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e There was an overall negative effect of exercise on skilled performance
e Moderate intensity exercise had no significant effect on performance
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e Static balance tasks were disrupted more than ballistic skills
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Abstract

The primary purpose of this study was to examine, using metgtiaal measures, whether
research into the performance of whole-body, psychomotor taséwiioy moderate and
heavy exercise demonstrates an inverted-U effect. A sapppdrpose was to compare the
effects of acute exercise on tasks requiring static mainterrposture versus dynamic,
ballistic skills. Moderate intensity exercise was detaadias being between 40% and 79%
maximum power output’TIuax) or equivalent, while80% W 1yax was considered to be
heavy. There was a significant differenceg(Z 4.29, p = 0.001, R= 0.42) between the
mean effect size for moderate intensity exercise (g 5 @i that for heavy exercise size (g
=-0.86). These data suggest a catastrophe effect during &eangse. Mean effect size for
static tasks (g = -1.24) was significantly differengi{Z 3.24, p = 0.001, = 0.90) to those
for dynamic/ballistic tasks (g = -0.30). The result fordtaic versus dynamic tasks
moderating variables point to perception being more of an ikaneperipheral fatigue for
maintenance of static posture. The difference between thilt end those found in meta-
analyses examining the effects of acute exercise on amystiow that, when perception and
action are combined, the complexity of the interaction inddifesent effects to when
cognition is detached from motor performance.

Keywords: arousal; fatigue; perception; action; catecholamprefpntal cortex
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1. Introduction

Yerkes and Dodson’s [1] inverted-U theory, concerning the teffegrousal on
performance, and theories developed from this early work 2@ generally been used as
the rationales for studies examining the effect of acuteceeeon cognition (e. g., [5-7]). It
has normally been hypothesized that moderate intensity exeqtisges to moderate levels
of arousal and so optimal performance is expected, while heawige equates to over-
arousal and so performance returns to the same level a@d that. A recent meta-analysis
[8] supported this hypothesis. The primary purpose of the preselytwas to examine,
using meta-analytical measures, whether research intetferpance of whole-body,
psychomotor tasks following moderate and heavy exercise alsondérates an inverted-U
effect. Meta-analytic methods were undertaken as theytédeithe use of a larger sample
size than one normally finds in research on this topic. M@edlre emphasis on effect sizes
rather than probability allows for a better evaluation of ttsdgdies where failure to show a
significant effect was due to sample size possibly resyiti Type |l errors.

Whole-body, psychomotor skills require integrated control by the Ceamita
Peripheral Nervous Systems (PNS). The decision to acde oy the higher centers of the
brain, particularly the prefrontal cortex, and action isatétdl by the premotor cortex and/or
supplementary motor area, with the former being primarily coiecewith movement in
response to external events while the latter mainly contralsytaoly movement, although
both are active during any type of movement. The informatipassed downwards to the
PNS via several Central Nervous System (CNS) regiotsdimg the basal ganglia,
brainstem, cerebellum and spinal cord. Information from the BNi&nsmitted by efferent
nerves to motor units in the musculature. These neurons adtamusculature. Once the

action begins information from the PNS, about the movementlimék to the brain by
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afferent neurons, situated in the muscles, joints and spndl The spinal cord itself can
make very fast (~ 30 ms), but very limited alterationthéomovement, using the process of
a-ycoactivation [9]. Feedback to the cerebellum, the sogédieg loop feedback, is greater
in scope than the-ycoactivation process but takes ~ 80 ms to be activatedThi®]most
important feedback is to the sensory regions of the brain, garticthe visual and
somatosensory cortices, and, in some skills, the auditoryxcditte prefrontal cortex and the
sensory association areas receive information from thesecsrtices and organize and
interpret this information. These higher centers of the lmaminitiate large alterations to the
movement but take time (> 400 ms) [11]. This CNS-PNS intenaethsures that the
movements are coordinated and smooth, and that motor unit reemtiéfftows for the
production of the required power.

