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ABSTRACT 1 

BACKGROUNDː We examined the effect of early-onset of muscle damage and low muscle 2 

glycogen on cardiorespiratory and metabolic responses to low-intensity exercise. 3 

METHODSː Twelve men cycled for 10 min at 50% maximal oxygen uptake before, and 12 h 4 

after a morning downhill run (five, 8 min bouts at -12% gradient, with 2 min rests) under 5 

normal (NORM) and lowered glycogen (LOW) conditions, following a crossover design 6 

with conditions separated by six weeks. Cardiorespiratory responses were recorded, with 7 

oxidation measures derived from stoichiometry equations. 8 

RESULTSː Muscle damage symptoms post-downhill (0 h) were similar between conditions. 9 

Carbon dioxide ventilatory equivalent increased 12 h post-downhill for LOW (P<0.05), but 10 

not NORM (P=0.7). A trend towards decreased respiratory exchange ratio (RER) was shown 11 

12 h post-downhill for LOW (1.00±0.07 to 0.89±0.12, P=0.06), but not NORM (0.94±0.11 12 

to 0.94±0.08; P=0.6). Twelve hours after LOW downhill running fat oxidation increased 13 

(0.21±0.18 g·min-1 to 0.36±0.27 g·min-1; P<0.05) and carbohydrate oxidation decreased 14 

(2.68±0.52 g·min-1 to 1.98±0.75 g·min-1; P<0.05); NORM oxidation rates were unchanged 15 

(fat: 0.26±0.18 g·min-1 to 0.33±0.18 g·min-1; P=0.5; carbohydrate: 2.51±0.49 g·min-1 to 16 

2.29±0.47 g·min-1; P=0.3). 17 

CONCLUSIONː Cycling at low-intensity 12 h post-downhill running with lowered muscle 18 

glycogen increased fat oxidation, decreased carbohydrate oxidation and elevated carbon 19 

dioxide ventilation. Damaging exercise with reduced glycogen availability increases fat 20 

utilization during subsequent low-intensity exercise as little as 12 h later. 21 

 22 

 23 
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Introduction 1 

Repeated, intense and/or prolonged eccentric contractions are common in daily life, 2 

including stair descent, sitting down, and running. These actions can result in exercise-3 

induced muscle damage, with acute force loss, muscle soreness and disrupted glucose 4 

metabolism.1, 2 Cardiorespiratory and metabolic responses during subsequent exercise may 5 

also be altered, and at higher intensities, athletic performance impaired.3-5 The susceptibility 6 

to damage6 and greater glycogen utilization rate2 of type II fibers in response to eccentric 7 

exercise, may contribute to compromised exercise performance. Metabolism during exercise 8 

when muscle is damaged, may also be altered by inflammation,7 reduced glucose uptake1 9 

and reduced glycogen resynthesis.3 10 

Endurance exercise capacity is impaired up to 48 h after muscle damage,4, 8 with increases in 11 

oxygen cost,9 blood lactate, respiratory exchange ratio (RER)10 and minute ventilation ( E).8 12 

Elevations in ventilation and effort perception when cycling 48 h after eccentric exercise 13 

appear intensity-dependent,11 and are attributed to increased circulating lactate, and by 14 

implication, greater type II fiber recruitment.12 15 

The increased physiological stress when exercising over repeat days with muscle damage, 16 

may compromise subsequent performance.4 However, whether exercise-induced ventilatory 17 

and metabolic responses are altered at lower exercise intensities is not known. This has 18 

relevance to those alternating between resistance and aerobic exercises, undertaking high-19 

volume training and bouts within-, and between-days. 20 

Hughes et al.5 associated eccentric exercise-induced strength loss and increased muscle 21 

soreness with greater carbohydrate oxidation, as opposed to fat metabolism, during 22 

subsequent concentric exercise. However, at rest, others have reported elevated fat oxidation 23 

and energy expenditure in young women,13 and decreased fat oxidation and preserved 24 

carbohydrate oxidation in young men14 following eccentric knee extensions. Higher fat 25 
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oxidation in women, than in men, during exercise of different intensities and modes15 may be 1 

partly attributable to a greater proportion of oxidative, type I fibers in women.16 However, 2 

potential gender-dependent effects on fat oxidation during eccentric exercise remain vague. 3 

