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Abstract 1 

The aim of this study was to compare load-absorption force-time characteristics of the clean 2 

from the knee (CK), power clean from the knee (PCK) and clean pull from the knee (CPK). 3 

Ten collegiate athletes (age 27.5 ± 4.2 years; height 180.4 ± 6.7 cm; mass 84.4 ± 7.8 kg), 4 

performed three repetitions each of the CK, PCK and CPK with 90% of their 1RM power 5 

clean on a force platform. The CK load-absorption duration (0.95 ± 0.35 s) was significantly 6 

longer compared to the CPK (0.44 ± 0.15 s; p < 0.001, d = 2.53), but not compared to the 7 

PCK (0.56 ± 0.11 s; p > 0.05, d = 1.08), with no differences between PCK and CPK (p > 8 

0.05, d = 0.91). The CPK demonstrated the greatest mean force (2039 ± 394 N), which was 9 

significantly greater than the PCK (1771 ± 325 N; p = 0.012, d = 0.83), but not significantly 10 

different to the CK (1830 ± 331 N; p > 0.05, d = 0.60); CK and PCK were not different (p > 11 

0.05, d = 0.18). Significantly more load-absorption work was performed during the CK (655 12 

± 276 J) compared to the PCK (288 ± 109 J; d = 1.75, p < 0.001); but not compared to the 13 

CPK (518 ± 132 J; d = 0.80, p > 0.05). Additionally, more load-absorption work was 14 

performed during the CPK compared to the PCK (d = 1.90, p = 0.032). Inclusion of the catch 15 

phase during the CK does not provide any additional stimulus in terms of mean force or work 16 

during the load-absorption phase compared to the CPK, while the CPK may be beneficial in 17 

training rapid force absorption due to high force and a short duration.  18 

 19 

Key words: weightlifting derivatives; power clean from the knee; clean pull from the knee; 20 

eccentric loading 21 

 22 

 23 
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Introduction 24 

Lower body force and power development are essential for improving athlete performance 25 

during tasks that require rapid extension of the hip, knee, and ankle joints (10, 28). Various 26 

training methods, including plyometric exercises (1, 2, 26), kettlebell training (19, 22), 27 

strength training (4, 9) and the use of weightlifting exercises and their derivatives (4, 17, 22, 28 

36) have been reported to enhance these qualities. Of these training methods, investigators 29 

have reported that the inclusion of weightlifting derivatives results in superior performance 30 

improvements compared to other training methods (17, 22, 36). It is therefore not surprising 31 

that weightlifting derivatives are commonly incorporated into athletes’ training programs.  32 

Research into the biomechanics of weightlifting derivatives has shown that the second pull 33 

phase of the clean and snatch results in the greatest net vertical force and power applied to the 34 

barbell (12, 13, 16). When comparing the power clean, power clean from the knee (PCK), 35 

mid-thigh power clean, and mid-thigh pull, researchers have observed that the greatest force 36 

and power applied to the system occurs during the mid-thigh power clean and the mid-thigh 37 

pull, with no differences between the two mid-thigh variations (5, 6). In addition, Suchomel 38 

and colleagues (35) reported greater force, impulse, rate of force development and power 39 

during the jump shrug compared to the hang power clean and hang high pull. Such findings 40 

indicate that the pulling phase of weightlifting movements may be the most beneficial 41 

component of such exercises when focusing on maximal force and power development. This 42 

is supported by a recent review which concluded that eliminating the catch phase may 43 

decrease lift complexity, resulting in greater coaching efficiency in athletes with limited 44 

experience of the full lifts, possibly reducing injury risk (29) as most of the reported injuries 45 

occur to the hand, arm, and trunk (21, 24, 27). In addition, excluding the catch phase permits 46 

the use of higher loads (i.e. greater than one repetition maximum power clean), which has 47 

been shown to emphasize force production (7, 8, 18).   48 
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It has been suggested that the catch phase of the clean and power clean may be important in 49 

developing an athletes’ capacity to cope with the mechanical demands of impact (20). 50 