The processes outlined above can be affected by a numberssioss; including
acute exercise. The most obvious effect of acute exercise petfioemance of such skills is
physiological, although the precise nature of these physiolagfifeaits will vary primarily as
a function of the intensity (e.g. moderate vs. heavy) layt atso be influenced by the
duration; the environment under which the exercise is condubtefitness level of the
exerciser and the elapsed time between the exercigeegiodmance of the criterion task (see
[12] for a review). Broadly speaking, relevant physiologictat could incorporate central
processes related to alterations in the intrinsic motoneuroemiex) sensory feedback, or
descending drive [13] and peripheral processes occurring disted heuromuscular
junction, including those related to sarcoplasmic reticuluiwal release and decreased
myofibrilar force production [14]. More precisely, authors haveiptsly emphasized the
role of physiological factors relatedttoe level of nervous system activation [6, 15]; the
efficiency of the peripheral motor processes fadter synchronisation of the motor units

discharge); peripheral sensorial processes [16-17]; the imaelvieof different metabolic
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systems [18] and associated effects related to metamitiosis, or the accumulation of
metabolic waste products and humoral changes [19].

The physiological changes induced by acute exercise are aaaigu oy biochemical
changes peripherally and centrally. During and even immedia¢étye exercise, the
hypothalamus and brainstem initiate action of the sympathoadngstam. This results in the
release of catecholamines at the postganglionic cells & tleagrons that require activating
or inhibiting. If exercise increases in intensity to a moaeatel, there is also release of
epinephrine and, to a lesser extent norepinephrine, into the btoodHe adrenal medulla.
As exercise intensity increases further to a level wiveltould describe as heavy, there are
larger increases in plasma norepinephrine and epinephrine caiosstr Peripherally,
norepinephrine and epinephrine aid lipolysis, stimulate receptonsscle and activate
receptors in the pancreas to suppress insulin release. Epireeplatys a major role in
glycogenolysis and control of the cardiovascular system byadictly receptors responsible
for increasing heart rate and contractile force (see [2@ fewiew).

Although catecholamines do not readily cross the blood brain haatient studies
(see [21] for a review) have demonstrated significaneams®s in brain concentrations of
dopamine and norepinephrine following acute exercise. This is ikelstdue to the fact that
peripherally circulating epinephrine and norepinephrine actpatdrenoreceptors on the
afferent vagus nerve, which runs from the abdomen through tke okek and head, and
terminates in the nucleus tractus solitarii (NTS) withinkileed-brain barrier. Noradrenergic
cells in the NTS, which project into the locus coeruleusyudate norepinephrine synthesis
and release to other parts of the brain [22-23]. This nsyaifect brain dopamine
concentrations, as Devoto et al. [24] showed that electtioallation of the rat locus
coeruleus resulted in increased brain concentrations of dopamdnane of its metabolites,

3,4-dihydroxyphenylacetic acid. During moderate intensity eserthere are moderate
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increases in concentrations of brain catecholamines, wbittage the prefrontal cortex,
sensory cortices and their association areas. Thesedasread to improved sensation and
perception by increasing the signal to ‘noise’ ratio withinkren. Heavy exercise, however,
leads to even greater increases in brain concentratiaradesrfholamines, which disrupts the
signal to ‘noise’ ratio, hence inhibiting sensation and peroce pB5-26].

Catecholamines are not the only neurochemicals, activatatydexercise, which
may affect sensation and perception. There are sever&leblypothalamic-pituitary-adrenal
cortex (HPA) axis hormones are probably the most important. Reaiph during exercise,
the HPA axis hormone cortisol plays major roles in glucose prioduitom proteins, the
facilitation of fat metabolism and muscle function, and thenteaance of blood pressure
[27]. However, this appears to only occur when exerciseagyh28]. Cortisol readily
crosses the blood brain barrier, so peripheral increasemaentrations will lead to central
increases. Moreover, the synthesis and release of cdiyisbé HPA axis is initiated by the
synthesis and release of the protein corticotrophin relefeitgy (CRF) and the hormone
adrenocorticotrophin hormone (ACTH) [29]. Given that CRF isasdd in the brain and
ACTH in the anterior pituitary, which lies within the CNSis not surprising to find that
rodent studies have demonstrated acute exercise-inducedsexmedrain concentrations of
the HPA axis neurochemicals [30-32]. These neurochemicatad¢htgith catecholamines in
the brain, resulting in increased synthesis and release afrdiop and norepinephrine, which
should inhibit sensation and perception during heavy exercise [33-35].

