE = 

251.41, p = .493). However, we did observe an overall effect of Time on NVIQ (F[1, 68] = 

16.44, MSE = 29.75, p < .001, ƞp
2 = .20/d = .53). There was also an interaction effect between 

Condition and Time on NVIQ (F[1, 68] = 5.01, MSE = 29.75, p = .027, ƞp
2 = .07/d = .34). This 

interaction was such that, when observing the simple effects in the Experimental Condition, we 

found significant increases in NVIQ from Time 1 (M = 106.65, SD = 12.03) to Time 2 (M = 

112.63, SD = 10.19) indicating that the training was successful in this condition (ΔNVIQ = 5.98; 

F[1, 68] = 25.81, p < .001, CI = 3.53-8.32, ƞp
2 = .28/d = .38). However, in the Control Condition, 

there was no significant change (ΔNVIQ = 1.70; F[1, 68] = 1.32, p =.255, CI = -4.66-1.26, ƞp
2 = 

.02) in NVIQ from Time 1 (M = 106.89, SD = 12.99) to Time 2 (M = 108.58, SD = 12.85). 

***Figure 3*** 

 Which participants improved with training? Previously, we provided information on 

who, in the Experimental Condition, completed more SMART training. Now, we will provide 

information on who, in the Experimental Condition benefited most from the training. There was a 

strong negative relationship between baseline NVIQ and the degree to which participants in the 

SMART training group’s NVIQ scores changed from Time 1 to Time 2 (r[42] = -.57, p < .001; 

see Figure 4).  
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We conducted a simple linear regression to explore this further. Baseline NVIQ 

explained 30.5% of the variance in the NVIQ Change. This model was a significantly better 

predictor of NVIQ Change than the mean (F[1. 42] = 17.96, p < .001). Baseline NVIQ (b = -.39. 

β = -.55) significantly predicted changes in NVIQ (t = -4.24, p < .001). The beta value indicates 

that for every additional NVIQ point at Time 1, those who complete 16 stages of SMART 

training will gain .39 fewer NVIQ points at Time 2. 

***Figure 4*** 

Interestingly, visual inspection of the relationship between the Scratch control 

participants’ baseline NVIQ and their Time 1 to Time 2 NVIQ change (r[26] = -.37, p = .058) 

shows an almost identical pattern as in the Experimental Condition, save for there being no 

increases in those with baseline NVIQ below the median of 107 (see Figure 5), which was the 

median NVIQ at baseline for both conditions. There were no relationships between personality 

factors, nor their aspects, and the SMART training group’s changes in NVIQ. We also examined 

the relationship between the number of SMART training stages completed in the Experimental 

Condition and NVIQ changes and observed no linear relationship between the two (r[42] = .21, p 

= .172). However, after controlling for baseline NVIQ, there was a clear positive linear 

relationship between the number of training stages completed and the observed NVIQ gain 

(r[39] = .43, p = .005). 

***Figure 5*** 

Processing Speed 

We used a mixed-design analysis of variance to assess the effects of one between-

subjects factor (Condition: SMART and Scratch) and one repeated measures factor (Time: Time 

1 and Time 2) on processing speed (see Figure 6).  
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We observed no significant main effect of Condition on processing speed (F[1, 123] = 

.23, MSE = 217.74, p = .561). We observed an overall effect of Time on processing speed (F[1, 

123] = 23.10, MSE = 33.93, p < .001, ƞp
2 = .16/d = .48). There was no interaction effect of 

Condition and Time on processing speed (F[1, 123] = .03, MSE = 33.93, p = .868). That is, both 

those in the Experimental and Control Conditions demonstrated improved processing speed with 

time. 

