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Abstract – As the penetration of electric vehicles (EVs) increases, 
their patterns of use need to be well understood for future system 
planning and operating purposes. Using high resolution data, 
accurate driving patterns were generated by a Markov Chain 
Monte Carlo (MCMC) simulation. The simulated driving 
patterns were then used to undertake an uncertainty analysis on 
the network impact due to EV charging. Case studies of 
workplace and domestic uncontrolled charging are investigated. 
A 99% confidence interval is adopted to represent the associated 
uncertainty on the following grid operational metrics: network 
voltage profile and line thermal performance. In the home 
charging example, the impact of EVs on the network is compared 
for weekday and weekend cases under different EV penetration 
levels.  
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1. Introduction 

AS the EV penetration level increases, accurate prediction of 
the associated electricity consumption is required for network 
side planning, in particular, network asset investment, [1]. The 
associated uncertainty in load is also of essential importance to 
the network normal operation since it allows the network 
operator to leave sufficient margins during the planning stage 
as well as in operation. The large sample size that is required 
for the uncertainty investigation justifies the construction of a 
suitable model for detailed simulation of vehicle use patterns.  

Stochastic techniques lend themselves to vehicle use 
modelling due to the random nature of driving patterns. Monte 
Carlo simulation, as a stochastic modelling approach, is a 
popular choice, such as [2], [3], [4], [5], and [6]. 

Detailed Markov Chain Monte Carlo (MCMC) simulation 
was used to generate weekly EV patterns in [2] with half 
hourly resolution. The initial states were defined assuming a 
Gaussian distribution for EV characterisation, and the 
subsequent instances were produced based on the Markov 
Chain transition probabilities using Monte Carlo simulation. 
One infeasible assumption in this particular simulation was 
that the driving period per journey was fixed to be 30 minutes, 
which is due to the lack of self-transition status of driving, and 
this limits the generation of continuous vehicle driving states. 

Iversen et al. also employed Markov Chain models for 
describing vehicle diurnal driving patterns in [3], including the 
discrete time Markov model, where the size of the state 
transition matrix was proportional to the time resolution and 

vehicle states considered, the continuous time Markov model, 
where possible parameter reductions can be obtained 
compared with the discrete model, and the hidden Markov 
model, which allowed for modelling states that are not directly 
observed in the data by introducing a new state to the original 
Markov model. The associated application however was 
constrained to the two vehicle status of ‘driving’ and ‘not 
driving’ without any charging locations allocated.  

Another example of Monte Carlo simulation is presented in 
[4] where three key variables, consisting of the time of 
vehicles’ arrival and departure time at and from charging 
locations and the travelled distance in between, were selected 
from a transportation database for vehicle motion generation. 
Since the variables were statistically dependent, a copula 
function was employed to join the univariate distribution 
functions to build the joint multivariate distribution function 
for both a single and double journeys, which was then used for 
the Monte Carlo simulation to model vehicle use patterns.  

A Gaussian distribution, non-uniform distribution and 
conditional Gaussian distribution was assigned in [7] for 
simulating the arrival time, charging time and departure time, 
respectively. Similar distributions have also been assumed for 
EVs’ arrival and departure in [8] and [9] respectively. In 
reality, however, such predefined distributions are sometime 
unsuitable for vehicle pattern simulation. For example, [10] 
sampled from a Gaussian distribution function to synthetize 
the travelled distance, which according to [4] was correlated 
with and therefore should be determined by the departure time 
of the commuter. 

Reference [1] also proposes a statistical modelling approach 
to generate daily driving patterns, where the temporal 
distribution of departure and arrival times and their correlation 
were modelled first, and the synthetic driving cycles 
associated with the driving distance distribution were then 
constructed. The acceleration related variables used for 
synthetic driving pattern construction in [1] are however 
unavailable in most of the transportation data, which would 
limit the application of the method. 

A multi-agent system with percolation approach is 
presented in [11] for simulating EVs’ driving patterns, where 
mobile and static agents are employed and the percolation 
methodology is used to identify probable locations of EV 
charging activities. 