If downhill running-induced muscle damage leads to preferential type II fiber damage, thus 4 

delaying glycogen repletion,2 then carbohydrate oxidation may decrease, and fat oxidation 5 

increase, for subsequent activity. Downhill running with lowered muscle glycogen may 6 

disrupt substrate metabolism further (by reduced carbohydrate availability and elevated fat 7 

utilization), in turn, augmenting the cardiorespiratory response to exercise. We hypothesize 8 

that commencing downhill running with lowered glycogen would augment alterations in fat 9 

and carbohydrate oxidation, resulting in reliance upon fat, at the expense of carbohydrate 10 

oxidation. The study purpose was to investigate the effect of muscle damaging exercise with 11 

lowered glycogen, on cardiorespiratory and metabolic responses during low-intensity 12 

concentric exercise performed 12 h later. 13 

 14 

Materials and methods 15 

Participants 16 

Twelve non-smoking, healthy males (mean ± SD: age, 23 ± 4 years; height, 179 ± 5 cm; 17 

body mass, 77 ± 10 kg; body fat, 14.4 ± 3.8%) volunteered for participation in the study. All 18 

were physically and recreationally active (maximal oxygen uptake ( O2max), 54.3 ± 9.1 19 

mL∙kg-1∙min-1), and had no history of structured resistance and/or regular running training. 20 

Participants were normal weight (body mass index, <25 kg·m-2) according to the World 21 

Health Organisation, free from cardiorespiratory disorders, and were not using anti-22 

inflammatory medicines during the experimental period. The University of Chichester 23 

Research Ethics Committee granted approval for the study, and the experimental procedures 24 

conformed to the Helsinki Declaration. All procedures, and the associated risks and benefits, 25 
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were fully explained to participants before written informed consent was obtained for their 1 

participation. 2 

 3 

Experimental design 4 

Participants completed two pre-experimental, familiarization sessions 48 h apart, and at least 5 

7 days before completing a three session experimental protocol. Familiarizations occurred 6 

before the first condition only: either normal muscle glycogen (NORM), or lowered muscle 7 

glycogen (LOW), which were separated by at least 6 weeks in a randomized cross-over 8 

design. The three experimental sessions were performed over two consecutive days (Figure 9 

1): Session 1 (day 1): 10 min low-intensity cycling followed by glycogen manipulation 10 

(LOW) or quiet rest (NORM); Session 2 (day 2): a downhill run; Session 3 (day 2): 12 h 11 

post-downhill 10 min low-intensity cycling measurement. The LOW involved an exhaustive, 12 

cycling exercise evening session, followed by a morning downhill run (fasted from 3 h pre-13 

cycling to 1 h post-downhill run); NORM involved a resting evening session, followed by a 14 

morning downhill run. Oxygen uptake ( O2), carbon dioxide production ( CO2) and heart 15 

rate (HR) were recorded during all low-intensity cycling sessions. 16 

 17 

Dietary control 18 

Instruction was given to consume a low carbohydrate diet (total calorie intake ~3620 kJ: 19 

~1% carbohydrate, ~24% protein, ~75% fat) between the LOW downhill run and the 12 h 20 

post-downhill measurement. Habitual diet was maintained and self-recorded from 48 h prior 21 

to the first experimental condition, up to 48 h after the downhill run (total calorie intake per 22 

day ~8586 kJ: ~51% carbohydrate, ~25% protein, ~24% fat). Food records were analyzed 23 

with nutritional software (Nutritics Ltd, Co. Dublin, Ireland), checked upon each visit, and 24 
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prescribed for the subsequent condition; physical activity was also requested to remain low 1 

between conditions.17 2 

<<< INSERT FIGURE 1. HERE >>> 3 

Pre-experimental familiarization sessions 4 

Two, pre-experimental familiarization sessions commenced with anthropometric 5 

measurements. Height and mass were measured unshod, and then skinfold thickness was 6 

quantified with a Harpenden calliper (Baty Int., West Sussex, UK) to estimate body density 7 

18 and body composition.19 8 

Familiarization one involved an incremental cycling trial, with participants cycling 9 

(Excalibur Sport 925900, Lode, Groningen, The Netherlands) at ~75 rpm for 3 min at 50 W; 10 

thereafter, power was increased by 10 W every 20 s, until volitional exhaustion. Breath-by-11 

breath O2 and CO2 were sampled using a portable metabolic cart, calibrated following 12 

manufacturer’s instructions (Cosmed K4b2, Rome, Italy), and HR (Polar Electro Oy, 13 