However, only one study has investigated the work performed during the catch phase, 51 

demonstrating that the total work during the clean was greater than the power clean, although 52 

this was similar to the total work during a drop landing (20). It is worth noting however, that 53 

these results may vary in stronger lifters as the relative one repetition maximum (1RM) clean 54 

in the study above was only 0.86 ± 0.12 kg/kg of body mass. The similarity in the work 55 

performed between the drop landing and the clean may be explained by the fact that the 56 

barbell is caught just below its peak vertical displacement during the clean (15) and therefore 57 

does not add substantially to the mass that has to be decelerated. 58 

While researchers have compared the force-time characteristics of the concentric phase of 59 

weightlifting derivatives as previously mentioned, no research to date has examined 60 

differences between the force-time characteristics of the catch phase of weightlifting 61 

derivatives. It is important to note that because some weightlifting derivatives do not include 62 

a traditional catch phase (e.g. weightlifting pulling derivatives), terms such as the ‘load-63 

absorption’ phase may describe this part of the lift more effectively. There is currently a need 64 

to establish whether the force-time characteristics of weightlifting derivative load absorption 65 

phases are comparable so that practitioners can make informed decisions about what 66 

exercise(s) should be prescribed to develop the athlete’s ability to cope with the mechanical 67 

demands of the load absorption phase. This information could also enable practitioners to 68 

make informed decisions about which weightlifting derivatives to prescribe during different 69 

phases of the athlete’s periodized training plan. The aim of this study therefore, was to 70 

compare force-time characteristics of the load-absorption phase of the clean from the knee 71 

(CK), PCK, and clean pull from the knee (CPK) to determine and compare their mechanical 72 

demands. It was hypothesized that the greatest demands would occur during the CK due to 73 
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the increased displacement of the system center of mass (body plus barbell) compared to the 74 

PCK and CPK equivalent, in line with previous observations (20). 75 

 76 

Methods 77 

Experimental Approach to the Problem 78 

A within subject repeated measures design was used to test our hypotheses.  Subjects 79 

performed CK, PCK, and CPK, with 90% of their 1RM power clean, in a randomized order 80 

while standing on a force platform that recorded force-time data. Duration, mean force, and 81 

work, during the load-absorption phase, were calculated from the force-time data and 82 

compared to establish the effect of exercise.  The duration of the load-absorption phase was 83 

examined to determine the length of time over which force was produced in order to 84 

decelerate the system center of mass during each weightlifting derivative.  Load-absorption 85 

mean force was examined to provide a greater understanding of the magnitude of force the 86 

athlete is exposed to over the entire duration of this phase during each weightlifting 87 

derivative.  Finally, work performed during the load-absorption phase of each weightlifting 88 

derivative was studied to establish the effect that exercise had on the absorption of potential 89 

energy following the second pull. 90 

 91 

Subjects 92 

Ten male collegiate level team sport (rugby league, rugby union, soccer) athletes (age 27.5 ± 93 

4.2 years; height 180.4 ± 6.7 cm; mass 84.4 ± 7.8 kg; relative 1RM power clean 1.28 ± 0.18 94 

kg/kg of body mass), who regularly performed weightlifting derivatives (≥ 3 times per week, 95 

for ≥ 2 years), volunteered to participate. They were free from injury and provided written 96 
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informed consent. This investigation received ethical approval from the institutional review 97 

board and conformed to the World Medical Association declaration of Helsinki. Subjects 98 

were requested to perform no strenuous exercise during the 48 hours prior to testing, maintain 99 

their normal dietary intake prior to each session, and to attend testing sessions in a hydrated 100 

state.  101 

 102 

Procedures 103 

Before experimental trials, subjects visited the laboratory on two occasions, at the same time 104 

of day (5-7 days apart), to establish the reliability of power clean 1RM, following the 105 

protocol of Baechle, Earle and Wathen (3). All power clean attempts began with the barbell 106 

on the lifting platform, and ended with the barbell caught on the anterior deltoids in a semi-107 

squat position; >90° internal knee angle (any attempt caught below this angle was 108 

disallowed). All testing was performed using a lifting platform (Power Lift, Jefferson, USA), 109 

weightlifting bar and plates (Werksan, New Jersey, USA). The greatest load achieved across 110 

the two sessions was used to calculate the load used during the CK, PCK and CPK. 111 