***Figure 6*** 

Discussion  

The results revealed that SMART training improved NVIQ, while Scratch computer 

coding, our active Control Condition, did not. Previous studies report a pre and post training RAI 

score (cf., Colbert et al., 2017), implying that every participant completed 55 stages of SMART 

training, compared to an average of 16 stages in the current study. Therefore, while the 

magnitude of the increase in NVIQ was not as high as was typically reported in previous 

SMART studies (e.g., change in full-scale IQ = 23.27 in Cassidy et al., 2016, in a similar 

demographic), it is notable that this low dosage yielded a NVIQ increase that was twice as large 

as the most popular working memory training (cf., Au et al., 2015), with a large effect size. To 

the best of our knowledge, this is the largest study of the effects of SMART training to date and 

therefore represents a significant stepping stone on the way to conducting critical large-scale, 

double-blind randomized controlled trials. Intensive supervision and one-to-one or one-to-few 

teaching is typical of other applied behavior-analytic interventions (in both research and practice) 

and so it is possible that, in the previous smaller studies, the training was supervised more 

intensively. This study was one of the first to implement a larger-scale test of the utility of 

behavior change techniques based on advances in operant conditioning (cf., Dymond & Roche, 
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2013), a cogent theory of adaptive language and cognition that has been in development since the 

mid-20th century. In contrast, previous attempts at training cognitive ability have been either (i) 

developed for commercial purposes (e.g., Lumosity) or (ii) aimed at training a single cognitive 

process (e.g., working memory), rather than being based on a carefully developed theory of 

general language and cognition (cf., Hayes et al., 2001) that aspires to be consistent with modern 

evolution science (Wilson & Hayes, 2018). 

These results show no evidence that SMART training is any more effective than 

computer coding for improving processing speed. Participants in both conditions improved to a 

similar degree across time. There are two possible reasons for this. First, it is possible that 

neither SMART nor Scratch were effective for improving processing speed, but rather, both 

improved as a function of time. Second, it is possible that both SMART and Scratch helped to 

improve processing speed equally. We did not have an inactive control group to help to answer 

this question in the current study. One recent pilot study by McLoughlin, Tyndall, and Pereira 

(2018) found that a small dosage of SMART training helped to improve the speed at which 

participants completed the KBIT-2, while there was no such improvement in the inactive control 

participants. For this reason, it is arguably more probable that both SMART and Scratch were 

effective interventions for increasing processing speed. It, therefore, suggests that the differential 

effects of SMART compared to Scratch on NVIQ reported previously targeted the non-shared 

variance between NVIQ and processing speed. However, as baseline NVIQ and processing speed 

were not correlated, this is will require further research to elucidate. 

Here, we observed that training relational skills, a form of advanced syllogistic reasoning, 

helped to improve performance on a conventional matrices test, while computer coding did not. 

Each trial in the matrices test involved a series of geometrical shapes in a sequence, and the 
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participants were required to complete the sequence. Conversely, the training involved deriving 

arbitrary relations between nonsense syllables. Initially, it appears that these are two quite 

different types of task, thus providing evidence for the far-transfer effects of the training. 

Previous cognitive training programs have observed some short-term transfer of training effects 

(e.g., at one week and at one month in Blieszner, Willis, & Baltes, 1981) in older adults, but 

these effects disappeared by six months. This is also analogous to the effects of early 

compensatory education programs such as Head Start (cf., Haier, 2016), as those children who 

were given extra educational opportunities excelled initially, but after a few years these 

advantages “washed out”. A critical future test of the efficacy of SMART training will be to test 

whether training effects transfer even further towards school grades, and whether transfer effects 

last over time. 

On the other hand, SMART was no more effective than computer coding for improving 

processing speed. One potential (ad-hoc) explanation for this finding is that the Digit Symbol test 

of processing speed involves simple task switching behaviors, as opposed to active manipulation 

of abstract symbols. As such, performance on the Digit Symbol test may be a more direct 

reflection of one’s neural efficiency, while the matrices test requires additional acquired operant 

repertoires because each trial involves more active problem-solving behaviors.  