It is important that the synthetized vehicle patterns are 
verified against the original vehicle records, but so far not 
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many publications have been found that have undertaken this. 
The closest are the work presented in [5], where the seasonal 
charging loads that were generated from various stochastic 
models were compared with those from the original GPS 
based vehicle use patterns, and [1], where simulated arrival 
time distribution is verified against the original real-life 
measurement. This present paper makes a contribution by 
providing a detail verification of vehicle characterisation as 
well as different charging location scenarios. 

Following on from the development of synthetic EV driving 
patterns, these models have been used to analyse the impact of 
EV charging on the distribution network, such as [6], which 
estimated the thermal effect of EV charging on transformer 
aging, and [12], in which the peak load, total loss and voltage 
violation of the system due to the EV charging load under 
different year scenarios were investigated.  

It is understood that the stochastic nature of EV motion 
would lead to uncertainties in the EV demand curve and 
therefore network operational metrics. The uncertainty of EV 
load due to one million EVs under the scenario of 
uncontrolled domestic charging was analysed in [4], but only 
on a nationally aggregated demand scale. This present paper 
calculates the uncertainties of the EV demand and associated 
network metrics due to EV patterns using the MCMC 
simulation. Such uncertainty analyses provide precious 
information for the network operators and also help with 
system planning. The other strengths of this work are the high 
time resolution of ten minutes and the detailed and verified 
representation of vehicle use. 

National transportation statistics such as National 
Household Travel Survey [13] and Mobility Research 
Netherlands [14] have been in support of EV investigations in 
[6] and [4] respectively. The present work utilizes the 2000 
UK Time of Use Survey (TUS) data because of its high time 
resolution and in order to be consistent with the domestic 
electricity consumption model [15] which was developed 
based on the same set of data and will be employed here to 
generate the domestic base load, house by house. 

The work presented in this paper utilizes MCMC simulation 
to generate synthetic EV use patterns based on vehicle 
movement characterisation, in this case from the TUS data. By 
using MCMC simulation, the impact of the uncertainty in EV 
load on the power system is investigated at a distribution 
network level.  

1.1. Contribution of this work 
The fore-mentioned works have been summarised in Table 

1 in terms of 6 model features that the presented work 
possesses, from which it can be seen that the contributions of 
this work are fine data resolution, which allows detailed and 
accurate vehicle movement modelling, verification of vehicle 
driving patterns, which guarantees the simulation accuracy, 
and uncertainty analysis of network impact, which is 
important for grid planning and operation.  

The MCMC simulation presented in [16] was rather 
provisional in the sense that model results were not subject to 
verification and uncertainty analysis for practical network 

assessment was not undertaken. The present paper includes 
both these important elements. 

Table 1 
Summary of relevant literature works  

 A B C D E F 
[1] ü ü ü ü ― ― 
[1] û ü û û ü û 
[3] ü û ü ü û û 
[4] û ü ü û û û 
[5] û ü ü ü û û 
[6] û ― ― ― ü û 
[7] û ü û ― û ― 
[10] û ü û û ― ― 
[12] û ü û ― ü û 
[16] ü ü ü û ü û 
This work ü ü ü ü ü ü 

A: Fine data resolution (less or equal to 10 minute per step) 
B: Vehicle status definition  
C: Vehicle movement simulation 
D: Vehicle use pattern verification 
E: Detailed network impact analyses considering charging location 
F: Uncertainty analysis of detailed network impact 
 

ü: model feature is included in a suitable manner 
û: model feature not included 
―: not relevant 
 
The work in [2] was simplified by assigning a fixed driving 

period of 30 minutes per journey in the Markov Chain 
transition model construction, which has a completely 
different driving period distribution from the TUS data, as will 
be presented later in this paper. The vehicle movement 
modelling using this assumption in [2] would therefore be 
inaccurate. This present work contributes to improve the 
Markov Chain model by adding a self-transition of driving to 
the state transition diagram which was absent in the work of 
[2], and the finer data resolution defined by the TUS data used 
here is capable of capturing more accurate vehicle movement. 