 112 

Subjects returned to the laboratory 5-7 days after the second 1RM testing session, and 113 

performed a standardized warm up including body weight squats, lunges and dynamic 114 

stretching. This was followed by performance of the CK, PCK, and CPK with progressively 115 

heavier loads (45, 60, 75% 1RM power clean) prior to performing three single lifts of each of 116 

the CK variations (a total of nine repetitions), in a randomized order, with 90% of 1RM 117 

power clean. This load was used as this represents the upper range of the loads usually 118 

recommended for the clean and power clean from the knee and such loads are more likely to ensure 119 

that the subjects received the bar at the bottom of the clean, whereas at lower loads it is more likely 120 
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that the subjects may catch the bar prior to completing the descent into the clean catch position, which 121 

would have resulted in additional repetitions to be performed and increase the chance of fatigue 122 

influencing the results. Two minutes of rest was provided between repetitions, and five minutes 123 

between lifts. The CK, PCK, and CPK were performed using previously described technique 124 

(11, 33). Each variation started from a static position with the barbell located at the top of the 125 

patella. Subjects then transitioned to the mid-thigh position before performing triple 126 

extension at the hip, knee, and ankle joints (i.e. second pull) in one continuous rapid 127 

movement.  During the CK and PCK, the barbell was elevated and caught in the rack position 128 

in a full depth squat (thighs below parallel to the floor) or in the rack position in a shallow 129 

squat (>90° internal degree knee angle), respectively. In contrast, the CPK required subjects 130 

to perform the transition and second pull and then control and decelerate the barbell as it 131 

descended from its maximum height. All CK variations were performed while subjects stood 132 

on a force platform (Kistler, Winterthur, Switzerland, Model 9286AA, SN 1207740) 133 

recording vertical force at 1000 Hz with Bioware software (Version 5.0.3: Kistler Instruments 134 

Corporation).  135 

 136 

Data Analysis  137 

Unfiltered force-time data were exported from Bioware and analyzed using custom 138 

LabVIEW software (Version 10.0; National Instruments, Austin, TX, USA). Force-time data 139 

from all trials were analyzed to obtain the dependent variables and were averaged for 140 

statistical analysis. The dependent variables were: loading duration, mean force, and work. 141 

Transition from pulling to load-absorption was represented by two distinct force-time curves 142 

(Figures 1-3); the most obvious where subjects left the ground (Figures 1 & 2), and when this 143 

occurred a force threshold of 10 N was used to indicate both take off and load-absorption. 144 
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This was used because pilot testing showed that the method recently described and used by 145 

Owen et al. (23) to identify the start of the CMJ (1 s mean force ± 5 SD) typically fell 146 

between 5 and 10 N when applied to the mid-part of flight time (flight time less the first and 147 

last 0.03 s). When subjects did not leave the ground, the lowest post-pull force was identified 148 

and the same 10 N threshold used to identify the beginning of load-absorption (Figure 3). 149 

Load-absorption ended when system center of mass displacement reached zero (See Figures 1 150 

& 2). Mean force during load-absorption was calculated by averaging force over this phase. 151 