Kempele, Finland) was measured continuously. The highest 15 s average for O2 was taken 14 

as O2max and the corresponding power recorded ( O2max power 324 ± 57 W) and used to 15 

establish experimental cycling workloads. 16 

Familiarization two involved a submaximal, incremental treadmill run (Pulsar, h/p/cosmos 17 

Sports & Medical GmbH, Germany) to establish individual downhill running speed (based 18 

upon lactate threshold).20 The run began at 8 km∙h-1 (1% gradient), followed by 1 km∙h-1 19 

increments every 4 min until volitional exhaustion (the point at which the participant felt 20 

they could no longer continue), or eight stages were completed. Fingertip blood (25µL) 21 

samples were drawn from the right index finger, with the pronated hand resting on the 22 

treadmill handrail. This ensured sufficient blood for duplicate lactate analysis for each stage 23 

(2300 STAT Plus™ analyzer, YSI Life Sciences, Yellow Springs, USA); subsequent values 24 

were used to determine running speed at lactate threshold for individual participants. 25 
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Experimental sessions 1 

Session 1 (day 1) began for both conditions with participants attending the laboratory after 2 

19:00 hrs, in a 3 h fasted state and completed 10 min of constant-load cycling. Breath-by-3 

breath O2 and CO2, and HR were measured. Cadence was maintained at ~75 rpm, with 4 

the bout preceded by 1 min cycling at 50 W, before increasing to the required ~50% O2max 5 

power (163 ± 38 W). The cycling duration was limited to avoid influencing the 6 

cardiorespiratory responses to downhill running and responses up to 2 min excluded as 7 

participants were unlikely to have achieved a steady-state. 8 

For the LOW condition, participants then cycled at 60% O2max power (~75 rpm; workload, 9 

181 ± 40 W) until volitional exhaustion (time, 95 ± 13 min; blood glucose reduced by -1.47 10 

± 0.56 mmol∙L-1 (-31.8%)).20 Biopsy studies have shown this protocol to be effective for 11 

depleting muscle glycogen (reduction: total muscle, -77%, type I fibers, -95%, type II fibers, 12 

-70%).21, 22 For the NORM condition, participants completed a 2 h seated quiet rest, with no 13 

change in blood glucose values. 14 

Session 2 (day 2) began for both conditions (~07:00 hrs) with five, 8 min downhill runs at 15 

lactate threshold speed (-12% gradient, 12.1 ± 1.1 km∙h-1) each separated by 2 min level 16 

jogging (1% gradient at 8 km∙h-1).23 The LOW run was performed with decreased blood 17 

glucose compared to pre-exhaustive cycling (pre-run, -23.2%; post-run, -26.0%, both P < 18 

0.01); the NORM run was performed with normal blood glucose compared to pre-quiet rest 19 

values (pre-run, -2.7%; post-run, 7.3%).20 Muscle force and soreness measurements were 20 

repeated immediately after completion of the run. 21 

Session 3 (day 2) was conducted 12 h post-downhill run with the 10 min cycling bout, and 22 

then muscle force and soreness measurements repeated in order.   23 

 24 

Calculation of substrate oxidation 25 
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 Breath-by-breath data were averaged over 15 s periods for: tidal volume, E, O2, CO2, 1 

O2 (mL∙kg-1∙min-1), RER, HR and ventilatory equivalents of oxygen ( E/ O2), and carbon 2 

dioxide ( E/ CO2). Substrate oxidation calculations were taken for moderate intensity 3 

exercise, assuming negligible urinary nitrogen rate,24 and made using Equations 1 and 2:  4 

1)   Fat oxidation (g∙min-1) = 1.695 x O2 – 1.701 x CO2 5 

2)   Carbohydrate oxidation (g∙min-1) = 4.344 x CO2 – 3.061 x O2 6 

Cardiorespiratory responses refer to: HR, tidal volume, E, O2, CO2, E/ O2 and 7 

E/ CO2; metabolic responses refer to: RER, fat oxidation and carbohydrate oxidation. 8 