2. Time of use survey (TUS) data 
The UK 2000 time of use survey (TUS) was carried out on 

domestic activities for both weekdays and weekends including 
the use of privately owned vehicles. Each survey was on a 
24-hour basis with 10-minute resolution, starting at 4.00am 
and ending at 3.50am the next day, since activities reached a 
minimum around this time of day [17]. The vehicle driving 
related survey diaries were chosen for the analyses in this 
work, and the vehicle status for such diaries were classified 
into four distinct states: namely ‘driving’; ‘parking at home’; 
‘parking at workplace’; and ‘parking at commercial areas’. 
The vehicles’ departure and arrival activities and individual 
journey time could then be subsequently obtained for the 
selected database. It should be noted that a further process of 
removing any diaries with a daily journey longer than 180 
minutes was undertaken to reflect the feasible electric range of 
EVs in accord with the EV specification in Section 4. The 
number of diaries from the processed TUS data is 1476 and 
2642 for the weekday and weekend data, respectively. 



 3 

 
Fig. 1.  Vehicle state proportions during weekdays and weekend 
 

 
Fig. 2.  Vehicles’ arrival and departure probability during weekdays and 
weekend 
 

The statistical characteristics of the selected TUS data that 
involve vehicle driving are illustrated in Figs. 1 to 4 for both 
the weekday and weekend case. In both cases the vehicle 
activities are configured based on the assumption of a 
periodically stationary daily cycle from 4am to 3.50am the 
next day due to the minimal activities at this period, which is 
verified by the smooth transition at this time of day as 
illustrated in Fig. 1. A morning and evening weekday driving 
peak can be overserved in Fig. 1(a), which can be confirmed 
as for commuting purpose by referring to the associated arrival 
and departure activities from Fig. 2(a), where the probability 
value is obtained by dividing the associated activities by the 
total number of diaries considered. The weekend TUS data, 
illustrated in Fig. 1(b) and 2(b), show significant differences 
from the weekday case in terms of driving patterns and 
parking locations. 

 

 
Fig. 3.  Averaged time spent in different vehicle states for weekdays and 
weekend 
 

 
Fig. 4.  PDF of vehicle driving period for weekday and weekend  
 

It is also obvious from Fig. 1(a) that the majority of 
weekday vehicles park at the workplace during daytime and at 
home during night time, indicating the potential charging time 
and locations for the EVs. The average weekday proportion 
for vehicles parking at home (59.6%) and workplace (33.6%), 
as shown in Fig. 3(a), further emphasizes the significance of 
these two locations for providing EV options for grid service 
provision via charging and discharging under a smart grid 
environment. Special attention is drawn to the workplace and 
commercial areas related activities, the dominance of which 
changes dramatically between the weekday and weekend cases. 
The average time for the four distinct vehicle statuses, which 
are summarised in Fig. 3(b), also shows an increase in the 
home parking period (74.6% for the weekend) compared with 
the weekday data. 

The probability density function (PDF) of the vehicle 
driving period per journey for weekdays and weekends, as 
given in Fig. 4, is dominated by short journeys which are less 
than half an hour. The 10-minute based TUS data as such can 
capture vehicle driving patterns in a relatively accurate 
manner and is therefore beneficial for EV network integration 
studies; this cannot be achieved by data with lower time 
resolution. 

3. Time-inhomogeneous Markov Chain Monte Carlo 
(MCMC) simulation 

The vehicle movement in the TUS data is essentially a 
series of state transitions throughout a day on a 10-min basis, 
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and the transitions between any two different parking 
locations requires vehicle driving. A  Markov Chain diagram 
as shown in Fig. 5 represents the vehicle state transition from 
time step t-1 to t, where the four illustrated states, {D, H, W, 
C}, correspond to ‘driving’, ‘parking at home’, ‘parking at 
workplace’, and ‘parking at commercial areas’ respectively, as 
identified in the previous section, and the associated transition 
probability is given for each possible transition at this specific 
time stamp. For instance, !!→!!  indicates the probability of the 
vehicle being ‘D’ at t given being ‘H’ at time t-1.  