Load absorption system center of mass displacement was calculated by subtracting the 152 

position of the system center of mass at the end of this phase from its position at the 153 

beginning of this phase. Load-absorption work was calculated by multiplying load-absorption 154 

mean force by load-absorption displacement.  155 

 156 

 157 

***Insert Figure 1, 2 & 3 about here*** 158 

 159 

 160 

Statistical Analyses 161 

Inter-repetition consistency for load-absorption duration, mean force, and work for each CK 162 

variation were determined using intraclass correlation coefficients (ICC). Distribution of data 163 

was analyzed via Shapiro-Wilks’ test of normality. Exercise effect on the dependent variables 164 

was analyzed using a one-way repeated measures analysis of variance (ANOVA) including 165 

Bonferroni post-hoc analysis. An a priori alpha level was set at p ≤ 0.05. The magnitude of 166 

differences was determined via calculation of Cohen’s d effect sizes, which were interpreted 167 
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based on the recommendations of Rhea et al. (25), where <0.35, 0.35-0.80, 0.80-1.50, >1.50 168 

are considered trivial, small, moderate and large, respectively.  169 

 170 

Results 171 

Power clean 1RM performances were highly reliable (ICC = 0.997) between sessions one 172 

(107.2 ± 14.3 kg) and two (108.0 ± 15.1 kg). All dependent variables demonstrated moderate 173 

to high reliability between trials, across each of the three CK variations (Table 1). 174 

 175 

 176 

***Insert Table 1 about here*** 177 

 178 

 179 

Load-absorption duration was significantly different (p<0.001, Power = 0.995) across CK 180 

variations; post hoc analysis showed that CK load-absorption duration (0.95 ± 0.35 s) was 181 

significantly longer than CPK load-absorption duration (0.44 ± 0.15 s; p < 0.001, d = 2.53), 182 

and moderately although not significantly longer than PCK load-absorption duration (0.56 ± 183 

0.11 s; p > 0.05, d = 1.08) (Figure 3). There were no differences between PCK and CPK load-184 

absorption duration (p > 0.05, d = 0.91) (Figure 4). 185 

 186 

 187 

***Insert figure 4 about here*** 188 
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 189 

 190 

 191 

Mean force during the load-absorption phase was significantly different (p = 0.015, Power = 192 

0.678) across CK variations; CPK demonstrated the highest mean force (2039 ± 394 N), 193 

which was moderately and significantly greater than the PCK mean force (1771 ± 325 N; p = 194 

0.012, d = 0.83), but not significantly different compared to the CK mean force (1830 ± 3301 195 

N; p > 0.05, d = 0.60) (Figure 5).  There were no differences between CK and PCK values (p 196 

> 0.05, d = 0.18) (Figure 5). 197 

 198 

 199 

***Insert figure 5 about here*** 200 

 201 

 202 

Work during the load-absorption phase was significantly (p = 0.001, Power = 0.993) different 203 

across CK variations. Significantly more work occurred during the load-absorption phase of 204 

the CK (655 ± 276 J) compared to the PCK (288 ± 109 J; p < 0.001, d = 1.75), but was not 205 

significantly different from the CPK (518 ± 132 J; p > 0.05, d = 0.80) (Figure 6). 206 

Significantly more work was performed during the CPK compared to the PCK (p = 0.032, d 207 

= 1.90) (Figure 6). 208 

 209 
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***Insert figure 6 about here*** 210 

 211 

Discussion 212 

The purpose of this study was to compare the force-time characteristics of the load-213 

absorption phase of the CK, PCK, and CPK.  The three primary findings of the current study 214 

are as follows: first, CK load-absorption duration was significantly longer compared to the 215 

CPK, as hypothesized, but was not significantly different compared to the PCK; second, CPK 216 

load-absorption mean force was significantly larger compared to the PCK, but was not 217 

significantly different compared to the CK; finally, more work was performed during CK 218 

load-absorption compared to the PCK, while there was no significant difference regarding the 219 

work  performed during CK and CPK load-absorption. 220 

In line with our hypothesis, the CK produced the longest load-absorption duration of all of 221 

the examined CK variations.  Although not significantly different from the PCK load-222 

absorption duration, the effect size was moderate, indicating that this is a practically 223 

meaningful effect.  In contrast, a large practically meaningful difference was present between 224 