 9 

Muscle force loss and soreness measurement 10 

Isometric maximal voluntary contraction (MVC) and muscle soreness of the knee extensors 11 

were used to indirectly indicate muscle damage.25 Maximal force and soreness were assessed 12 

on a custom-built strength-testing chair (University of Chichester, UK) in familiarization one 13 

and, immediately (0 h) and 12 h after each downhill run. Seated and secured with the hip and 14 

knee at 90°, participants had a steel chain attached proximally to the fibular notch and 15 

medial malleolus with padding, leading to a mechanically calibrated S-beam load-cell (RS 16 

250 kg, Tedea Huntleigh, Cardiff, UK) beneath the chair. A personal computer displayed 17 

instantaneous force output at 1000 Hz (Chart 4 v 4.1.2, AD Instruments, Oxford, UK) during 18 

maximal contraction. Soreness was determined before MVC using a visual analogue scale 19 

(0, not at all sore; 10, extremely sore), whilst undergoing muscle-belly palpation (until the 20 

investigator exerted enough pressure to blanch the fingernail).26 Isometric MVC was 21 

measured using three separate, 3 to 5 s contractions, with 2 min rests. Knee extensor force 22 

loss after downhill running did not show an order effect at 0 h (P = 0.2) or 12 h later (P = 23 

0.3). The investigator provided verbal encouragement; a chair-linked computer monitor 24 

provided force-time feedback. 25 



 9 

 1 

Statistical analysis 2 

A two-way, repeated measures analysis of variance (ANOVA; condition and time) was used 3 

for each cardiorespiratory, metabolic and muscle-damage measure between conditions. For 4 

low-intensity cycling, cardiorespiratory measures are presented for the final minute (9 to 10 5 

min), and metabolic measures every 2 min, from minute two onwards (i.e., 3 to 4 min, 5 to 6 6 

min, 7 to 8 min and 9 to 10 min), due to time to reach steady-state. Pre-planned, paired t-7 

tests, with a Bonferroni correction were used to locate specific differences. A Greenhouse-8 

Geisser correction was applied where assumptions of sphericity were violated. Analyses 9 

were calculated with IBM SPSS Statistics, version 20 (IBM Corp, Armonk, NY), with data 10 

presented as mean ± SD and statistical significance set at P < 0.05. A statistical trend was 11 

interpreted as 0.05 > P < 0.1 according to Curran-Everett and Benos.27 12 

 13 

Results 14 

Muscle force loss and soreness 15 

Baseline knee extensor force and muscle soreness were similar between conditions (P > 16 

0.05; Table I). Muscle damage was evidenced after downhill running by an immediate force 17 

loss (P < 0.0001) of -27.3% in the NORM (-178.5 N) and -29.5% in the LOW (-195.5 N); 18 

and a 12 h post force loss (P < 0.001) of -15.5% in the NORM (-101.5 N) and -15.3% in the 19 

LOW (-101.6 N). Muscle soreness increased (P < 0.01) similarly between conditions 20 

immediately (NORM, 3.8 ± 1.9; LOW, 2.8 ± 1.4), and 12 h after downhill running (Table I). 21 

<<< INSERT TABLE I. HERE >>> 22 

Cardiorespiratory measures 23 

After downhill running there was no change in tidal volume (F(1,11) = 0.6, P = 0.5), E (F(1,11) 24 

= 0.3, P = 0.6), O2 (F(1,10) = 0.05, P = 0.8), CO2 (F(1,9) = 0.66, P = 0.4), O2 (mL∙kg-1∙min-25 
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1) (F(1,11) = 0.1, P = 0.9) or HR (F(1,11) = 0.2, P = 0.7) during low-intensity cycling in both 1 

conditions (Table I). E/ CO2 was elevated by 3.4 L∙min-1 for LOW (F(1,11) = 2.6, P < 0.05), 2 

but unchanged for NORM (P = 0.7; Table I). A moderate condition-time effect was shown 3 

for E/ O2 (F(1,11) = 5.9, P < 0.05) and LOW, although E/ O2 did not change for NORM (P 4 

= 0.4) or LOW (P = 0.1). 5 

 6 

Metabolic measures 7 

Baseline RER was similar between conditions when commencing cycling (at 4 min: NORM, 8 