According to the theory of general intelligence, we may expect that observing transfer of 

training effects from one domain to another would mean that the training effects would transfer 

to all other domains. However, our results present mixed evidence for the far-transfer effects of 

SMART training. To explore this further in the future, we may turn to neuroscience. Perhaps the 

most popular neurobiological account of intelligence, the parieto-frontal integration theory (P-

FIT; Jung & Haier, 2007), suggests that intelligence involves an interaction between the frontal 
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and parietal lobes in the brain. According to Jung and Haier (2007), more intelligent people are 

more neuronally efficient, as evidenced by lower activity in the parieto-frontal regions. However, 

this is not to say that simple processing speed should necessarily improve. Alternatively, it is 

possible that parieto-frontal efficiency reflects more efficient and less-labored responding in 

accordance with contextual cues, which is what relational operant skills training explicitly aims 

to improve. It appears from these data that we trained the general ability to manipulate 

abstractions and should expect SMART training to improve performance on tests that require 

symbolic manipulation rather than simple switching behaviors, as in the Digit Symbol test. 

Therefore, one plausible hypothesis for future research is that relative mastery of SMART 

training will decrease activity in the parieto-frontal regions of the brain when engaging in 

complex cognitive tasks, thus providing further evidence of the far-transfer effects of the 

training.  

We also found that those who were less Volatile and more Polite completed more 

SMART training. This seems to imply that those who can calmly engage with challenging 

scenarios (low Volatility) and who follow teachers’ instructions (high Politeness) will complete 

more training, all things being equal. These results may merit following-up in future research but 

must be treated with caution as we did not observe adequate internal reliability coefficients using 

the BFAS in this age group. At the same time, those who had higher baseline NVIQ scores did 

not complete more training. Therefore, these results do not support the hypothesis that those who 

are smarter at Time 1 find training easier and therefore enter a positive feedback loop during the 

earlier stages that allows them to progress more overall in terms of training completed (i.e., The 

Matthew Effect). This is a counterintuitive finding, as it is incongruent with a recent finding by 

Redick and colleagues (2018), who recently reported a positive relationship between baseline 
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cognitive ability and working memory training progress. Taken together, these findings highlight 

the importance of accounting for the role of individual differences in behavior modification. For 

example, if a child in the classroom is known to exhibit temperamental behavior, a teacher might 

know in advance that they will require more support with the SMART programme and can plan 

accordingly. However, this might also mean providing targeted relational training to address 

particular skill deficits, or to develop interventions to be accessible and acceptable to people of 

different temperaments. 

Our data may suggest compensation effects similar to those observed when training 

executive functions (cf., Titz & Karbach, 2014). There was a strong negative relationship 

between baseline ability and change in NVIQ in the training group, but no such relationship in 

the control group. It appears that those who were lower in relational skills and/or intellectual 

ability at baseline benefited more from lower-complexity training, while those with higher 

baseline ability did not reach the stages that would push their intellectual limits toward 

improvement. This finding is also apparent in the narrowing of the standard deviation of the 

SMART group’s NVIQ from Time 1 to Time 2. Previous studies in this area have not found this 

negative relationship between baseline ability and IQ change. This may be due to the fact that it 

was more difficult to detect effects in previous SMART studies with comparatively small sample 

sizes, which highlights the need for larger trials in the future. It may also be due to the 

differences in training completion across studies; perhaps after Stage 20 (for example) everyone 

is challenged to improve, thereby reducing the baseline ability-IQ change correlation coefficient 

with each subsequent stage completed beyond that. In the bigger picture, this finding suggests 

that SMART may be a means of reducing cognitive inequality, which is especially important 

given that jobs of lower complexity are rapidly being automated out of existence. 
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Future research should, of course, aim to have better retention. Nonetheless, a negative 

relationship between baseline ability and NVIQ change was only observed in the Experimental 

(i.e., SMART) Condition.  While this will remain an open limitation of the present study, we 

hope that it will provide better justification for larger, better-controlled trials than the smaller-

scale research studies published in this area to date.  

We were only able to analyze data from a relatively small portion of the original sample. 