CK and CPK load-absorption duration. These findings should come as no surprise given the 225 

demands of each exercise. Compared to the PCK and CPK that finish with the athlete in 226 

semi-squat position (11, 33), the CK requires an athlete to drop under the bar and rack it 227 

across their shoulders while descending into a full depth front squat position.  Due to its 228 

duration, CK load-absorption may permit an athlete to absorb the forces more efficiently 229 

compared to the PCK and CPK, which may require a more rapid absorption of the external 230 

load over a smaller displacement.  This is supported by previous research that suggested that 231 

the clean enables greater energy absorption when compared to the power clean (20).  232 
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The results of the current study indicated that the CPK resulted in the greatest mean forces 233 

during the load-absorption phase, which is in contrast to our hypothesis. Only one previous 234 

study had measured the force production characteristics of a weightlifting pulling derivative 235 

following the second pull or propulsion phase (34). However, that study focused on peak 236 

landing forces of a single exercise instead of comparing the differences between several 237 

exercises. When compared to CK and PCK load-absorption mean force, the CPK 238 

demonstrated small and moderately higher mean force, respectively. This is a unique finding 239 

in the sense that the load deceleration position of the CPK (i.e. mid-thigh position) may 240 

enable the athlete to experience greater force acceptance in a position that is considered to be 241 

the strongest and most powerful position during the concentric phase of the weightlifting 242 

derivatives (12-14). A reported benefit of the catch phase of weightlifting derivatives is the 243 

rapid acceptance of an external load (29). There have been arguments that the catch phase 244 

may simulate impact absorption in sports such as American football; however, there is no 245 

research to support the efficacy of this claim. In fact, the results of the current study show 246 

that the CPK may simulate the rapid acceptance of a load to a greater extent than the CK and 247 

PCK. These findings may have training implications as the CPK may facilitate the use of 248 

loads in excess of power clean 1RM (11). Such loading has been shown to emphasize force 249 

production during the propulsion phase of weightlifting movements (7, 8, 18), but may also 250 

provide comparable or greater mean force production during the load-absorption phase 251 

following the second pull.  Ultimately, this may enable the athlete to further develop the 252 

magnitude and rate of force production during the concentric and eccentric phases of the lift. 253 

Previous research indicated that the work completed during the load-absorption phase of 254 

weightlifting derivatives may improve the capacity to absorb forces during impact tasks (20). 255 

Similar to the study of Moolyk et al. (20), the current study indicated that the CK resulted in 256 

significantly more work compared to the PCK.  This is likely due to the longer load-257 
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absorption duration, greater load-absorption mean force, and because of the requirements of 258 

the CK a greater lifter center of mass displacement during the catch (although this was not 259 

assessed during this study). It is worth noting that the barbell is generally caught just below 260 

its peak vertical displacement during the clean (15), and therefore does not add substantially 261 

to the mass that has to be decelerated; however, the displacement of the lifter’s centre of mass 262 

is much greater after the second pull during the CK compared to the PCK and CPK. From a 263 

practical standpoint, a weightlifting derivative performed through a full range of motion may 264 

be used to develop the strength and flexibility needed to absorb the forces experienced during 265 

landing tasks (20). However, a unique finding of the current study was the fact that the work 266 

performed during the load-absorption phase of the CPK was not significantly different from 267 

the CK, although, a small to moderate effect was present. The similarities in work may be 268 

explained by the differences in mean force and duration; however, further research is 269 

warranted to deconstruct these findings and their potential application in training.    270 

The use of weightlifting pulling derivatives in strength and conditioning programs has been 271 

discussed in a recent review (29), although intervention studies are required to confirm the 272 

potential benefits of such training. While previous research on weightlifting pulling 273 

derivatives has focused on the second pull or propulsion phase of the movements (5-8, 30-32, 274 