The theory outlined above suggests that moderate, acute exgittiscilitate the
performance of whole-body, psychomotor skills, due to moderatesises in concentrations
of the brain neurotransmitters dopamine and norepinephrine inducing edppevceptual
performance. Moreover, physiological mechanisms that could yedgitnfluence motor

processes through mechanisms, including effects on nervous sydteation, motor unit
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coordination [13] or improved contractile function [14], will als®facilitated. During heavy
exercise, changes related to metabolic acidosis and fatigyelicit different physiological
changes which have the potential to impair the motor procesgaaiety of central and
peripheral sites, although the influence of acidosis on contraatiétion is controversial
[36]. Also excessive brain concentrations of catecholamines shouibit isgnsation and
perception, meaning that we can hypothesize that thereendlldignificant difference
between effect sizes during moderate and heavy exercisemans, when the stressor is
psychological and the task cognitive, one tends to find thas ttfeenges in brain
concentrations of catecholamines result in an invertedegteffiowever, we assert that it is
possible that, when the task is physical, a combination afehial and peripheral changes
might result in heavy exercise inducing poorer performanceati@st, thus demonstrating
an inverted-J effect.

A secondary purpose of this study was to compare the effemtsite exercise on
tasks requiring static maintenance of posture (e. g. staindembhnd shooting) and dynamic,
ballistic skills (e. g. most sports skills). While both reguhe integration of the CNS and
PNS, the nature of the movements and the integration of peaté@gfbrmation differ.
Maintenance of posture has been shown to be heavily dependemttal perception of
balance, which appears to be negatively affected by ex¢8disz9], while the perceptual
and decision making aspects of many dynamic skills have beem stuiwo be affected even
by heavy exercise and indeed in some cases are fadiliiaté0]. However, the
physiological demands of dynamic skills may result in detation in performance of such

skills.

2. Materials and methods
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A literature search using the computer data bases Rsyledy PsycINFO, Pubmed,
SPORTSDiscus and Web of Knowledge was undertaken. Key wadsruthe searches
were combinations dfcute”, “exercise”, psychomotor performance”, “psychomotor
skills”, “physical activity”, “fatigue” and the actual names of a large variety of whole-body,
psychomotor skills. In addition, reference lists from emglireports and reviews were
examined. Studies were included if they were performed orhigaatlividuals and repeated
measures, within-subject designs were used. In studieg plsarmacological or nutritional
treatments, the control or placebo groups’ data were included meta-analyses but not the

experimental groups.

2.1. Definitions of moderate and heavy exercise.

When exercise was aerobic, Borer’s [20] classificatiomaaderate and heavy
exercise formed the basis of our definitions, the same as tisesl by McMorris and
colleagues [8, 41]. Moderate intensity exercise was detethas being between 40% and
79% maximum power outpub{uax) or equivalent, whiles80% W 1yax was considered to
be heavy. IW1yax values were not presented but percent volume of maximum oxygen
uptake {'1O,max) Or percent maximum heart rate were given, the conversion faenadl
Arts and Kuipers [42] were applied. For other indicators ohsitg, e.g. percent heart rate
reserve, percent maximum aerobic power, percent ventildtmgtold and percent lactate
threshold power, the exercise physiology and exercise endocriridygyures were
examined to ascertain whether or not the intensity would be pelitin or above the 40—
79% W luax limits. In those studies using isotonic or isometric exeraentractions80%
of the participants’ maximal number of contractions were demnsd to be heavy, while
contractions < 80% but > 40% maximum were deemed moderate. AHszotse was

intermittent anaerobic and aerobic, duration and time workiegdt of the intensities were
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used to determine whether or not the overall intensity caulddssed as moderate or heavy.
Where exercise was to voluntary exhaustion or until the indivimudd not maintain the

required intensity, it was deemed heavy.

2.3. Data analyses

Where means and SDs were available, effect sizesoakn@ated using the Cohen's
d formula (Mean at rest—-Mean during or following exercise&best, where rest acts as the
control). Studies in which means and SDs were only provided gedighiere not included
as it was not possible to accurately determine the meahsspecially the SDs. Each
individual d was then transformed to the bias-corrected swizddrmean difference,
Hedges' g, by applying the correction factor J ((J=1- (3/4d&id)this was used to
calculate a mean effect size using the random-effects meeslilts of the Q test for
homogeneity were calculated and reported astfyaghich is a measure of absolute variance
whereas Q is a measure of relative variance [43]. ©svid4] Fail-safe N was calculated
when the mean effect size g wab.20. Where sub-group analyses were undertaken, effect
sizes for each group were compared using a Z-test on theedifées with a random-effects
model, with separate estimatestofor each sub-group. The proportion of variance explained
by the moderator variable?Rvas calculated [43]. Most studies provided more than one
effect size. In order to control for one or more studiesrggan undue bias on the results,

one effect size per intensity per study was calculateti,avié exception ([45] see section 3).