There were several reasons for this. First, a large proportion of students completed only one of 

the tests (i.e., pre- or post-training NVIQ/processing speed only), making them ineligible for a 

pairwise repeated measures analysis. Second, other students failed to provide their age, making it 

impossible to compute their standardized test score for NVIQ. Finally, we removed two cases 

(one in each condition) who improved by 49 NVIQ points from Time 1 to Time 2, assuming this 

apparent increase to be a result of test error at Time 1. This highlights the logistical difficulty in 

implementing such a study in schools with children of this age, against which any potential 

benefit of the training must be weighed. 

Participants were not blind to their study condition, and so it is possible that the changes 

in NVIQ observed herein were partially attributable to a placebo effect. Participants were 

incentivized to take part in SMART training and not Scratch coding, meaning that there might 

have been motivational differences across groups. We did not measure motivational differences 

in this study, but we consider it to be important for future studies to explore this possibility. 

Interestingly, the magnitude of the increase in the SMART group (5.98 NVIQ points; > .5 SD) is 

considerable. Furthermore, when we analyzed the relationship between the number of training 

stages completed and NVIQ change in the Experimental Condition while controlling for baseline 

NVIQ, there was a moderate positive relationship (r = .43), providing further support for the 
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hypothesis that the training intervention itself was largely responsible for the observed NVIQ 

gain. This is nonetheless an area that merits future study. To be confident that this is not a 

placebo effect, it would be useful to conduct a double-blind randomized experiment in which 

participants systematically receive different dosages of training across several groups. 

The present study is only the second test of the efficacy of SMART training to employ an 

active control condition, and it is also by far the largest. While the allocation to each condition 

was not random, technically, the even distribution of 17/18 traits across conditions at Time 1 

indicates that the outcome of our allocation process was as if random allocation had occurred. 

Therefore, this study design can be considered to be comparable to a randomized controlled trial, 

which is often considered to be a gold-standard in the hierarchy of evidence for the effectiveness 

of any given intervention (Kaptchuk, 2001). This study also provided some evidence to suggest 

that different personalities will complete different amounts of SMART training, all things being 

equal, and that baseline NVIQ is unrelated to training completion. As such, future studies of this 

size must consider how to ensure that all students complete the training. It also raises several 

questions about the efficacy of SMART training that have yet to be answered, and we have 

outlined studies that would allow us to address these in the future. Despite some limitations, this 

study is by far the largest controlled test of the efficacy of SMART training to date. With a 

relatively low training dosage, we yielded an increase in NVIQ that is at least twice that of the 

next most effective cognitive training published in mainstream psychological literature to date. 

Therefore, relational operant skills training is a promising behavioral training intervention for the 

future. 
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Table 1. 

Descriptive statistics for our main variables of interest, stratified by sex. 

Baseline Scores Mean (SD) Minimum - Maximum 

Age (years) 

 

 

 

 

Females 13.42 (.58) 12.00 – 15.20 

Males 13.39 (.61) 11.84 – 15.32 

NVIQ Females 107.33 (12.94) 75 - 129 

Males 102.09 (13.59) 59 - 121 

Volatility 

 

Females 27.80 (6.97) 14 - 43 

Males 25.72 (6.59) 10 – 40 

Withdrawal Females 27.56 (7.66) 12 - 41 

Males 25.53 (6.64) 11 - 40 

Compassion Females 41.17 (6.32) 22 - 50 

Males 38.07 (7.44) 10 - 50 

Politeness 

 

Females 37.79 (6.29) 14 - 49 

Males 36.25 (6.54) 

 

19 - 48 

 
Assertiveness Females 31.61 (7.67) 10 - 46 

Males 33.50 (6.97) 13 - 48 

Enthusiasm Females 40.50 (5.66) 29 - 50 

Males 37.65 (6.46) 21 - 50 

Industriousness Females 33.59 (7.78) 10 - 50 

Males 35.11 (6.34) 16 - 50 

Orderliness Females 33.75 (6.97) 19 - 49 

Males 33.99 (6.44) 22 - 50 

Intellect Females 33.87 (7.85) 10 - 49 

Males 37.02 (6.72) 24 - 50 

Aesthetics Females 33.67 (5.83) 17 - 46 

Males 33.39 (6.14) 14 - 47 
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Table 2.   