 
Fig. 5.  Markov Chain diagram of possible vehicle state transitions at time t 
[16] 
 

Fig. 2 exhibits a time-varying feature of vehicle state 
transition, and to capture such characteristics of vehicle 
movement the Markov Chain model makes use of time 
varying transition probabilities as indexed by t in Fig. 5. 
Extending the model in this way results in what is known as a 
time-inhomogeneous Markov Chain, [2]. The simulation 
period used in this work is 24 hours and includes 144 time 
stamps, indicating that there will be 143 distinct transition 
diagrams, i.e. t ∈  [2, 144]. The equivalent matrix 
representation of the transition diagram at time t, Tt, is 
expressed by Equation (1), where the transition probabilities 
from a single state to all the available states are presented in 
rows, and each row sums to 1 as required for probabilities. 
Recalling that the transition between any vehicle parking 
states has to be accomplished via the ‘driving’ state, the 
probabilities for infeasible vehicle state transitions without 
‘driving’ are therefore zero.  

An example of the state transition matrix at 8:40am (t=29) 
is shown in Equation (2), which represents a typical weekday 
morning commuting time. The average trip number for a 
passenger vehicle per weekday is around 3 according to the 
TUS data, implying that the state changes would be relatively 
rare and out of the 144 time stamps the vehicle states will 
remain constant (in different states) for most of the time, 
which can be observed by the relatively high probability 
values of the diagonal elements. The vehicle state transition 
probability of arrival at work (!!→!!" ) with a significant 
conditional probability value of 35% (of being ‘W’ at t=29 
given being ‘D’ at time t=28) is therefore indicative of this 
being in the morning commuting period. 

!! =

!!→!! !!→!!

!!→!! !!→!!
!!→!! !!→!!

!!→!! !!→!!

!!→!
! !!→!

!

!!→!! !!→!!
!!→!
! !!→!

!

!!→!! !!→!!

 (1) 

!!" =
0.6172 0.0207
0.1873 0.8127

0.3448 0.0172
                      0                       0

0.0023                       0
0.4444                       0

0.9977                       0
                      0 0.5556

 (2) 

 
By sampling from the vehicle state PDF as illustrated in Fig. 

1(a) and 1(b) at 4am, the initial state at t =1 can be determined 
for weekdays (0.0027 for ‘D’, 0.9810 for ‘H’, 0.0163 for ‘W’, 
and 0 for ’C’) and weekend (0 for ‘D’, 0.9069 for ‘H’, 0.0053 
for ‘W’ and 0.0878 for ’C’) respectively, which provides a 
starting point for sampling from the associated conditional 
PDF in the state transition matrix as shown in Equation (1). 
The synthetic driving patterns for the 144 time stamps of a day 
are then generated based on the time-inhomogeneous Markov 
Chain matrices, using empirical PDF based Monte Carlo 
simulation, [18], as the sampling method. 

3.1. Verification of MCMC simulation 
The vehicle driving patterns from MCMC simulation are 

compared with the TUS data in terms of key statistics for both 
weekday and weekend driving. To limit repetition only the 
weekend case is shown in this section.  

The average daily (weekend) driving time for passenger 
cars from the MCMC simulation, as shown by the blue curve 
in Fig. 6, converges to the TUS value of around 62 minutes as 
the number of simulation trials increase. This result reflects 
less driving activity than for weekdays which total on average 
80 minutes per day (with similar convergence). It can been 
seen from Fig. 6 that 10000 trials are sufficient for the 
simulation to achieve convergence and the subsequent 
verification results are therefore calculated based on this 
number of trials. The MCMC simulation based PDF of vehicle 
driving period per journey and the probability of vehicles’ 
arrival and departure activities, illustrated in Fig. 7 and 8, 
show slight variations from those from the original TUS data. 
Despite the small discrepancies for these two statistical 
measures, the overall vehicle state proportion as calculated 
from the MCMC simulation agrees very well with the TUS 
data, as shown in Fig. 9 for weekend data; so does the 
averaged time for various vehicle states as summarised in 
Table 2, which matches to one decimal place with the statistics 
in Fig. 3(b). Similar levels of agreement exist for the 
weekdays, verifying the capability of MCMC simulation for 
statistically representative synthetic driving pattern generation. 

It is assumed that the driving patterns for EVs in this work 
share common characteristics with the vehicles in the TUS 
data, which has been adjusted to take into account the range 
limitation for EVs. 