3. Results

The literature reviewed showed that there were 89 aridhash examined the effect

of acute exercise on the performance of whole-body, psychomaltertskionly 28 which
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met the criteria for inclusion and provided sufficient statal information. However, one
study [45] provided data for novice and expert performers selyaaaie so was treated as
two separate studies. This meant that there were 23 sindidrch effect sizes were
calculated for one exercise intensity only and six wherdrtemsities were included. In
total, there were 35 effect sizes and 570 participdits.types of tasks and exercise
intensities used in each study can be seen in Table 1.

Insert Table 1 about here

An initial overall analysis, including both the moderate aredhexercise dependent
variables, is necessary before comparisons can be undertakerhjdZhowed that effect
sizes were heterogeneous Q(34) = 155.68 (p < 0.004)).46. The mean effect size was
significant, g = -0.55 (Z = 4.14, p < 0.001), variand&l8, SE = 0.13, and 95% confidence
interval (Cl) -0.81 to -0.29. The fail-safe N was 6Wuehty-six effect sizes were negative and
nine positive. Sub-group analyses for moderate and heavy exaroised a significant
difference between the two variables (M@ar 1.03, SE = 0.24,4% = 4.29, p = 0.001, R=
0.42). Mean effect size for moderate intensity exercisenmassignificant (g = 0.15, SE =
0.12), while heavy exercise demonstrated a significant mekéact size (g = -0.86, Z = 5.85,
p < 0.001, variance = 0.02, SE = 0.15, Cl =-1.14 to -0.57).

Sub-group analyses for static and dynamic skills demonstratigdificant difference
between the two variables (Megn= 0.94, SE = 0.29, 4 = 3.24, p = 0.001, &= 0.90).
Mean effect size for static tasks was significant ¢§.24, Z = 4.84, p < 0.001, variance =
0.07, SE =0.26, Cl =-1.75 to -0.74), as was the meacat sitee for dynamic skills (g = -
0.30, Z = 2.33, p < 0.02, variance = 0.02, SE = 0.13, 0I55 to -0.05). It was decided, a
posteriori, to examine the effect of using counterbalanced/randomézegns compared to a

pre-exercise/post-exercise design. Sub-group analyses showigdificasit differences.
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Mean effect size for counterbalanced/randomized designg wa8.42 (SE = 0.19, Z = 2.20,

p < 0.03) and for pre- followed by post-exercise g = -0.629H38, Z = 3.51, p = 0.01).

4. Discussion

The overall analysis shows a moderate to high effect Bimd it was negative is not
too surprising, given that there were more studies meastengffects of heavy exercise
than moderate. Nevertheless, a regression towards zeexpesded, as we thought that
moderate exercise would induce positive effect sizes whikyhgauld result in negative
effect sizes. This was not demonstrated as 45.45% of the afoderate intensity results
showed negative effects. This result is very differenbhése found in meta-analyses
examining the effect of acute exercise on cognitive skiliduding perception, when the
skill is carried out either during exercise or immediateliofeing cessation of the exercise.
In those studies, the overall analyses with both moderathesawy exercise included, have
tended to show small to moderate, but significant effectstiyrmssitive [8, 46-48] but one

negative [49].

4.1. Moderate intensity exercise effects

The effect size for moderate exercise was positive but anthnon-significant. We
expected a high effect sizeX¥d.70) because of the strong theoretical rationale. One would
expect the increase in body temperature during moderate igtersitise to induce
increased speed of nerve transmission [50], which would aid catieh and power

production. Moreover, when brain catecholamines concentrationscaeased to a moderate

level, there is increased firing afa-adrenoreceptors by norepinephrine [51], which increases

the strength of the neural signal, and D1 dopaminergic receptaigpaynine [52], which
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dampens the ‘noise’ by inhibiting firing to non-preferred stintblis improving the signal to
‘noise’ ratio [25-27]. This should strongly improve perceptualgrerince by optimizing
activity in the reticular formation, which controls atient alertness and vigilance, and the
prefrontal cortex, which is responsible for integration andpnétation of information from
the sensory cortices and their association areas.