Sample items from the Big Five Aspects Scale.   

Big Five Trait Big Five Aspect Sample Item α  

Neuroticism Volatility I rarely lose my composure. 

(Reversed) 

.53  

 Withdrawal I feel threatened easily. .48  

Agreeableness Compassion Feel others’ emotions. .22  

 Politeness I am out for my own personal 

gain. (Reversed) 

.48  

Extraversion Assertiveness I take charge. .37  

 Enthusiasm I warm up quickly to others. .41  

Conscientiousness Industriousness I waste my time. (Reversed) .45  

 Orderliness I keep things tidy. .39  

Openness Intellect I am quick to understand things. .45  

 Aesthetics I seldom daydream. (Reversed) .48  
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Table 3. 

Means, standard deviations, and confidence intervals for our main variables in the SMART condition. 

 M SD 95% CI 

Lower Bound 

95% CI 

Upper Bound 

NVIQ Time 1 107.36 12.15 103.05 111.68 

NVIQ Time 2 114.36 9.03 111.16 117.56 

Digit Symbol Time 1 41.03 9.32 37.73 44.33 

Digit Symbol Time 2 44.67 11.19 40.70 48.63 

Pre-Post NVIQ Difference 7.00 8.90 3.84 10.17 

Pre-Post Digit Symbol Difference 3.64 7.35 1.03 6.24 

Trait Neuroticism 50.00 12.43 45.59 54.41 

Aspect Volatility 24.27 6.91 21.82 26.72 

Aspect Withdrawal 25.48 7.87 22.70 28.27 

Trait Agreeableness 80.73 9.38 77.40 84.05 

Aspect Compassion 41.30 5.72 39.27 43.33 

Aspect Politeness 39.42 5.30 37.54 41.30 

Trait Conscientiousness 68.73 12.45 64.31 73.14 

Aspect Industriousness 34.82 7.78 32.06 37.58 

Aspect Orderliness 33.73 7.15 31.40 36.48 

Trait Extraversion 71.09 12.13 66.79 75.39 

Aspect Enthusiasm 38.82 7.09 36.31 41.33 

Aspect Assertiveness 32.27 9.23 29.00 35.55 

Trait Openness 69.91 10.67 66.13 73.69 

Aspect Intellect 36.52 7.51 33.85 39.18 

Aspect Aesthetic Openness 33.39 5.69 31.38 35.41 

Age Time 1 13.36 .54 13.25 13.63 
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Table 4. 

Means, standard deviations, and confidence intervals for our main variables in the Scratch condition. 

 M SD 95% CI 

Lower Bound 

95% CI 

Upper Bound 

NVIQ Time 1 107.33 13.22 101.75 112.92 

NVIQ Time 2 109.04 12.88 103.60 114.48 

Digit Symbol Time 1 41.00 8.75 37.31 44.69 

Digit Symbol Time 2 44.08 11.88 39.07 49.10 

Pre-Post NVIQ Difference 1.71 6.62 -1.09 4.51 

Pre-Post Digit Symbol Difference 3.08 8.88 -.67 6.83 

Trait Neuroticism 58.00 11.69 53.06 62.94 

Aspect Volatility 28.63 5.70 26.22 31.03 

Aspect Withdrawal 29.08 7.71 25.83 32.34 

Trait Agreeableness 76.13 9.00 72.33 79.93 

Aspect Compassion 39.13 6.00 36.59 41.66 

Aspect Politeness 37.00 6.19 34.39 39.61 

Trait Conscientiousness 67.42 9.28 63.50 71.33 

Aspect Industriousness 32.63 6.87 29.72 35.53 

Aspect Orderliness 34.79 4.94 32.70 36.88 

Trait Extraversion 69.96 12.80 64.55 75.36 

Aspect Enthusiasm 38.17 6.62 28.49 40.96 

Aspect Assertiveness 31.79 7.82 28.49 35.10 

Trait Openness 69.54 8.80 65.83 73.26 

Aspect Intellect 35.08 6.43 32.37 37.80 

Aspect Aesthetic Openness 34.46 5.28 32.23 36.69 

Age Time 1 13.47 .62 13.47 13.73 
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Table 5. 