D 

H 

W C 

!!→!!  
 

!!→!!  

!!→!
!   !!→!!   

!!→!!  

!!→!!  !!→!!  

!!→!!  

!!→!
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Fig. 6.  Average daily driving time convergence for weekend case 
 

 
Fig. 7.  PDF of vehicle driving period in the weekend 
 

 
Fig. 8.  Probability of vehicles’ arrival and departure activities in the weekend 
 

  
Fig. 9.  Vehicle state proportions at the weekend 
 

Table 2 
Average time for weekend vehicle states in MCMC simulation results 

Vehicle	
  state	
   Averaged	
  time	
  (hours)	
  
Driving	
   1.0	
  (4.2%)	
  
Parking	
  at	
  home	
   18.0	
  (75%)	
  
Parking	
  at	
  workplace	
   0.9	
  (3.7%)	
  
Parking	
  at	
  commercial	
  areas	
   4.1	
  (17.1%)	
  

 

3.2. Justification of MCMC simulation 
Markov Chain Monte Carlo simulation, as a numerical 

approach, can be used to generate different electricity load 
profiles according to various EV charging schemes. The 
impact of the additional EV charging loads on the local 
distribution network is assessed by identifying the expected 
value and associated uncertainty, as measured by the standard 
deviation, for various grid operational metrics, such as thermal 
loading, voltage profiles, transformer loss of life, energy 
losses, and harmonic distortion levels, [19]. And the 
uncertainty identification of these different metrics requires 
large number of trials from MCMC simulation to achieve 
convergence. These uncertainties could not be generated 
directly by sampling from the original TUS dataset due to its 
size limitation. 

4. Distribution network case study 
The charging locations of both home and workplace are 

presented in this work with a 24 hours simulation period, 
where the initial vehicle battery state of charge is assumed to 
be 100% and the battery is returned to a fully charged state by 
the end of the day to complete the simulation cycle. Based on 
the daily synthetic EV use patterns generated from the MCMC 
simulation with 10 minutes step, the EV charging profiles can 
be calculated assuming uncontrolled charging, where EVs are 
connected to the grid and charged as soon as they arrive at 
home. A complete vehicle specification is listed in Table 3. 
The two cases with home and workplace charging both take 
into account the local base load and the additional EV profiles 
under uncontrolled charging with uncertainties of associated 
metrics.  
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The electric range can be calculated from this specification 
sheet to be just over 180 minutes, which is used in Section 2 
for excessive distance filtering of the TUS data as outlined 
above. 

Table 3 
EV specification sheet (taken from BMW i3 model in 2013 [20]) and relevant 

parameter setting 
Electricity	
  consumption	
   12.9kWh/100km	
  
Averaged	
  driving	
  speed	
   30mph	
  [21]	
  
Battery	
  capacity	
   18.8kWh	
  
Signle	
  phase	
  standard	
  charging	
  rate	
   2.4kW	
  
Single	
  phase	
  fast	
  charging	
  rate	
   7.4kW	
  
Charging	
  efficiency	
   0.9	
  [22]	
  
Charging	
  load	
  power	
  factor	
   1	
  

 

4.1. Workplace charging 
A case study of an institutional/commercial building with 

demand mainly contributed from central heating, lighting, 
computers, and with typical workplace parking provision is 
used to assess the direct impact of uncontrolled EV workplace 
charging on the building load demand as well as the local 
building supply transformer rating. This example University 
building at Strathclyde, for which data was available, 
accommodates up to 300 workers, and has a nominal parking 
availability for approximately 100 cars. This building is 
supplied by a dedicated 1000kVA transformer, and two rates 
of charging are considered as given in Table 3. 

An extreme case of full EV penetration, in this case defined 
as all vehicles, 100 in total, parking at the workplace being 
EVs, is studied here, and the aggregate load profiles in 
apparent power for standard and fast charging cases are shown 
in Fig. 10 together with the building base demand for a 
weekday in January, as illustrated by the pink curve. 100,000 
simulated EV trials are divided into 1000 groups, each 
consisting of 100 EVs for this case study. The uncertainty in 
the aggregate demand, illustrated by the yellow and green 
shading for the standard and fast charging case respectively, is 
calculated as the 99% confidence interval (CI), the upper and 
lower bound of which is expressed by Equation (3). 