Before attempting to look at possible physiological and neurogmeaetsons for
these results, we must examine some possible methodologies.igs the sample size (k =
11) was small from the point of view of number of studiesptissibility of a lack of power
resulting in a Type Il error has to be taken into accountowiicg to Clarke-Carter [53], to
attain a power of 0.80, with k = 11, we would need to elitiéthect size of g = 0.75, very
close to our expected g = 0.70. This may account for the faifuige= 0.15 to reach
significance but does not explain why we failed to show thetesdiee we expected or at
least one near to it. The possibility that study desigtedféd properly control exercise
intensity also needs to be addressed. All exercise itiEnsiassified as moderate met the
criteria set out in 2.1. The only questionable issue mightdoéirne spent exercising in the
McRae et al. [54] study (2 hours), which could have resulteccne@sed brain cortisol
concentrations as well as increased dopamine and norepinephringtratiares. Moreover,
three studies [54-56) failed to take into account individuéihces in fitness. Given the
mean effect sizes for these studies, it does not apahih has been a contributor,
certainly not a major contributor, to our results.

However, the failure of all but two studies [57-58] toet@to account individuals’
lactate and catecholamines thresholds may have affexgelis. When we plot plasma
concentrations of epinephrine and norepinephrine against exeteissityy concentrations
rise exponentially [59-60]. Green et al. termed the pointéhath there is a significant rise in

concentrations, the epinephrine threshold and the norepinephrine tiredtwugh the two



O©CO~NOOOTA~AWNPE

201

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

13

thresholds generally show moderate to high correlations, thdatmnes differ between
individuals [61]. It would appear that exercise intensity neetie tmoderate before the
thresholds are reached but there are large inter-individui@tions [62]. It is generally
thought that, for aerobic exercise, intensity needs to be ~V75%%uax [61], which
according to Arts and Kuipers [42] equates to ~ 68%ax. Moreover, blood lactate
concentrations follow a similar exponential profile and the ladtateshold shows moderate
to high correlations with the catecholamines thresholds [6, 61C8&8hura, Nazar and
Kaciuba-Ucilko [6] argued that it is at or immediately following tb&techolamines
thresholds that a significant improvement in cognitive funaotidhbe induced due to
increased brain catecholamines concentrations. This makes aemsereased concentrations
of circulating epinephrine and norepinephrine will activatetdrenoreceptors on the
vagus nerve, thus initiating the action of the vagus/NTS patlwd increased synthesis and
release of norepinephrine in the locus coeruleus. Improved iv@gpérformance at or
following the catecholamines thresholds [6-7] and the lactagstibid [64-65] has been
demonstrated. Also, improved cognition has been shown at the t@wtitareshold [66-70],
the point at which ventilatory carbon dioxide shows a greatezase than ventilatory
oxygen and which occurs about the same time as the lactateoldrpal ].

Participants exercising below their catecholamines threstaldil probably not
induce increased brain catecholamines concentrations and hést@wamproved
performance. However, individuals exercising above their thrdsimight synthesize and
release too much, thus negatively affecting performance.nigist account for the
equivocal nature of the results and also points to the nedolse wishing to use warm-up
exercise to aid whole-body, psychomotor performance to individualkzexercise intensity.
Another possible reason for the failure to demonstrate posiitvsignificant results could

be that, if exercise is above the individual’s threshold, CINBRINS integration are
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compromised due to increased blood and muscle lactate conoastrand changes in the
balance between ventilatory carbon dioxide and oxygen having dateheffects on the
motor aspects of the psychomotor task.

These results suggest that the CNS-PNS interaction dhergerformance of
psychomotor skills, following moderate intensity exercise, neaydry complex. While the
catecholamines thresholds may be ideal for brain activaspegcially in the prefrontal
cortex, this intensity may have negative effects omptiysiological aspects. Indeed it could
be that different skills require different intensities to iceloptimal performance. A great
deal more research is necessary. Moreover, research smdulte more physiological and

biochemical measurements than the research at preshatlitetature.

4.2. Heavy intensity exercise effects

Results for the effects of heavy exercise were as exgb@gth a high effect size
being demonstrated. Neurophysiologically, research has shatretluced excitations of
motoneurons resulting from afferent feedback from muscle spiftfigseduced impulse
frequency to muscle fibers at the neuromuscular junction f¥®failures in the calcium
release process [74] significantly affect coordination and pdvetabolically, decreased
adenosine triphosphate supply [75], decreased glycogen concentfa@ipriecreased pH
and increased concentrations of inorganic phosphate [77] all iiaibéary affects on motor
control. From a neurochemical perspective, heavy exercise mgacglarge increases in
brain concentrations of catecholamines. This, in turn, leattetexcess norepinephrine
activating the lower affinityl- andp-adrenoreceptors [51¢1-adrenoreceptors can result in
reduced neuronal firing in the prefrontal cortex by phosphatidylingsitiein kinase C
intracellular signaling pathway activation. Excessive sttimn of D1 receptors anft