Correlation matrix for the main variables of interest 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

2 .710***  

 

                   

3 .114 .306                    

4 .317*** .344 .743***                   

5 -.490*** .148 .136 .008                  

6 .392 .110 -.119 .524**

* 

-.177                 

7 .090 -.048 -.140 -.076 -.182 .035  
 

 
 

             

8 .051 -.059 -.233 -.135 -.147 .063 .819***               

9 .074 -.045 -.052 -.039 -.150 .007 .850*** .432***              

10 -.012 -.035 .085 .073 .108 .025 -.056 -.144 .047             

11 .000 -.077 -.038 .013 .024 .105 .001 -.059 .064 .852***            

12 

 

.013 .013 .176 .106 .145 -.081 -.126 -.208 -.010 .831*** .443***           

13 

 

-.050 -.024 .061 .068 .128 .061 -.259* -.267* -.162 .223 .178 .194          

14 -.052 -.026 .094 .038 .080 .053 -.428*** -.374** -.339*** .124 .064 .151 .815***         

15 -.008 -.026 .014 .106 .117 .044 .022 -.071 .094 .220 .204 .162 .808*** .357***        

16 -.054 -.074 -.155 -.091 -.057 .012 -.268* -.118 -.298** .306** .381*** .153 .376*** .311** .275**       

17 -.035 -.118 -.154 -.170 -.001 -.088 -.131 -.082 -.122 .461*** .452*** .348*** .229 .149 .201 .768***      

18 .043 -.040 -.123 -.008 -.012 .111 -.291** -.112 -.348*** .058 .201 -.099 .371*** .343*** .246** .833*** .315***     

19 .084 .219 .145 .251 .045 .165 -.200 -.116 -.195 .310** .253* .280** .410*** .355*** .287** .456*** .320** .391***    

20 .118 .180 .263* .266* .044 .113 -.338*** -.206 -.330*** .189 .118 .223 .374*** .439*** .163 .415*** .258* .377*** .830***   

21 .043 .196 -.031 .130 .013 .149 -.005 -.005 .010 .364*** .318** .290** .291** .120 .310** .351*** .283** .268* .772*** .32
3*** 

 

22 -.172 -.160 .058 .026 .036 -.085 .039 .041 .012 .144 .144 .109 .052 .064 .015 .037 .075 -.006 .073 .12

8 

.116 

Note. * = p < .05; ** = p < .01; *** = p < .001; 1 = NVIQ Time 1; 2 = NVIQ Time 2; 3 = Digit Symbol Time 1; 4 = Digit Symbol Time 2; 5 = Pre-Post NVIQ Difference; 6 = Pre-Post Digit Symbol Difference; 7 = Trait 

Neuroticism; 8 = Aspect Volatility; 9 = Aspect Withdrawal; 10 = Trait Agreeableness; 11 = Aspect Compassion; 12 = Aspect Politeness; 13 = Trait Conscientiousness; 14 = Aspect Industriousness; 15 = Aspect 

Orderliness; 16 = Trait Extraversion; 17 = Aspect Enthusiasm; 18 = Aspect Assertiveness; 19 = Trait Openness; 20 = Aspect Intellect; 21 = Aspect Aesthetic Openness; 22 = Age Time 1. 
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Figure 1. Examples of one simple and two complex SMART training/testing trial types. 
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Figure 2. Training and testing relational framing operants using SMART training.
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Figure 3. The differential effects of SMART versus Scratch training on NVIQ across time.  
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Figure 4. A negative relationship between Baseline NVIQ and NVIQ Change from Time 1 to 

Time 2 in the SMART training group. 
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Figure 5. No relationship between Baseline NVIQ and NVIQ Change from Time 1 to Time 2 in 

the Scratch control group.  
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Figure 6. The differential effects of SMART versus Scratch training on processing speed across 

time. 
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