0.97 ± 0.11; LOW, 1.03 ± 0.07, P = 0.09). A condition-time effect (F(1,11) = 5.9, P < 0.05) 9 

was shown for RER in LOW; with no change for NORM (pre 0.94 ± 0.11, 12 h post-10 

downhill 0.94 ± 0.08, P = 0.6; Figure 2A) and a trend towards lower RER for LOW (pre 1.00 11 

± 0.07, 12 h post-downhill 0.89 ± 0.12, P = 0.06; Figure 2B). Fat oxidation was unchanged 12 

for NORM (P = 0.5; Figure 3A), but increased (P < 0.05) by 0.15 g∙min-1 for LOW (Figure 13 

3B). Carbohydrate oxidation was unchanged for NORM (P = 0.3; Figure 4A), but decreased 14 

(P < 0.05) by 0.72 g∙min-1 for LOW (Figure 4B). 15 

<<< INSERT FIGURE 2. HERE >>> 16 

<<< INSERT FIGURE 3. HERE >>> 17 

<<< INSERT FIGURE 4. HERE >>> 18 

Discussion 19 

Our main purpose was to examine the effect of downhill running, with lowered muscle 20 

glycogen, on cardiorespiratory and metabolic responses during subsequent concentric 21 

exercise. Twelve hours after downhill running, muscle damage was confirmed in both 22 

conditions by force loss and muscle soreness. A bout of downhill running had little effect on 23 

cardiorespiratory response, but did alter ventilatory equivalents and substrate metabolism 24 

when cycling at low-intensity 12 h later. Increased fat oxidation and decreased carbohydrate 25 
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oxidation when exercising in a lowered glycogen, muscle damaged state, is supported by a 1 

trend for lower RER. Conversely, RER was similar during cycling exercise with normal 2 

glycogen and muscle damage. 3 

Previous studies investigating the influence of muscle damage on aerobic, metabolic and 4 

endurance performance have focussed upon the 24 to 48 h post-exercise period.10, 11, 28 Our 5 

study is novel as we examined 12 h post-downhill running to determine whether emerging 6 

muscle damage can alter cardiorespiratory and metabolic function at low exercise intensities. 7 

This is important, as low-intensity activity is often prescribed to alleviate symptoms of 8 

muscle damage during heavy training periods.29 9 

Cardiorespiratory responses were mostly unaffected 12 h after downhill running regardless 10 

of glycogen state. However, E/ CO2 increased with large effect after LOW downhill 11 

running, suggesting incomplete glycogen recovery 12 h later. A 3.4 L∙min-1 rise at the same 12 

cycling workload for LOW indicates increased ventilation, relative to carbon dioxide 13 

production, suggesting increased bicarbonate buffering of accumulating hydrogen ions 14 

(H+).30 It should be noted that E/ CO2 increased for LOW i) sub-ventilatory threshold, ii) at 15 

a single time-point prior to peak-damage (i.e., 12 h post-downhill run) and iii) in the final 16 

minute of short duration low-intensity cycling. Typically, exercise-induced force losses by 17 

muscle damage are accompanied by leakage of intracellular enzymes,1 including lactate 18 

dehydrogenase (LDH) and creatine kinase. The loss of LDH may disrupt substrate 19 

metabolism (increase H+ accumulation and buffering), in turn, elevating ventilation, relative 20 

to CO2. Had lowered glycogen greater effect, ventilatory alterations would have manifested 21 

from the onset of low-intensity cycling and at a greater magnitude. Furthermore, RER 22 

became significantly lower for LOW only in the final minutes, suggesting that metabolic 23 

steady-state requires at least 8 min during low-intensity exercise. Increased E/ CO2, with 24 

decreased E/ O2, has been shown for glycogen depleted young men, during incremental 25 
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cycling.31 As exercise intensity increases, elevations in E/ CO2 and blood lactate coincide. 1 

However, E/ O2 would typically increase first. With further increases in intensity, 2 

ventilation rises disproportionately with carbon dioxide production to elevate E/ CO2. Like 3 

Hughes et al.,31 we found lowering muscle glycogen led to E/ CO2 rising at a lower cycling 4 

workload, when compared to NORM. However, our exercise intensity was constant-load and 5 

below the ventilatory threshold, as indicated by power output and ventilatory equivalents. 6 