 

99%!"  !"#$% = (!!"#$ + ! ± 2.58!)! + !!"#$
! (3) 

where !!"#$ and !!"#$ are the real and reactive power demand 
for the building; ! is the mean of the 1000 groups at each time 
stamp and ! is the associated standard deviation; the factor of 
2.58 is the Z-table look-up value for 99% confidence interval 
based on the assumption of a normal distribution. Fig. 10 
illustrates the mean demand profile (in apparent power) of the 
1000 groups on top of the building base load for the standard 
and fast charging cases by solid blue and black lines 
respectively. Similarly the weekday TUS data, with 1476 
diaries, is also grouped into 100, and the group mean for 
standard and fast charging rates are illustrated by dotted and 
dashed lines respectively. The MCMC simulation based mean 
charging profile shows good agreement with that from the 
TUS data, which further verifies that the MCMC simulation 
accurately reflects the TUS data.  

Fig. 11 shows an example of the convergence of standard 

deviation of group charging load (with fast charging rate) at 
9:10am, which corresponds to the peak load in the fast 
charging profile. The mean of the standard deviation gets 
updated as the group number increases up to group 1000, and 
the converged value is the ! for this time stamp. It can be seen 
from this figure that the mean of the standard deviation 
reaches a reasonably stable value from group 300 and the 
number of EV diaries used for such convergence is 
significantly higher than that available in the original TUS 
data, further justifying the use of MCMC simulation.  

 
Fig. 10. Aggregate demand of workplace EV charging  
 

 
Fig. 11.  Convergence of standard deviation of group charging load (with fast 
charging rate) at 9:10am 
 

In this case of full EV penetration, it can be seen from Fig. 
10 that a 1000kVA transformer would easily survive the extra 
EV load for both standard and fast charging cases. A more 
typical transformer for this building with rating of nearer 
500kVA would, however, fail to supply the EV related load in 
the fast charging scenario, and have some difficulty in the 
standard charging case. Such events could cause degradation 
of building supply transformer and also indicate the potential 
for adverse impact on power quality for the users in the 
building as a result of excess demand. For future planning of 
the local network that involves EV charging, transformer 
sizing should be undertaken with consideration of the 
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aggregate load together with its associated uncertainty, i.e. 
there should be sufficient positive margin between the 
transformer size and the upper bound of the confidence 
interval for aggregate demand. 

4.2. Home charging 
Impact of uncontrolled EV charging on the local 

distribution network, in terms of the household voltage 
profiles and the thermal characteristic of the substation feeder 
and the associated uncertainty, is investigated under the 
standard charging rate for both weekday and weekend cases. 
Fig. 12 shows the layout of the investigated low-voltage 
single-phase domestic network that consists of 17 households, 
which is extracted from the three-phase distribution system as 
structured in [23] with slightly modified network attributes. 

1

2

5

11kV/400V

3 4

12 101115 13141617 86 7 9
 

Fig. 12.  Single phase distribution network layout 
 

A domestic electricity consumption model, [15], also 
developed based on TUS data, is employed here to generate 
the load profile for domestic households alongside the EV 
charging profiles. The input of this model includes a series of 
parameters, such as day of week, month of the year and active 
occupancies. A January weekday and weekend are chosen as 
input for this model to represent the typical peak winter profile, 
and a power factor of 0.9 is assumed for the domestic loads; 
an occupancy number that is randomly chosen from 1 to 5 is 
allocated to each of the simulated dwellings. Household 17 
that is located at the farthest end of the branch is investigated 
here as it is subject to the lowest voltages. The generated 
demand profiles of a weekday and at the weekend for this 
household are shown in Fig. 13 by the blue and red curves 
respectively, together with the associated EV charging profiles 
that are generated according to the energy requirement and EV 
availability, and an assumption that the vehicles start charging 
immediately on return to the house.  