adrenoreceptors can induce excess activity of the seconeéasenger cyclic adenosine
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monophosphate which dampens all neuronal activity, thus weakenisigtia¢ to ‘noise’
ratio in the prefrontal cortex (see [25-26]). During high Is@lstress, this is probably
exacerbated by stimulation of D2 receptors [25]. Although, séitrmd ofal- andp-
adrenoreceptors can improve the signal to ‘noise’ ratioarsémsory cortices [78-80] and can
aid some prefrontal cortex activities, overall it has a tnagaffect on prefrontal cortex
activity [25-26]. This is important because the prefrontal gageesponsible for the
integration and coordination of perceptual information from a tyaokesensory regions of
the brain [81]. Moreover, as well as integrating and coondigaensory and perceptual
feedback, the prefrontal cortex, particularly the rightriofeprefrontal cortex, plays a major
role in inhibition of inappropriate motor responses [82], which lzanegative effect on the
performance of psychomotor skills.

As we saw in section 1, heavy exercise also ingitite release of the HPA axis
hormones, which exacerbate the negative effects of the catethesa These
neurochemicals interact with catecholamines in the brafféot perception and cognition.
In the locus coeruleus, CRF neurons innervate noradrenergic namgbnsrepinephrine is
released [83-84]. Similarly there is strong evidence fantraction between corticosteroid
concentrations and dopamine release [85-88]. Thus increaseatnaentrations of CRF,

ACTH and cortisol during heavy exercise add to the negatieetsfbf catecholamines.

4.3 Effects on static versus dynamic/ballistic psychomotos skill

The results of the sub-groups analyses show that we weeetcrexpect
differences but the proportion of variance was far grehager we had anticipated. We
expected only a relatively low coefficient, e. §.2R0.40, as both sets of skills require high
levels of perpetual-action coupling. That the effect forstiaéic skills was negative was as

expected but that it was so high was surprising. These aligit muscles in the vicinity of
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the knees, ankles, calves, toes and hips but the range of moerdeawer required are
comparatively small [89-91]. Centrally they require a large ifqmum the dorsolateral
prefrontal cortex to integrate information from the visual amghatosensory cortices,
cerebellum and vestibular apparatus. Given that the darsallarefrontal cortex is
especially susceptible to disruption by excess catecholan@be®s], inhibition of
performance is not surprising. Furthermore, several resealchee argued that exercise
affects proprioception more than the motor aspects of balanc@dBand it has been shown
that the attentional demands of balance actually incredewiiof) heavy exercise [37].

The dynamic, ballistic skills also require central in&tign of perceptual information
but even heavy exercise has been shown to have only a limigedive effect on the
perceptual and decision-making aspects of such skills [82}0Moreover, many of the
skills utilized in the research covered by this analysig mell have been autonomic to the
participants. This is especially so given that many oskikés were sports skills and the

participants were often physical education and/or sporteceimajors. Autonomic skills

may well be less negatively affected by stress, @gmsiological stress. This has been shown

for well-learned cognitive skills and implicitly-learnedtar skills [92-93]. However, the
peripheral physiological adaptations to exercise probably havgadiveseffect on
coordination and power, which results in a small but signifinagative effect. If
automaticity is a key moderator, it would appear that oaerleg could help to lessen the

problem of performing following heavy exercise.

4.4. Use of counterbalancing/randomization of testing
Observation of the raw data led us, a posteriori, to exatineese of
counterbalancing/randomization of testing as opposed to thd pee-@xercise testing

followed by post-exercise testing. Research methods texisineend counterbalancing or
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randomization but many of the studies included in the analyieedia pre-exercise
followed by post-exercise protocol. The possibility of a learoinigabituation effect is
obvious. Therefore, we decided to compare mean effext &z studies using
counterbalanced/randomized designs with those using pre-exefmsetbby post-exercise
testing. That there was no significant difference betvatedies using
counterbalance/randomization and those using a pre-exercise tedtingd by post-
exercise testing protocol was a little surprising. McMomid BElale [8], examining the effect
of acute exercise on cognition, showed that randomized/coursteckal designs elicited
higher effect sizes than pre-exercise followed by post-eseetesting. They claimed that
testing pre-exercise meant that the individual’s dopamidenarepinephrine, and possibly
cortisol, concentrations would show an increase pre-exercise daédipation of the
exercise to come, a phenomenon which has been known for sonj@4jraed demonstrated
recently [95]. This could lead to pre-exercise cognitivégomance being better than that at
a real baseline. With psychomotor skills one might expectaime pre-exercise increase due
to anticipation but there is likely to be a fall in brain chtdamines concentrations once the
participants begin the pre-test. Falls in peripheral catanfines concentrations have been
shown when individuals begin to perform a skill compared to prieqpeance concentrations
[96]. This is probably due to the perception of the stress lggesger than the actual stress