We suspect that increased E/ CO2 when cycling with LOW, 12 h after muscle damage, 7 

may be due to: greater type II fiber recruitment, LDH impairment and slightly elevated blood 8 

lactate concentrations. Stable E/ O2 with increased E/ CO2 suggests ventilation can 9 

satisfy muscle oxygen delivery, but not carbon dioxide removal. Assuming glycogen-10 

lowering cycling depleted type I fibers, our LOW condition would involve greater type II 11 

fiber recruitment. Additional type II recruitment (coupled with enzyme leakage) with LOW 12 

could have increased H+ accumulation and buffering (H+ and HCO3- convert to CO2 and H2O 13 

at the lungs), and subsequently expired CO2. 14 

Unexpectedly E/ O2 was not influenced by muscle damage or with lowered glycogen. It 15 

was unlikely that gas sampling data ‘smoothing’ may have hidden minor E/ O2 16 

fluctuations, as E/ CO2 did change. Paschalis et al.32 found muscle damage did not 17 

influence E, O2, HR and RER during running (at 55 and 75% O2max) up to 96 h later. 18 

Conversely, cycling for 20 min at 50% O2max (139 ± 4 W) in a glycogen-depleted state (by 19 

3 h cycling at ~40% O2max) has been shown to increase O2 and HR, and reduce RER in 20 

young adults.33 Cardiorespiratory function was unaltered in our study, potentially due to 21 

steady-state (at low relative workload) muscle O2 consumption causing little change in 22 

pulmonary gas exchange. The 10 min measurement period may have been too brief to 23 

measure progression from the first phase of ventilatory dynamics.34 Low-intensity cycling 24 

also commenced from a ‘baseline’ 50 W workload, which in comparison to cycling from 25 
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rest, may induce a less abrupt rise in cardiorespiratory response.34 Elsewhere, Vassilis et al.35 1 

showed evidence of muscle damage, without altered cardiorespiratory responses when 2 

running at 70% O2max. Conversely, muscle damage induced by squatting exercise has 3 

resulted in greater E, but unchanged perceived exertion, for moderate-intensity cycling 4 

(80% ventilatory threshold) 48 h later.11 For heavy-intensity cycling both E and perceived 5 

exertion increased. Squatting exercise has also been shown to increase O2, E and HR for 6 

10 min of lactate turn-point running, 24 and 48 h later.28 The influence of muscle damage on 7 

exercise performance appears not only dependent upon the eccentric bout, but also the 8 

intensity of the subsequent activity. 9 

A trend towards decreased RER was shown during LOW cycling 12 h after downhill running 10 

(0.89 ± 0.12, P = 0.06), when compared to baseline (1.00 ± 0.07). Subsequent exercise of 11 

higher-intensity would be required to demonstrate this shift from carbohydrate metabolism 12 

(requiring more CO2, than O2), to fat metabolism (requiring more O2, than CO2), when 13 

glycogen lowered. Fat oxidation involves more O2 and CO2, supporting an increased 14 

E/ CO2 12 h after LOW downhill running. Brief exercise duration meant that RER reduced 15 

significantly for LOW only in the final minutes. Limiting carbohydrate availability by 16 

dietary/exercise-manipulation (LOW) would increase the likelihood of accelerating free 17 

fatty-acid mobilization.36 A subsequent pH decrease (acidosis)37 would be expected to 18 

stimulate E/ CO2. 19 

Fat oxidation is the main metabolic contributor to low-intensity exercise38 and is further 20 

stimulated with low muscle glycogen.36, 39 Cheneviére et al.40 found prior heavy exercise (90 21 

min of constant-load 50% O2max cycling) increased fat oxidation during a subsequent 22 

submaximal, incremental test, more than light exercise (2.5 h seated rest). Their fat oxidation 23 

rates during submaximal exercise, pre- (0.30 g·min-1) and post-light exercise (0.53 g·min-1) 24 

were comparable to ours (NORM: pre 0.26 ± 0.18 g·min-1, post-downhill 0.33 ± 0.18 g·min-25 
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1). However, we cannot discount the possibility that the evening, exhaustive exercise may 1 

have increased fat oxidation 12 h after the downhill run. Participants would have undergone 2 

the 12 h low-intensity cycling, approximately 22 h after the heavy-intensity cycling bout; 3 

still within the period of potential recovery (see Figure 1). Low-intensity exercise is often 4 

prescribed to remedy symptoms of muscle damage during intense training periods.29 5 