The voltage profile for Household 17, which suffers the 
most from the network impact due to its location, is 
investigated under the full EV penetration scenario for both a 
weekday and at the weekend. As used in the workplace 
charging case, 1000 groups are chosen here, for each of which 
the EV profiles are generated for the 17 households with an 
individually modelled base demand. A dedicated network 
simulator, Open Distribution System Simulator (OpenDSS) 
[24], is employed here to undertake the power flow analysis.  

 
Fig. 13.  Example of domestic base load and the charging profile for 
Household 17 
 

 
Fig. 14.  Averaged voltage profile for Household 17 with 99% CI under full 
EV penetrations 
 

 
Fig. 15.  Averaged hours of lower voltage bound (of 99% CI) excursion under 
different EV penetrations 
 

The converged voltage profiles of the 1000 groups are 
presented in Fig. 14 for Household 17 giving mean voltage 
values and the associated 99% CI. It can be seen from this 
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figure that the extreme EV penetration in this case causes a 
severe voltage violation of the network (with specified 
tolerance of [-0.06 +1.10] p.u., [25]) during the peak hours for 
both weekday and weekend cases, with the former showing a 
much higher uncertainty range than the latter. In general the 
weekday voltage profile shows a lower trend than that for the 
weekend, which is due to the longer driving period for 
weekdays, as discussed in Section 2, and therefore a greater 
charging energy requirement. Also the majority of people 
arrive home between 4pm and 9pm for weekdays, as is shown 
in Fig. 2(a), and uncontrolled charging scenario would 
coincide with the residential base demand peak thus 
worsening the network issues. It is worth pointing out that 
even though the mean weekday voltage level is within the 
acceptable voltage range, its uncertainty extends to a voltage 
value well below the threshold and therefore implies a 
significant probability of being unacceptable. The 
representation of uncertainty is essential to network analysis 
and a 99% confidence interval as adopted here provides a 
reasonable level of risk reduction regarding the voltage 
profile.  

 
Fig. 16.  Substation feeder thermal characteristics with 99% CI 

 
A further investigation of total voltage violation number for 

the entire households is carried out under different EV 
penetrations, where one EV per household is assumed for the 
households that are selected to be equipped with EVs. Fig. 15 
summarises the excursions of the lower voltage bound (99% 
CI) in terms of averaged hours per household. Over 5 and 4 
hours of voltage excursion per household is observed for 
weekdays and the weekend at an EV 100% penetration, which 
indicates a similar degree of network issues for the entire 
households as for Household 17 shown in Fig. 14 where the 
excursion period is around 6 and 5 hours for weekdays and 
weekends respectively. The weekday case can be observed to 
place more stress on the network than the weekend throughout 
all the EV uptake levels and the 99% CI indicates a network 
tolerance level for EV penetration of up to 20% for weekdays 
and 30% for the weekend. 

One of the solutions to voltage violation is to adjust the 
substation transformer tap setting, which typically ranges 
within 5% either side of the nominal ratio in 2.5% or 5% steps 

[25], to maintain the voltage even at the furthest end of a 
feeder within the required tolerances. In this case with a heavy 
EV charging demand, a +2.5% transformer tapping would 
alleviate the voltage burdens on the network to some extent. 

The thermal performance of the substation feeder as shown 
in Fig. 16 exhibits a similar trend to Fig. 15, with error bars 
representing the uncertainty. It can be seen in Fig. 16 that for 
both the weekday and weekend case the uncertainty range 
increases as the EV penetration level rises. The specified line 
thermal limit, 50kW in this case, allows the weekend to 
survive under all penetrations but could only just 
accommodate up to a 70% penetration for weekdays. 

5. Conclusions and future research 
The Markov Chain Monte Carlo simulation has been 

verified to preserve the statistical features of vehicle use 
patterns from the TUS data and therefore is suitable for use in 
network integration analyses. The case studies for workplace 
and home charging show different degrees of network stress in 
terms of various operational metrics due to uncontrolled 
vehicle charging, and the 99% confidence interval that is 
obtained from the MCMC simulation results provides a 
statistically significant representation of the network impact 
uncertainties, which is important for system planning and 
operation. Future works will explore smart charging methods 
with potential vehicle to grid actions under a smart grid 
environment to mitigate system operational issues and avoid 
unnecessary cost of network reinforcement. 
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