[94]. This would negate the pre-exercise levels affedtiegollowing rest performance.

5. Conclusion

The results of this study failed to fully support eitheirauerted-U or an inverted-J

effect of acute exercise on the performance of whole-b@yghomotor skills. Moderate

intensity exercise demonstrated no significant effectlenteavy exercise showed a negative
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effect. That moderate intensity exercise failed to ingusgnificant improvement from rest
guestions the use of a moderate intensity warm-up for improvifigrpemce, a practice that
is common particularly in sport. Moreover, the differencevieen this result and those found
in meta-analyses examining the effects of acute exevoisegnition [8, 41, 46-49] show
that, when perception and action are combined, the compteEixitye interaction induces
different effects to when cognition is detached from mosofgpmance. The same appears to
be the case with heavy exercise, following which the neuroda¢amd physiological stress
appear to combine to induce a detrimental effect companedttonly moderate intensity
exercise but also compared to at rest, baseline msa3ire result for the static versus
dynamic tasks moderating variables possibly point to percelpéimy more of an issue than
peripheral muscular fatigue for maintenance of static posture.

There are several issues that future research neextsmine. Firstly, a lot more
research is required and studies should include physiologidaleurochemical measures.
Such measures would allow for a better knowledge of the amount oblolgysal stress
placed on the participants. Moreover, individual differencgmiticipants’ fithess levels
need to be taken onto account in the experimental designs. Csompaiitasks involving
greater and less prefrontal cortex activation would allowHerinvestigation of whether the

problems were mainly central or peripheral or equally both.
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Figure captions

Figure 1. Forest plot for all studies.

Note: H heavy exercise; M moderate intensity exercisgyriamic/ballistic skills; S static
balance; CR counterbalanced or random design; SO (same ordexepeise test followed
by post-exercise test.

Figure 2. Forest plot for heavy exercise studies.

Note: H heavy exercise; D dynamic/ballistic skills; Sistatlance; CR counterbalanced or
random design; SO (same order) pre-exercise test followed by xyersise test.

Figure 3. Forest plot for dynamic/ballistic skills studies.

Note: H heavy exercise; M moderate intensity exercisgyramic/ballistic skills; CR
counterbalanced or random design; SO (same order) pre-exestisalowed by post-
exercise test.

Figure 4. Forest plot for static balance studies.

Note: H heavy exercise; M moderate intensity exercistati® balance; CR counterbalanced

or random design; SO (same order) pre-exercise test folloywpdst-exercise test.



Table(s)

Table 1. Participants’ demographics, exercise intensities, psychomotor tests and type of

research design (RD).

Authors N M/F  Mean Exercise RD Test dv Effect size
Age type and (9)
(SD) intensity
years
Alietal. [97] 16 M 21.3 LIST[98] P-P LSPT, Time, Acc -0.30
(3) LSST
[99]
Anshel & 44 M  20.10 cycling@ P-P shot putt distance 0.70
Novak [101] (1.10) 45,60, 75%
VLIOzamax;
fatigue
Bottoms et 9 M 24.8  Db’ton circuit P-P b’ton Acc -0.96
al. [102] (6.76)  to fatigue serve
[100],
WBCRT
Bullock etal. 42 M 18.5 LIST[98] P-P soccer Acc, time 0.33
[55] (3.5) passing,
agility
Davey et al. 18 9M 212 tennis P-P LTST Acc -0.27
[103] 9F (0.75) simulation [103]
to fatigue
Dickin & 16 M9 2235  isometric P-P  posture amplitude -0.42
Doan [104] F7 (1.70) contractions displacement
to fatigue
Evans et al. 12 M9 2145 hand-crank P-P  shooting Acc -2.10
[105] F3 (3.40) to fatigue,
obstacle
course to
fatigue
Gabbett 8 M 23.00 Rugby P-P Rugby Time, Acc -0.54
[106] (1.20)  simulation tackle
(HR > 180
bpm)
Groslambert 10 M 1850 ski 85%, P-P  shooting Acc -2.06
et al. [107] (1.00) 100%