35), less is known about the load-absorption phase of these lifts.  A recent study by Suchomel 275 

et al. (34) examined the landing forces of the jump shrug across several different loads. Their 276 

results indicated that landing force decreases as external load increases, indicating that the 277 

forces experienced during the landing should not deter a practitioner from prescribing heavier 278 

loads. Although this information is beneficial from an exercise prescription standpoint, the 279 

current study is the first of its kind to examine more descriptive variables that characterize the 280 

load-absorption phase of weightlifting derivatives. Collectively, the results of the current 281 

study indicate that the CPK may produce similar mean forces and work during the load-282 
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absorption phase, while also including a shorter load-absorption duration, compared to the 283 

CK.  Practically speaking, it appears that the CPK may benefit not only the force and power 284 

production during extension of the hips, knees and ankles, but also the necessary forces 285 

needed to subsequently decelerate the load of the lifter and barbell. 286 

The findings of the current study are not without their limitations.  The reliability of the CK 287 

load-absorption duration was poor compared to the other CK variations.  It is possible that 288 

despite the subjects’ experience with CK variability in the full front squat catch position may 289 

have occurred. This idea is supported by the standard deviations for loading duration 290 

observed in this study. A second limitation may be the exclusion of joint kinetic and 291 

kinematic measurements. While this limitation does not lessen the value of lifter plus barbell 292 

system measurements, future research should consider examining similar research questions 293 

using 3D motion analysis to determine whether similar trends exist at the joint level.  294 

Furthermore, future research should consider the effect of load on the force-time 295 

characteristics of the load-absorption phase of weightlifting derivatives. The information 296 

within the current study combined with joint-level measurements may provide a better 297 

understanding of the similarities and differences between the load-absorption phase of 298 

weightlifting derivatives. 299 

 300 

Practical Application 301 

Although it can be argued that the catch phase trains the ability to transition from rapid 302 

extension of hips, knees and ankles against an external load, to rapid flexion of hips, knees 303 

and ankles, there appears to be no additional mechanical benefit to including the catch phase, 304 

in terms of load-absorption mean force or work, when comparing the CK and CPK performed 305 

at 90% of 1RM power clean. However, although not presented in this study, it is reasonable 306 
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to assume that total work during the CK would be greater than compared to the CPK as the 307 

athlete has to stand from a full depth front squat position during the CK. It is suggested the 308 

CPK be used during maximum strength mesocycle due to the potential to use loads >1RM 309 

power clean and during competition phases of training due to the lower volume of work 310 

required across the entire lift and the corresponding reduction in injury potential due to the 311 

elimination of the catch phase. 312 

 313 

 314 

The results of the current study do not constitute endorsement of the product by the authors, 315 

the journal, or the NSCA. 316 

 317 
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Table and figure legends 427 

 428 

 429 

Table 1: Reliability (ICC) of load-absorption phase variables across clean variations from the 430 

knee 431 

 432 

Figure 1: Example CK force-time displacement-time curve 433 

 434 

Figure 2: Example PCK force-time and displacement-time curve 435 

 436 

Figure 3: Example CPK force-time and displacement-time curve 437 

 438 

Figure 4: Comparison of load-absorption duration across clean variations from the knee 439 

 440 

Figure 5: Comparison of mean force during the load-absorption across clean variations from 441 

the knee 442 

 443 

Figure 6: Comparison of work during the load-absorption across clean variations from the 444 

knee 445 
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Table 1: Reliability (ICC) of load-absorption phase variables across lifts 

Variable CK PCK CPK 
Loading Duration 0.645 0.713 0.958 
Loading Mean  Force 0.996 0.987 0.963 
Loading Work 0.926 0.915 0.929 
Notes: CK = clean from the knee; PCK = power clean from the knee; CPK = clean pull from 
the knee 
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