Therefore, understanding the cardiorespiratory and metabolic changes in the early onset of 6 

muscle damage has relevance to athletes and coaches, particularly when performing and 7 

recovering from consecutive exercise sessions. As muscle damage disturbs glucose uptake1 8 

and glycogen resynthesis,3 lower rates of carbohydrate oxidation would be expected during 9 

subsequent exercise, preserving already reduced intramuscular substrates. Future research 10 

should look to examine substrate metabolism 12 to 48 h after whole-body eccentric exercise, 11 

from low to high intensity exercise. Main limitations to this study were that i) 12 

cardiorespiratory and metabolic measurements were constrained to low-intensity exercise at 13 

12 h following eccentric-biased exercise, and ii) a pre-validated glycogen depletion protocol 14 

was performed,22 but we could not directly assess glycogen reduction by biopsy. 15 

What was surprising, given the increased fat oxidation, was the unchanged O2 across 16 

conditions and time points. Fat metabolism has been found to incur greater oxygen demand, 17 

than carbohydrate oxidation, 4½ h after cycling (at ~57 O2max);41 therefore fat oxidation 18 

would be expected to rise with O2. Estimation of substrate oxidation using indirect 19 

calorimetry is based upon O2 and CO2 measurement, which reflects whole-body 20 

metabolism. At best, accuracy is within 5% of muscle oxidation values at rest, and dietary 21 

status will influence substrate oxidation, regardless of the indirect calorimetry measurement 22 

sensitivity.42 23 

We used an exhaustive cycling protocol, shown to reduce type I fiber glycogen by 95% in 24 

young men.22 This may have contributed to greater preferential type II fiber recruitment and 25 
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fiber damage during LOW downhill running, in comparison to NORM. Type II fiber 1 

recruitment is known to elevate O2 more than type I, for cycling exercise.33 Our O2 2 

remained similar to baseline, which may be explained by measurement during low-intensity 3 

exercise and/or preferential type II fiber damage. 4 

Whole-body, eccentric exercise may not change cardiorespiratory and metabolic function for 5 

low-intensity activity in the emergence of muscle damage, but if damaging exercise is 6 

performed with lowered glycogen availability, substrate metabolism appears to shift to fat 7 

oxidation. These findings supplement our knowledge of the metabolic responses, and 8 

sensitivity to, eccentric-biased exercise. 9 

 10 

Conclusions and implications 11 

Our findings indicate that undergoing a bout of muscle-damaging exercise, with lowered 12 

muscle glycogen, can increase fat utilization and elevate carbon dioxide ventilation, even at 13 

low exercise intensities as little as 12 h after damaging exercise. An understanding of the 14 

metabolic and cardiorespiratory changes after damaging exercise, and their uncoupling 15 

across exercise intensities, has importance to those undertaking new, unaccustomed training 16 

regimen, as well as athletes/patients interspersing aerobic recovery exercise, into resistance 17 

training. These bouts may range from pre-season plyometric/sprint training, to recreational 18 

endurance events to untrained individuals skiing for leisure during vacation. 19 
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(LOW) conditions. 4 
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Figure 1. - Schematic of the experimental design. 7 

Figure 2. - Respiratory exchange ratio (RER) during constant-load cycling performed before 8 

and after downhill running in normal (NORM) (A) and lowered glycogen (LOW) (B) 9 

conditions. Values are presented as mean ± SD; n = 11, one participant was unable to attain 10 

steady-state. * Significant pre-post downhill difference. Data refer to 4 to 10 min due to 11 

duration to attain steady-state. 12 

Figure 3. - Fat oxidation during constant-load cycling performed before and after downhill 13 

running in normal (NORM) (A) and lowered glycogen (LOW) (B) conditions. Values are 14 

presented as mean ± SD; n = 11, one participant was unable to attain steady-state. * 15 

Significant pre-post downhill difference, P < 0.05. Data refer to 4 to 10 min due to duration 16 

to attain steady-state. 17 

Figure 4. - Carbohydrate oxidation during constant-load cycling performed before and after 18 

downhill running in normal (NORM) (A) and lowered glycogen (LOW) (B) conditions. 19 

Values are presented as mean ± SD; n = 11, one participant was unable to attain steady-state. 20 

* Significant pre-post downhill difference, P < 0.05. Data refer to 4 to 10 min due to 21 

duration to attain steady-state. 22 
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