HRmax




Impellizzieri
et al. [108]

Johnston et
al. [110]

Lidor et al.
[56]

Lyons et al.
[111]

Lyons et al.
[45] experts

Lyons et al.
[45] novices

McGregor et
al. [112]

McMorris et
al. [113]

McMorris et
al. [57]

McMorris et
al. [114]

McMorris et
al. [58]

McMorris &
Rayment
[115]

26

20

26

20

10

10

11

12

12

12

13

M

M
12
F8

17.8
(0.6)

29
(N/R)

16.40
(0.82)

22.90
(5.30)

22.50
(0.41)

23.30
(1.05)

20.20
(0.40)

N/R

20 (2)

24.24
(3.10)

21.04
(2.12)

205
(2.0)

HI soccer
simulation
(HR > 180
bpm) [109]

isometric
contractions
to fatigue

v’ball
simulation
(HR ~ 150

bpm)
70%, 90%
max squats

70%, 90%
max squats

70%, 90%
max squats

LIST [98]

cycling @
70%, 100%
Wllmax

cycling @
Te, Wlimax

cycling @
70%, 100%
Wlmax

cycling @
Tia

1 xyo-yo
shuttle (HR
~ 150 bpm)
3 x shuttle

(30 s rest)

P-P

P-P

P-P

C

C

P-P

LSPT
[99]

balance

v’ball
serve

LSPT
[99]

b’ball
pass test

b’ball
pass test

soccer
dribble

soccer
passing

soccer
passing

slalom
run

soccer
passing

soccer
passing

Time

Time in

balance

Acc

Time

Acc + speed

Acc + speed

Time

CE, VE, No.
passes, total
score

AE, CE, VE

Time

CE, VE, MT

AE, VE

-1.39

-1.79

-0.07

0.11 (M)
-0.29 (H)

-0.09 (M)
-0.76 (H)

-0.77 (M)
-1.89

0.15

0.73 (M)
-0.17 (H)

-0.11 (M)
-0.74 (H)

-0.10 (M)
-0.38 (H)

0.05

-1.85




(HR > 180

bpm)
McRae & 11 M 2200 matchplay P-P tennis Acc
Galloway 15 (7.30) (HR~130 serve,
[54] F7 bpm) ground
strokes
Sarshin et al. 20 N/R 214 Dbalancetask P-P  balance Acc
[116] (1.63)  to fatigue
[110]
Sunderland 9 F 2170 LIST[98] P-P field Time
& Nevill (0.40) hockey
[117] skills
drill
Tharion et al. 27 M 29(4) 147kmrun P-P  shooting Acc
[118] with
backpack @
6.5 km/hr*
Vuillerme et 9 M 22,00 isometric P-P  balance Acc
al. [37] (3.10) contractions
to fatigue
Wickstromet 20 M8 22.00 isometric P-P  balance Acc
al. [119] F12 (1.75) contractions
to fatigue,
agility drill
to fatigue
Yaggie & 16 M 24(3) Wingate P-P  balance Acc
Armstrong Test [120] x
[91] 2*
Young et al. 27 M N/R 2x3mins P-P  Kkicking Acc
[121] sprint (3 accuracy
mins rest) ARF
HR 174 (9)

0.15

-1.73

-0.56

-1.10

-1.29

0.09

-1.25

0.10

Note: * no physiological measures taken but the nature of the tasks are such that they
constitute heavy exercise: RD = research design: M = male: F = female: dv = dependent
variable: LIST = Loughborough intermittent shuttle test: P-P = pre-exercise followed by post-
exercise: LSPT = Loughborough soccer passing test: LSST = Louhgboirough soccer shooting
test: Acc = accuracy: VI 10amax = maximum volume of oxygen uptake: b’ton = badminton:

WBCRT = whole-body choice reaction time: LTST = : HR = heart rate: bpm = beats per



minute: HRyax = maximum heart rate: HI = high intensity: N/R = not recorded: v’ball =
volleyball: C = counterbalanced: b’ball = basketball: CE = constant error:, VE = variable
error: No. = number of: Tg = epinephrine threshold: W yax = maximum power output: Tia

= lactate threshold: R = randomized: MT = movement time: ARF = Australian Rules football
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